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1. INTRODUC'TION

The purpose of this paper is to reconsider the problem of consistent planning

which was raised by Strotz (1955-56) and Pollak (1968). It will be argued that a

solution to this problem as originally posed requires a refinement of Subgame-

perfectness. Through an analysis based on Greenberg's (1990) theory of social

situations such a refinement will be offered.

Strotz (1955~6) and Pollak (1968) were concerned with an individual decision

maker wishing to revise an initially optimal plan if there at some later point in time is

a better plan available. The recent literature on renegotiation-proofness in repeated

games (see Section 6 for references) is concerned with the grand coalition collectively

wishing to revise a Subgame-perfect equilibrium (SPE) if there in some subgame is a

Pazeto-dominating SPE available. A unifying framework encompassing both individual

and collective time consistency will be presented.

Section 2 will motivate the subsequent analysis by azguing conceptually and

illustrating through examples that Subgame-perfectness dces not solve the Strotz-

Pollak problem of consistent planning. Section 3 introduces the general model, while

Section 4 applies this model to garnes with perfect information. It is established under

what conditions having at each node the active player suggest a path~profile~SPE in

the remaining subgame is equivalent to Greenberg's (1990) notion of optimistic

stability in the tree situation. Based on this equivalence result a solution to the Strotz-

Pollak problem of consistent planning is presented in Section 5, and compared in

Section 7 to a solution to the problem of consistent planning suggested by Kocherlakota

(1991). Section 6 relates individual and collective time consistency, while Section 8

asks whether planning by a single individual with time inconsistent preferences differs

from a game where different individuals make decisions at different times. The relation

of the present analysis - where time consistency requires a refinement of Subgame-

perfectness - to the analysis of macroeconomic policy games - where time consistency



is a weaker requirement than Subgame-perfectness - is discussed in Section 9. Section

]0 contains concluding remarks, while all proofs are relegated to Section 11.

2. TFIF, PROBLF.M OF ('ONSISTF,NT PLANNINC

Consider an individual decision rnaker facing a decision trce. At the initial

node, the individual would like to realize a path through the decision tree that

maximizes the individual's payoff as evaluated at the initial node. Such a path is said

to be optimal. Likewise, a decision rule (defined by the property that it at every node

of the decision tree determines an action) is said to be optimal if it generates an

optimal path. An optimal path (or decision rule) is time consistent if, for each node

reachable by the optimal path, the path (or decision rule) is still optimal in the sense of

maxinuzing thc individual's payoff as cvaluatcd at thc rcached nodc.

Strotz (1955-56) and Pollak (1968) are concerned with the case where there is no

optimal and time consistent path (or decision rule). In such a case, the preferences of

the individual are said to time inconsistent. The following two illustrations are

int'larled in onlrr lo rirovin~~~~ Lhc~ rra~lro~ I,hal. in mal IiG~ smmin,~;ly ral.ional indivirlual

decision rnakers do in fact fac.c such time inconsistencies.

Procrastinntiora. It is a common cxpcricncc LIiaL pcoplc tend to posl,ponc

tmpleasant tasks, preferring to have them done in the next period (day, week, ... ).

Yet, when the next period comes along, still further postponement seems preferable.

Such "... [p)rocrastination occurs when present costs are unduly salient in comparison

with future costs ..." in the words of Akerlof (1991, p.l) who gives the subject an

interesting treatment filled with real-life examples. Hence, at any time, the rate of

time preference between the present and the first future period is greater thau between

a future period and its successor. These are the kind of inconsistent time prejerences



which are explicitly analyzed by Strotz (1955-56). Time preferences can be shown to be

consistent if and only if the utility function is strongly recursive in the sense of

Blackorby et al. (1973, Theorem 3).

Intozication. The following situation may also seem realistic: After work, some

would prefer to go by the local pub and have one beer instead of going straight home.

At the pub, after the first beer, it may, however, seem preferable to consume another

three beers. These prefetences are time inconsistent if, when leaving work, going

straight home is preferable to consuming four beers at the pub. Such endogenous

prejerences are treated by e.g. Hammond (1976) who argues that there is no need in a

formal analysis to distinguish between preferences changing exogenously due to the

passing of time (i.e. inconsistent time preferences) and preferences changing endo-

genously due to the actions - e.g. the consumption of alcohol and other intoxica,ting

substances - taken (i.e. endogenous preferences). Both types of time inconsistency are

thoroughly reviewed by Elster (1979), whose terminology I have adopted above.

In the case where there is no optimal and time consistent path (or decision rule),

Strotz (1955~56) suggests two possibilities: Precommitment or Consutent planning.

Precommitment amounts to nothing less than changing the decision tree and will not

be discussed here. The problem of consistent planning is according to Strotz (1955-56,

p.173) for the individual "to find the best plan among those that he will actually

follow".

If no optimal and time consistent path (or decision rule) exists, this problem of

consistent planning requires that the decision tree be turned into an extensive game

where the individual at different times corresponds to separate players. The payoff

that a player receives from a path through the tree equals the payoff the path yields

when evaluated at the reachable node at which this player makes a decision. A

decision rule (as defined above) corresponds to a profile of the players' strategies.

Peleg and Yaari (1973) and Goldman (1980) analyze the notion of consistent

planning in such a game theoretic context. They claim that a plan is the best that will



actually be followed ("optimal in the Strotz-Pollak sense", Peleg and Yaari, 1973,

p.345; "a Strotz-Pollak cyuilibrium", Coldmau, 1980, p.~ia4) if and ouly if iL is a SP1~, uf

the corresponding extensive game. The following examples will make it clear, though,

that any SPE is not a solution to the problem that. Strotz (1955-56) posed.

Example 1(see Figure 1) considers an individual who lives at times 1, 2, and 3.

At time 1 he has to decide whether to perform an unpleasant task now (D) or later ((~.

If he chooses U at time 1 he has to decide between now (D) and later ( U) at time 2 as

well. Note that the individual at time 2 is indifferent between U and D: Therefore,

( U, D) is the unique optimal and time consistent pnth since this path is the only one

that is optimal at each node that the path reaches. Following ( U, D) enables the

individual to postpone the unpleasant task from period 1 to period 2. However, the set

of (pure strategy) SPEa is {( U, D), (D, U)}. Hence, there exists a SPE in which the

individual at the initial node dries not chonse the best plan among those t.hat he will

actually follow, rather he receives a lower payoff by performing the task immediately.

Ilc da~ so fcaring thal. if hc txstlwncd thc task aL tirnc 1 hc would txrsttxlnc thc I,ask

at time 2 as well and be worse off as evaluated at the initial node.

0

FIGURE 1



Example 2- which is inspired by an example by Asilis et al. (1991) - has the

individual choosing ai E{0, 1} for each i E N with the payoff at time i being given

as min~~a~ In this example there also exists a unique optimal and time consistent

path, viz. (1, 1, 1, ...). Note, however, that (0, 0, 0, ...) is a SPE path since no single

player can profitably deviate from the strategy profile determining the action 0 for

each player at every node. Then, by using (0, 0, 0, ...) as a punishment, any feasible

path can be supported as a SPE path. Hence, even though the problem of consistent

planning has a unique (and trivial since the optimal path is time consistent) solution,

the concept of a SPE has no bite what so ever in this example. (As example of the

same kind, but where the optimal path is time inconsistent is analyzed in Asheim,

1988a. There the optimal and time inconsistent path can be supported as a SPE path.)

These examples are peculiar in the sense that the game of Example 1 is non-

generic, while the payoff function in the game of Example 2 is not continuous at time

infinity. Still, they show that the notion of Subgame-perfectness is not conceptually

valid as a solution to the problem of consistent planning. The reason is the following:

The notion of consistent planning is based on the premise that the players (being

agents of the individual at different times) are symmetric with respect to their ability

to influence later players. In particular, player 1 cannot commit later players to follow

his optimal plan. In a SPE, each player can only reconsider his own action; thus, by

the symmetry requirement player 1 is not the one suggesting or coordinating on a

particular SPE. Hence, by playing according to a SPE the individual is not at any

time doing any planning; instead he is following an exogenously given decision rule

from which the individual does not wish to do single deviations. (Note that considering

an equilibrium as an exogenously recommended course of action is consistent with the

classical view of games; see e.g. Kohlberg and Mertens 1986, footnote 3.)

This discussion - as well as Examples 1 and 2 above - suggests that a

refinement of Subgame-perfectness is required in order to conceptually solve the

problem of consistent planning. Such a refinement will be offered in the subsequent



sections through a concept which will turn out to have two equivalent interpretations:

(i) A player can - given that one of his decision nodes has been reached - choose

any palh in the remaining subgame, taking into acwunt that later players can

do so in Lurn.

(ii) A player can - given that one of his decision nodes has been reached - choose

any strategy profile in the remaining subgame, taking into account that later

players can do so in turn.

The concept constructed on this basis respects the symmetry between the decisions

that the individual takes at ditferent times, while allowing him to engage in planning

by choosing "the best plan among those he will actually follow". !t will be established

that this concept yields the set of the optimal and time consistent paths when this set

is non~mpty in every subgame. Examples 1 and 2 satisfy this condition.



3. THE GENERAL MODEL

Consider a multi-stage game G where at each stage a subset of the set of

players N:- {1, ... , n} (n finite or infinite) are active in the sense of taking pazt in a

simultaneous-move game in that stage. The game is one of almost perfect information

in the sense that, at each stage, players know all previously taken actions, but not

actions taken by other players in the same stage. In order to capture such a game

define the set of hutories inductively as follows: Let the set of histories in (the first)

period 1 be given as follows: H(1) -{0}. Let H(t) denote the set of histories in period

t. At h E H( t), a subset N~` of N are active. For each i E Nh, the action set at h

is non-empty and denoted by Ah; with Ah denoting the Cartesian product of A~,
over all i E Nh. Define the set of histories in period t t 1 as follows:

H(ttl) :- {(h, a) ~ h E H(t), N~ ~ 0, and a E Ah}.

For convenience, write (0, n) - a such that H(2) - Ao. This completes the induction.

The set of histories H is now given by: H:- U~~H(t). Note that the game

may have terminal nodes; in fact, it may be 5nite horizon. The set of terminal nodes is

given by: Ho :- {h E H~ Nh - 0}. The set of suógames Fi`HO is naturally ordered by

~, i.e. h ~ k means that h equals or precedes k. Note that - by convention - h( k

is taken to imply that k is not a terminal node.

If h E H, then a feasible path at h, denoted ~r -(a(1), a(2), ... ), is either a

finite sequence of feasible actions leading up to a terminal node (i.e. k- (h, ~r) E Ho)

or an infinite sequence of feasible actions. Define IIh as the set of feasible paths at h.

For notational convenience, write II~` -{0} if h E H0, understanding that (h, 0) - h.

A feasible path R at h yields player i the payoff U~(h, ~r).

Let Rh :- {k ~ h~ i E Nk}. Then the set of strategies for player t E Uk~ANk in

the subgame h- consisting of all x. satisfying for all k E H~, x(k) E Ak - is~ ~ ~ ~
denoted by Xh. The set of (strategy) prof~les in the subgame h, Xh, is the Caztesian

product of Xh over all í E Uk~hNk. If h ~ k and x E Xh, then denote by xk the



restriction of x to the subgame k. Note that Zk E Xk. If h ~ k, then x E Xt`

determines (through the restriction of x to k) a path ak(x) in the subgame k, and

thereby yields player i Lhe payoff U~(k, ak(x)) given that the subgame k has been

mached. I,et uk(x) :- U~(k, ~rk(r.)). fkmote by XF, the set of SPF,a and by IIF, thc

set of SPE paths oí the subgame h. Write IIÉ- {0} if h E Ho. Write X, II, XF„

and IIE for Xh, IIl`, XhE, and IIÉ if h- 0.

The situation which will turn out to integrate the problems of individual and

collective time consistency is given as follows. In each subgame h the players active

at the root of h can choose any SPE in h that is viable when taking into account

that the players active at, the roots of later subgames can do so in turn. In order to

capture this situation, let a standard oj óehavior (SB) for G on SPEa be a

correspondence E assigning to each subgame h E FI`Ho a subset, E(h), o[ X~ A

SB E is said to be optimistic internally stable on XE if

(IS) For any h E I~Ho and any x E E(h), there do not exist k~ h and y E E(k)

such that uk(x) c uk(y) for all i E N'f.

A SB E is said Lo tx~ oplimislic externaUy sf,nble on X~, if

(ES) For any h E II`Ilc and any x E X~,`Z(h), there exist k~ h and y E E(k) such

thaL u~~(x) c u~~(y) for all i E N'F.

A SB is said to be optimislic stable on XE if it is both optimistic internally and

optimistic externally stable on X~, This is a special application of the general notioit

of optimistic stability, which is due to von Neumann and Morgenstern (1953), and

which is a central solution concept in Greenberg's (1990) theory ojsocia! siluations.

The term 'optimistic stability', which has been coined by Greenberg (1990), refers here

to the optimistic attitude of the players active at the root of h in the sense of

believing that they can choose any viable outcome in h. Greenberg (1990) has also a

notion of conservative stability, which does not correspond to von Neumaun attd

Morgenstern stability, and which will not be treated here.



4. GAMES WITH PERFEC'I' INFORMATION

A game with perfect information G is characterized by the property that, for

all h E FI`Ho, ~ 1Vt` ~ - 1; i.e., at each stage, only one player moves. Denote by i the

single player active at h. A game with perfect information is a Strotz-Pollak game if (i)

i- 1, and (ii) ih - i and a E Ah imply :~h''1 - itl whenever ( h, n) E li`({0}UH~).

A game with perfect information is continuous if for every e~ 0, there exists an

integer K such that if the first ~c nodes of two paths a and p coincide, then for all

i E N, ~ U~(a) - U~(p) ~ c e. A game with perfect information is f~nite action if, for each

h E f1`Ho, ~ Ah~ is finite.

Motivated by Section 2, consider the situations where in each subgame h, the

player active at the root of h can choose

(i) any path at h that is viable when taking into account that the players active at

the roots of subgames that is reached by the path can do so in turn.

(ii) any (strategy) profile in h that is viable when taking into account that the

players active at the roots of later subgames can do so in turn.

Situation ( ii) is identical to the one considered in Section 3 with the one differ-

ence that all profiles are considered, not only those that are Subgame-perfect. Hence,

let a SB for G on profiles be a correspondence E assigning to each subgame h E fi`Ho

a subset, Z(h), of Xt`. A SB E for C is said to be oplimistic internally stable on X if

(IS) For any h E fl`Ho and any x E E(h), there do not exist k~ h and y E E(k)

such that uk(x) c uk(y) for i- i.

A SB E for G is said to be optimistic externnlly stable on X if

(ES) For any h E H`Ho and any x E Xt``E(h), there exist k~ h and y E E(k) such

that uk(x) C uk(y) for i- i.

A SB is said to be optimistic stable on X if it is both optimistic internally and

optimistic externally stable on X.



Situation (i) is different since it is defined in terms of paths, not profiles.

Therefore, given some path a-(a(I), ... , a(s), ...) E IIh, say that k is reachable from

h through a if k-(h, a(1), ... , a(s)) for some s. Let a SB for C on paths be a

correspondence o assigning to each subgame h E FI`Ho a subset, o(h), of IIl`. An

SB o for G is said to be optimisttic internally stable on II if

(IS) For any h E I~Ho and a E o(h), there does not exist k E II`Ho reachable

from h through ~r and p E a(k) such that U~(h, a) c U~(k, p) for i- i.

An SB a for G is said to be optimistic externally staóle on II ií

(ES) For any h E li`HO and ~r E II~`o(h), there exists k E ll`Ho reachable from h

through rr and p E o(k) such that U~(h, x) c U~(k, p) for i- i.

An SB for G is said to be optimistic stable on II if it is both optimistic internally and

cxtcrnally stablc on I I.

Situation (i) will be shown to be closely related to the tree situation in

Greenberg's (1990, Ch. 8) theory ofsocíal situations. For each kE f~{0}, let P(k)

denote the immediate predecessor of the node k. If a E IIh, then player i is said to be

able to induce k from h through a if i~kl - i and P(k) is reachable from h

through x. Let a SB for C in the tree situation be a correspondence o assigning to

each hístory h E H a subset, o(h), of llh. An SB o for C is said to be oplimislic

internally stable in the tree situation if

(IS) h E H and rr E o(h) imply that for any i E N there do not exist k E H and

p E a(k) such that i can induce k from h through a and U~(h, a) c U~(k, p).

An SB o for G is said to be oplimislic exlernally slable in thc trcc situation if

(ES) h E H and n E IIh`o(h) imply that for some i E N there exist k E H and

p E~(k) such that i can induce k from h through A and U~(h, x) c U~(k, p).

An SB for C is said to be oplimislic staóle in the tree situation if it is both optimistic

internally and externally stable in the tree situation. Greenberg's (1990) tree situatiun



has above been introduced without presenting the generalstructure and terminology of
the theory of socia! situations.

Note that a SB on paths ~ for the tree situation assigns to each subgame ~

history a set of paths while a SB on SPEa ~ on profiles assigns to each subgame a set of

profiles. In order to show an equivalence between these various optimistic stable SBs,

the following definitions are required. Let o be a SB that is optimistic stable on paths

~ for the tree situation. Define a SB Eo which assigns to each subgame a set of

profiles by the property that E~(h) -{x E Xh~ ~rk(x) E o(k) for all k ~ h} if h E li`Hp.

Conversely, let E be a SB that is optimistic stable on SPEa ~ on profiles. Define a SB

oE which assigns to each subgame a set of paths by the property that oE(h) -

{a E IIh~ n- ah(x) for some x E E(h)} if h E 11`Hp (and, in the case of tree situation,

oE(h) - TI~ -{o} if h E Ho). Also, say that a SB o which assigns to each subgame ~

history a set of paths is non-empty valued if, for each h E li`N0, o(h) ~ 0.

The equivalence between the optimistic stable SBs of this section can be

established for general extensive games with perfect information subject to the

condition that the SB that is optimistic stable for the tree situation be non-empty

valued.

PROPOSIT[ON 1. For a general extensive game wáth perfect information, the

joAowáng implicatáons hold.

(a) IJ o ás a non-empty valued SB that is optimistic staóle án the tree sátuation, then

Q constraáned to 11`HD is a SB that is optimástic stable on II.

(b) 1f a ás a SB that is optimistic stable on II, then Ev is a SB that is optimistic

stable on X.

(c) If E is a SB that is optimistic stable on X, then oE is a non-empty valued SB

lhat ás optimistic stable in the tree situation.

As the following example makes clear, the assumption that o in the tree

situation be non~mpty valued is essential.



Example 3. Consider the one player static game in which the player chooses

a E[0, 1) and receives a payoff U- a. Here a SB that optimistic stable on H does

not exist, neither does a SB that is optimistic stable on X. However, Q with a(0) - 0

and o(h) -{0} for each h- a E[0, 1) ia optimistic stable in the tree situation.

For a game with perfect information that is either a Strotz-Pollak game or a

continuous game, a strategy profile is a SPE if and only if no one-shot deviation is

profitable. For games in this class that are finite action, the optimistic stable SB of

Section 2 can be included in the equivalence.

PHOPOSITION 'l. I'or ara cxtcnsive game with p~~rji~rl ir~jortnaliart llaal is rilhcr a

.Slmh-Pnllnk gam~~ or n ~onl.innons gnme, Ili.r jnllo~nira.q implécation halds.

(c'J 1j E is a SB that is optimistic staóle on X, then ~, is a SB with E(0) ~ 0 that

is optimistic stable on X~,.

Foran extensive game with perfecl injormation that is either a~nite action game or, jor

ench subgame, has a unique SPE, the jollowing implication holds.

(c' J Ij E is a SB with E(0) ~ 0 thnt is optimistic stable on XE, then aE is a non-

empty valued SB that is optimistic slable in the tree situalion.

As the following example shows, if an extensive game is ncither of the Strotz-

Pollak variety nor continuous, the first implication of Proposition 2 may not hoW.

Exnmple 4. (Greenberg, 1990, Example 8.2.5) There are two players, 1 and 2,

who each can choose, in his turn, two actions. Player 1 can choose either U or D,

and playcr 2 can choosc cithcr l, or R. 'furns are altcrnal,ing, with playcr I bcing thc

onc to start.. llence, TI -{(a(1), ... , a(t), ...) ~ a(l) E{ U, D} if t is odd and

a(t) E{L, R} i[ t is even}. 'lhe paths in 11 yield the [ollowing payoffs:

U(~r) (:- ( Ut(~r), UZ(a))) - (5, 0) if a E H and, for all a E{ U, D, G, R}, a is played



infinitely many times. U(x) - (0, 5) if a E H and, for some a E { U, D, L, R}, a is

played finitely many times. Here, II~- {a[ (h, a) E II and U(h, ~r) - (0, 5)} since

player 2 can individually force the payoff profile (0, 5), e.g. by always playing L;

hence H~``IIÉ -{a[ (h, x) E H and U(h, a) -(5, 0)}. As shown by Greenberg (1990,

Example 8.2.5), the SBs o~ defined by o~(h) - IIÉ for all h E H and a2 defined by

az(h) - IIh`IIÉ for all h E H are each optimistic stable in the tree situation. By

Proposition 1, the SBs Eat and Eo2 are each optimistic stable on profiles. However,

Ea2 is not even a SB on SPEa since Eo2(0) is disjoint from the set of SPEa.

As the following example shows, if an extensive game is neither finite action nor

has a unique SPE in each subgame, the second implication of Proposition 2 may not

hold.

Example 5. Consider a two player game in which player 1 at the initial node 0

can end the game by choosing A(yielding the payoff profile ( 1, 1)) or continue the

game by choosing B E[0, 2). In the latter circumstance, player 2 has the choice

between L ( yielding the payoff profile ( B, 0)) or R ( yielding the payoff profile

(-B, 0)). This game has a unique ( pure strategy) SPE in which 1 plays A and 2- if

called - plays R. Hence, the unique E that is optimistic stable on SPEa has E(0) -

X~, ~ 0 and, for each B E [0, 2), E(B) - XÉ -{L, R}. However, the unique a that is

optimistic stable in the tree situation has o(0) - 0 and, for each B E[0, 2),

o(B) -{L, R}, a(B, L) -{0}, and o(B, R) - {0}.



5. A REVISION-PROOF PLAN

The concept that thia paper suggests in order to solve the Strotz-Pollak problem

of consistent planning will be referred to as a revision-proof ptan. When an optimal

and time consistent path (or decision rule) does not exist, the individual need know

what he will do at the next stage under the different contingencies that his various

actions now will givc rise to. Ilence, interpreting a revision-prcxrf plan as a path is not.

informationally simpler for the individual than interpreting a revision-proof plan as a

strategy profile in the Strotz-Pollak game. For, in order to determine such a time

consistent path, he needs to determine the set of time consistent paths in every

subgame. Hence, two alternative and (due to Proposition 1) equivalent definitions will

be offered.

DEFINIT[ON 1. (Asheim, 1987) In a Strotz-Pollak game C, a E H is a revision-

proof path if there exists a SB o, with a E o(0), that is optimistic stable on fl.

DEFINITION 2. In a Strotz-Pollak game C, 2 E X is a revision-proof equi-

librium if there exists a SB E, with x E E(0), that is optimistic stable on X.

The following two wrollaries establish inter alia the equivalence of DeGnitions 1

and `l and, mormver, that thc~e definitions yield a refinement of Subgarno-perfecaness.

COROLLARY 1. (a) In a Strotz-Pollak game G, ij ~r is a revision-proof path,

then there exists a revision-proof equilibrium z with a~(x) - rr. (b) In a Strotz-Pollak

game C, a is a revision-proof path if and only if there e2ist a non-empty valued SB a,

wíth x E o(0), that is optimistic slaóle tin lhe tree situation. (c) In a Slrolz-Pollak game

G, if a is a revision-proof path, then rr E HE.



COROLLARY 2. (a) In a Strot~-Pollak game C, if z is a revision-proojequi-

libréum, then ~r~(x) is a revision-proof path. (b) In a finite action Strotx-Pollak gnme

C, z is a revision-proojequilibrium if and only if there ezist a SB E, urith zE E(0),

that is optimistic stable on XE. (c) In a Strotz-Pollnkgame C, if x is a revision-proof

equílibrium, then z E XE.

The relation between the concept of Definitions 1 and 2 and the set of optimal

and time consistent paths when this set is non~mpty is established in the following

proposition.

PROPOSITION 3. (i) If x is a revision-proof path in the Strotz-Pollak game G

and there ezists an optimal and time consistent path p, then U~(~r) - U~(p) jor i- 1.

(ii) If there ezists a non-empty set of optimal and time consistent paths in each subgame

oj the Strotz-Pollak game G, then ~r is a revision-proof path if and only ij a is

optimal and time consistent.

By part ( ii), it follows that in Example 1(of Section 2) the unique revision-proof path

is ( U, D), while in Example 2 (of Section 2) the unique revision-proof path is

(1, 1, 1, ...). Hence, the concept of Definitions 1 and 2 yields the satisfactory solution

in these examples. See also Asheim ( 1987, 1988a) for an analysis of a game where

Subgame-perfectness by allowing any feasible path has no bite, but where the

application of Definition 1 successfully solves the problem of consistent planning.

In spite of the argument of Section 2, viz. that the Strotz-Pollak problem of

consistent planning is not solved by the concept of Subgame-perfectness, Subgame-

perfectness is in accordance with Strotz-Pollak planning under the condition of the

following proposition.

PROPOSITION 4. !f there ezists a unique SPE in each subgnme oj the Strotz-



Pollnk game G, then the unique a E H~, is the unique rerrision-proojpath, and the

unique z E XE is the unique revision-proojequilibrium.

Example 1(of Section 'l) would satisfy the condition o[ Proposition 4 if player 2 were

not indifferent between U and D at time 2.

On the question of existence of a revision-proof path~equilibrium, Greenberg

(1990, Corollary 8.3.2) combined with Proposition 1 yields the following result.

PROPOSIT1oN 5. In a hnite horizon, finite action Strot,r-PoUak gnme G, there

ezists a unique SB a that is optimistic stable on H. Furthermore, o is non-emply

valued.

Peleg and Yaari (1973, Section III) presents an example for which they claim that no

solution to the Strotz-Pollak problem of consistent planning exists. Even though their

example is not covered by Proposition 5 above, it is straight-forward to show that t,lic

SPE that Goldman (1980, note 4) constructs for this example is in fact a revision-proof

equilibrium in the sense of Definition 2. However, the following example illustrates the

case o( a finite horizon, compact action garne with continuous payoffs for which Lhere

exists no revision-proof path~equilibrium.

Example 6. (Hellwig and Leininger, 1987, Section III) Consider a three player

Strotz-Pollak game, where íor each i E{1, 2, 3}, a~ E[0, 1], and where Ul --n3 - a~,

U2 - a3 t ía2, and U3 - a3(' - al - a2) - a3(1 - a3). Hellwig and Leininger (1987)

show that the uniquc SPE path is (~, 1, 0). Ilowcvcr, in thc subgamc h- a~ -„

there is a unique revision-proof path (0, 1) which yields player 2 a higher payofí than

continuing the SPE path. Hence, the unique SPE path is not revision-proof. Note that

if the action sets are turned into discrete grids, the unique revision-proof path is

(}te, 1, 0) for some e ~ 0.



6. RENEGOTIATION-PROOFNESS AS COLLECT[VE TIME CONSISTENCY

In a repeated game, a SPE can be supported by a threat which - if called - is

Pareto-inferior to the original SPE. Hence, if the players can coordinate before each

stage of the game, they prefer renegotiating back to the original SPE rather than

undertaking the threat. However, this undermines the credibility of the threat and

questions the viability of the original SPE. The literature on renegotiation-proof

equilibria (see e.g. Farrel and Maskin, 1989, Bernheim and Ray, 1989, Asheim, 1991,

and Pearce, 1987, as well as Bergin and MacLeod, 1991, for a survey) seeks to answer

the following question: What SPEa are not prone to this kind of criticism?

A SPh~ that is uot renegotiation-proof may be looked at as a plan that is not

collectively time consistent (see e.g. Bernheim and Ray, 1989): There are subgames

where the grand coalition as a collective gains by revising the plan. In these terms

there are obvious similarities between the Strotz-Pollak notion of consistent planning as

a problem of individual time consistency and the notion of renegotiation-proofness as a

problem of collective time consistency. There are also differences, though: In the

problem of individual time consistency the revision occurs even on the equilibrium

path, while in the problem of collective time consistency the revision (in the interesting

cases) occurs only off the equilibrium path after a deviation by one of the players.

Still, it is by now straightforwatd to show that the notion of a SB that is

optimistic stable on SPEa yields a definition of both individual and collective time

consistency. By Corollary 2(b) it is already established for (finite action) Strotz-Pollak

games that x is a revision-proof equilibrium if and only if there exists a SB E, with

x E E(0), that is optimistic stable on SPEa. What remains is to establish a

corresponding result for collective time consistency in repeated games, viz. that x is a

renegotiation-proof equilibrium if and only íf there exists a SB E, with a E E(0), that

is optimistic stable on SPEa.

First, it is necessary to spell out how repeated games fit into the general model



of Section 3. A repeated game C consists of a T-fold play of a n-person history-

indcl)cndent simultancx)us-move game, where T is finite or infinitc. Hence, Nl` - N

for all FI`Ho. Furthermore, for each i E N, A~` - A~ for all Ft`H~. Finally, Hp - AT

if T c oo and Ho - 0 if T- oo. The path a -( a(1), ... , a(T)) E A~ yields player

i the payoff Ut(a) :- T.Ei-1v~(n(t)) if Tc oo and U~(a) : - (1-b)~Ei-tÀ~-l~v~(a(t))

with á E (0, 1) if T - oo, where v~ is the stage game payoff function of player i.

Now, the following observations can be made.

PROPOSITION 6. A SPE x oj a repeated game G is a Pareto-perfect

equilibrium as defened in Defenition 1 ojAsheim (1991) ijnnd only ijthere exists a SB

~, with x E E(0), that is optimistic stable on XE.

COROLLARY 3. A SPE x of a f)nitely repeated game G where, jor each i E N,

A~ is compact and v~ is continuous is a Consislent equilibrium as defsned by Bernleeim

and IZay (1989, Section ;J) iJ and ouly iJ lhere exisls a S(3 Z, wiUi x E ~'(o), Uial is

optimistic stable on XF.

Hence, according to the usual and uncontroversial definition of renegotiation-

proofness in finitely repeated games and the extension that I(Asheim, 1991) suggest for

infinitely repeated games, renegotiation-proofness as a requirement for collective time

consistency is closely related to the Strotz-Pollak notion of consistent planning as a

requirement for individual time consistency.

In the present paper, the Strotz-Pollak problem of consistent planning has b~n

analyzed by turning the decision tree into an extensive game where the individual at

different times corresponds to different players. An alternative would be to treat the

decision problem as a one player "game" where the evaluation of a path through the

decision tree depends on which node along the path the evaluation takes place. I have

in Asheim (1988b) presented a definition of subgame-perfectness in multi-stage games



that can be applied to such a one player "game", and for which it is identical to the

definition of a revision-proof equilibrium. (See also Asilis et al. (1991) for a similar
definition where Roth (1976) semi-stability is used instead of von Neumann and
Morgenstern stability). Furthermore, the non-recursive definitions of Pareto-perfect-

ness and Perfectly coalition-proofness in Asheim (1988b) reduce to the definition of
revision-proofness in such a one player "game". If the one player "game" has a finite

horizon, the recursive definition of a Perfectly coalition-proof equilibrium in Bernheim

et al. (1987, p.10) can be shown to be applicable and yielding revision-proofness.

7. CONSISTENT PLANNING IN STATIONARY STROT7,-POLLAK GAMF,S

A finite horizon Strotz-Pollak game is stationary if all subgames are isomorphic

to the game itself. Such a stationary structure is shared by infinitely repeated games.

Stationary Strotz-Pollak games therefore allow for the application of concepts of
renegotiation-proofness as developed for infinitely repeated games. Kocherlakota

(1991) has successfully applied Farrell and Maskin's (1989) concepts of weakly

renegotiation-proofand strongly renegotiation-proofequilibria, the analogs being called

symmetric and reconsideration-proofequilibria, respectively. A symmetric equilibrium

is a SPE yielding the individual the same payoff in every subgame (as evaluated at the

root of the subgame). Kocherlakota (1991) considers such symmetry a necessary condi-

tion for a time consistent plan. A symmetric equilibrium is reconsideration-proof if

there is no symmetric equilibrium yielding the individual a higher payoff, a concept for

which Kocherlakota (1991) establishes general existence. Kocherlakota (1991) a]so
shows that if an optimal and time consistent path exists, then this path is a recon-

sideration-proof path, a property that - by Proposition 3(ii) - is shared by revision-
proofness in stationary Strotz-Pollak games. The following proposition gives a result

on the relation between revision-proof.and reconsideration-proof equilibria.



PROroS~T1oN 7. (Kocherlakota, private communication) In a stationary Strotz-

Pollak game, a revision-proof equilibrium is symmetric if and only if it is reconsidera-

tion-proof.

As the following example shows, it is possible to construct a stationary Strotz-

Pollak game which admits revision-proof equilibria, none of which are symmetric.

Example 7. (Kocherlakota, 1991, Example 1). Consider the stationary Strotz-

Pollak game where for each i E N, a~ E(o, 1] and U~ - E~Z~-`(a - a.tl) with
i- i i

pE (o, 1). The set of individually rational and feasible payoffs is (0, 1]. The unique

stationary SPE determines the action 1 for each player at every node. Any path

which at cach timc is individually rational (including Lhe optirnal path ( l, 0, 0, ...))

can be supported as a SPE by using the stationary SPE path ( 1, 1, 1, ...) as a punish-

ment. Any syrnmetric equilibrium yields the payoff 0; hence, they are all recaisidera-

tion-proof, including the unique stationary SPE.

C[.AIM 1. For the game of F,xample 7, (i) ao - ((~, pt, ~, ...) is a revision-

proof path, and, furthermore, (ii) no symmetric equilibrium is revision-proof.

Holden (private communication) has pointed out that Pearce's (1987) concept of

renegotiation-proofness is easily applicable to stationary Strotz-Pollak games. In

particular, let l(x) :- inf{uh(x) ~ h E H with i- i}, and say that the SPE x is a

Pearce time consistent equilibrium if there exists no SPE y such that L(x) G P(y). The

interpretation is that the individual will accept a punishment if any SPE involves as

harsh a punishment in some subgame. In Example 7, l(x) - 0 for any SPE x, so t.hat.

Pearce time consisteucy has no bite. ]n the following example, though, Pearce time

consistency picks out the reasonable paths, all of which are revision-proo[.

Exnmple 8. Consider the stationary Strotz-Pollak game where for each i E N,



a~ E{0, 1} and U~ - a~ - a~tl - a~}2. The set of individually rational and feasible

payoffs is {-1, 0, 1}. The unique stationary SPE determines the action 1 for each

player at every node. Any path which at eac.h Lime is individually rational can be

supported as a SPE by using the stationazy SPE path (1, 1, 1, ...) as a punishment.

The stationazy SPE, yielding the payoff -1, is the unique symmetric equilibrium and,

hence, the unique reconsideration-proof equilibrium.

CLAIM 2. For the game of E2ample 7, (i) R~ -(0, 0, 0, ...), ~rl -(1, 0, 0, ...),

and n2 - ( 1, I, 0, 0, ...) are the Pearce time consistent paths; furthermore, (ii) a~, ai,

and a2 are all revision-prooJ and fanally, (iii) the unique symmetric equiliórium is

neither Pearce time consistent nor revision-proof.

The problem with the concept of reconsideration-proofness in the context of these

examples is that it determines as time consistent the symmetric SPEa - which all hold

the individual down to his reservation payoff - even though there exist SPEa that for

every subgame yields the individual strictly more than his reservation payoff.

Finally, note that Examples 7 and 8 each illustrates the case of a game which

allows for multiple SBs that are optimistic stable on paths~profiles.

8. A SINGLE PLANNER OR DIFFERENT INDIVIDUALS

Returning to the game of Example 1, dces it make any difference for the

solution of the game whether the game models planning by a single individual or

strategic interaction between two individuals? One difference between the two

interpretations is that a single individual faces no problems of communication, while in

multi-person games communication is in general an issue - even in perfect information

games - when there is a need to coordinate on one out of several equilibria.



In the gamc of Example l, a forward induction argument (see van Damme,

1989) would say that player 1, by choosing U, can indicate his desire to play the SPE

( U, D), since his only reason for playing U would be that he expects player 2 to

choose D. Hence, by involving forward induction as a vessel of communication from

player 1 to player 2, one can argue that ( U, D) is the reasonable prediction in this

game even if the game is interpreted as modeling strategic interaction between two

individuals.

In the present game with B c 1- i.e., player 2 prefcrs the SPE (U, D) to

(D, U) - this prediction is shared by a number of recent papers (Tran~s, 1991; Pons-

sard, 1991; as well as an earlier and different approach by Leininger, 1986): Following

'franaes (1991), player 2 chaising D is then a credàble promàse that should be

anticipated by player 1 and induce him to chose U. However, with B~ 1 - i.e.,

player 2 prefers the SPE (D, i~ to ( U, D) - the above mentioned contributions as

well as Bennett and van Damme (1990) would yield the opposite prediction: Following

Bennett and van Damme (1990) and Tranaes (1991), player 2 choosing U is then a

credàble threat that should be anticipated by player 1 and induce him to chose D. The

invalidity of the forward induction argument in this case is explained by Bennett and

van Damme (1990, p. 14) as follows: In the present game with B~ 1, "... the forward

induction logic is not compelling: although player 1 may indicate his desire to play a

particular subgame perfect strategy combination, he has no means of enforcing this

strategy combination since he has no further moves in the game." Of course this

criticism of the forward induction argument is not valid if the game models planning by

a single individual since then the individual making the move of player 1 is the sarne as

the one making the move of player 2.

Hence, when thc garne is interpretcd as modeling planning by a single indi-

vidual, it is easier to defend ( U, D) as the unique solution also when B~ 1.



9. TIME CONSISTENCY IN MACROECONOMIC POLICY GAMES

Starting with Kydland and Prescott (1977), there is a considerable literature on

the topic of consistent planning in the context of macroeconomic policy games. In such

games a government's (the leader's) policy - which at the outset is optimal - may

cease to be so at some later time. This may occur since the policy was designed to

induce the general public (the follower) to take specific actions. When these actions

have been irrevocably taken, the leader may wish to revise the originally planned policy

since the constraints imposed by the follower's preferences on the leader's choice set, by

then, have changed. In this literature the conclusion is that time consistency is a

weaker requirement than Subgame-perfectness (see Fershtman, 1989), which is a

conclusion seemingly in contrast with the one of the present paper. Happily, there is

no conflict since the matters treated in the present paper are different from those of

Fershtman (1989) along two dimensions.

The first dimension relates to the difference between time inconsistent

prejerences and time inconsistent constraints (see e.g. Persson and Svensson, 1989).

While Fershtman (1989) and the literature on policy games are concerned with the

time inconsistency of the constraints imposed by the follower's preferences on the

leader's choice set, the present paper as well as the Strotz-Pollak literature on

consistent planning are concerned with the time inconsistency of the planner's

preferences. I.e., the latter literature poses the problem of an individual decision maker

who wishes to revise an optimal path when his own initial actions have been

irrevocably taken since his preferences, by then, have changed.

Relating to this dimension, there is a major difference on a formal level: In a

Strotz-Pollak game, there are as many players as there are points in time at which the

individual makes decisions. In a policy game there is one leader and one (Fershtman,

1989) or a continuum (Chari and Kehce, 1990) of followers, with the leader at different

times being the same player. Hence, one should bear in mind that the two kinds of



games are quite different when discussing the relation between Subgame-perfectness

and time consistency in each oí them.

The second dimension along which the present paper differs from Fershtman

(1989) is conveyed by letting the follower in Fershtman's (1989) framework be a trivial

player which at any of hia decision nodes can take only one action. Then Fershtman's

(1989) definition of a time consistent open loop Stackelberg equilibrium becomes

identical to the definition in the introduction to Section 2 of an optimal and time

consistent path. Similarly, Fershtman's (1989) definition of a time consistent

Stnckelberg equilibrium with decision rule strntegies becomes identical to the definition

in the introduction to Section 2 of an optimal and time consistent decision rule. Hence,

Fershtman (1989) is the analog - in the case of time inconsistent constraints - to a

definition of an optimal and time consistent path (or decision rule): In order to

establish whether a path (or decision rule) is optimal and time consistent, it suffices to

check along the (generated) path.

A deCnition of time consistency when the optimal (wrninitrnent) policy is nut

time consistent is given by Chari and Kehoe (1990) for the case of an infinite horizon

economy. In their model, time consistency constitutes a refinement of Subgame-

perfectness for a totally different reason than that of the present paper: The followers

are modeled as a continuum of competitive and anonymous private agents, each with

his private history, so that the only proper subgame is the original game itsel(.

Therefore, Subgame-perfectness does not imply sequential rationality. Chari and

Kehce's (1990) sustainnble plans allow for the use of trigger strategies, implying that

the government - after a deviation - may wish to let bygones be bygoncs by

announcing a revised policy whereby it escapes the punishment. In a policy game, such

trigger strategies are defendable, however, since the general public may not believe the

government's pledge that no new deviation will occur subsequently. Such an issue of

confidence dces not arise when analyzing the Strotz-Pollak problem of consistent

planning by an individual with time inconsistent preferences.



10. CONCLUDING REMARKS

In the present paper the Strotz-Pollak notion of consistent planning - viz. that

the individual should choose "the best plan among those he will actually follow" - has

been given a precise meaning. The concept of a revision-proof path~equilibrium as

introduced here is implicitly contained in the work of Greenberg (1990, Ch. 8). The

present contribution gives this concept interpretations that are more closely related to

the problem that Strotz (1955-56) originally posed.

It is a conclusion of this paper that - when analyzing the problem of consistent

planning through an extensive game where the individual at different times corresponds

to separate players (a 'Strotz-Pollak game') - a revision-proof equilibrium is a

refinement of Subgame-perfectness. This conclusion contrasts the literature on time

consistency in policy games (see e.g. Fershtman, 1989); however, as argued in Section

9, the matters treated in this paper are different from those of Fershtman (1989).

A general mode] of an extensive game of almost perfect information has been

introduced in Section 3, yielding the Strotz-Pollak game and the repeated game as

special cases. Through this framework it has been possible to capture consistent

planning as a requirement for individual time consistency and renegotiation-proofness

as a requirement for collective time consistency through the same general concept, viz.

a SB that is optimistic stable on SPEa.

Extensive games that are neither repeated nor of the Strotz-Pollak variety have

not been explicitly analyzed. Applying the concept of a SB that is optimistic stable on

SPEa to, e.g., Example 1 of van Damme (1989) would convince the reader that this

concept in some instances captures a notion of forward induction. A discussion of

forward induction in such games is, however, outside the scope of the present paper.

Note, though, Al-Najjar (1991) for an analysis of forward induction in a framework that

is related to the present one.



11. PROOFS

The observations of the following two lemmas will turn out to be useful.

LEMMA l. Let G 6e a game with perject information, and let E be a SB jor C

that is optimistie stable on XE, on X. Then z E E(h) implies xk E E(k) jor any

k ~ h.

Proof. Let y E Xt`. Suppose yk if E(k) for some k? h. By (ES), there exist

k~ k and z E E(k') such that uk (z) ~ uk (y) for i- i. By (IS), y~ E(h) since

k~h. a

Lcnuna I iniplics thc following corollary.

COROLLARY 4. Get C 6e a game with perject injormntion, and lel E 6e a SB

jor C that is optimistic stable on XE ~ on X. Then ~r E oE(h) implies a' E oE(k) iJ

k is reachable from h through a and (h, x) -(k, ~r').

LEMMA 2. Let C 6e a game with perject injorynation, and lel a be a SB jor G

that is optimistic stable on II ~ in the tree situation. Then ~r E a(h) implies x' E o(k)

ij k is renchaóle from h through x and ( h, a) -(k, a').

Proof. Let e E IIt`. Suppose p' ~ o(k) where k is reachable from h through

a and ( h, P) -(k, p'). liy (I;S), therc cxists k' aud A E a(k') such that A ~ l~k') is

reachable from k through p' and U~(k, p') c U~(k', a) for i - ik ~[or

(IS), p~ o(h) since l: ~ P(k') is reachable from h through p. o

Lemma 2 implies the following corollary.

s - tPlt` l. I~Y

COROLLARY 5. Let C be a game urith perject injormation, and let o 6e a non-

empty valued SB jor G that is optimistic stabte on II ~ in the tree situation. Then, jor

any hE ll`IIO, o(h) -(at`(z)~ aE ~a(h)}.



Proof of Proposition l. (a) (o constrained to fl`Ho is optimistic internally

stable on If.) By (IS) and Lemma 2, for any h E!i`HO, all paths in o(h) yields i

the same payoff. The optimistic internal stability on II follows from Lemma 2. (o

constrained to FI`fl~ is optimistic externally stable on II.) By (ES), a E IIh`o(h)

implies that there exist k E H and p E o(k) such that P(k) is reachable from h

through ~r and U~(h, rr) c U~(k, p) for i- iP~~l. Since o is non~mpty valued, by

(IS), there exists p' E v(P(k)) such that U~(k, p) S U.(P(k), p') for i- i~kl. The

optimistic external stability on II follows since U~(h, a) c U~(P(k), p') for i- i~~`l.

(b) (o is non~mpty valued.) Suppose o(h) - 0. Consider any n E Il~`. By (ES),

there exists k E ff`H~ reachable from h through ~r such that o(k) ~ 0. Let k be

the first such node, and let p E o(k). Then, by (ES), P' E a(h) where (h, p') -(k, p).

(Eo is optimistic internally stable on X.) By (IS), for any h E fl`Ho, all paths in

o(h) yields i the same payoff. The optimistic internal stability on X follows from

the definition of Ea. (E~ is optimistic externally stable on X.) If x E Xh`Ea(h),

then for some k ~ h, nk(x) ~ Q(k). By (ES), there exists k' E li`HO reachable from k

through ak(x) and p E o(k') such that (u~` (x) -) U.(k, rrk(x)) ~ U~(k', p) for i- i.

Since a is non~mpty valucd, by Corollary 5, there exists y E E~(k') with rrk (y) - p.

The optimistic external stability on X follows since k' ? h.

(c) (aE is non-empty valued.) Suppose E(h) - 0. By Lemma 1, there exists x E Xh

with xk E E(k) for all k? h such that E(k) ~ 0. Then, by (ES), x E E(h). (oE is

optimistic internally stable in the tree situation.) By (IS), for any h E E!`Ho, all

paths in oE(h) yields ih the same payoff. Suppose, for some h E fl`Ho, ~r E aE(h),

and there exist k E H and p E oE(k) such that P(k) is reachable from h through ~r

and U~(h, ~r) ~ U~(k, P) for i- i~kl. Construct y E XP~k~ such that

(P(k), ~r~kl(y)) -(k, p) and y~~k~' "~ E E(P(k), a) for all n E A~k~. Since, by

Corollary 4, for all x E E(P(k)), u~kl(x) - U~(h, a) ~ U~(k, p) - u~k~(y) for i- i~k~,

by (ES), y E E(P(k)). However, this contradicts (IS). (aE is optimistic externally

stable in the tree situation.) If ~r E II~``aE(h), there exists k E H and p E vE(k) such



that P(k) is reachable from h through a and U~(h, a) c U~(k, p) for i- ip(kl.

Because otherwise, by (ES) and Lemma 1, there exists z E E(h) - with Ah(z) - a and

zk chosen arbitrarily in E(k) for all k E FI`Ha such that k' is not, but P(k) is

reachable from h though x- implying that x E oE(h). o

ProojojProposition 2. (c') (E(0) ~ 0.) Follows from the proof of Proposition

1(c). (E is optimistic stable on XE.) Suppose zE L(h) is not a SPE. For the class

of games considered, there exists a one-shot deviation (w.l.o.g.) at h to y E Xh

(where y~ - x~ for i~ i) that is profitable for i. By (IS), y~ Z(h), but

yk - zk E E(k) for all k~ h. By (ES), there exists x E E(h) with (uh(z) G) u~`(y) c

u~(x) for i- i. However, this contradicts (IS) since z E E(h). Hence, for each

h E FI`Ho, E(h) C XF~`„ and E is optimistic stable on X~.

(c') (oE is non-empty valued.) Follows from the definition of aE since E(o) ~ 0.

(oE is optimistic internally stable in the tree situation.) By (IS), for any h E FI`HO,

all paths in aE(h) yields i the same payofí. Suppose, for some h E FI`llo,

~r E oE(h), and there exist k E H and p E oE(k) such that P(k) is reachable from h

through x and U~(h, a) G U~(k, p) for i- iplkl. For the class of games considered,

there exists y E XÉ k~ maximizing u~t`1(y'), i- i~kl, over all y' E X~k~ with

ak(y') - p and y'IPfkl' "1 - x(a) E E(P(k), a) for all a E At~kl. 5ince, by Corollary 4,

for all zE ~(P(k)), u~~`1(T) - Il~(h, a) c ll~(k, p) S nPlkl(y) for i- iIkl, bY (1';s),

y E E(P(k)). However, this contradicts (IS). (aE is optimistic externally stable in the

tree situation.) If x E IIE`a~(h), there exists k E H and p E o~(k) such thaL f'(k) is

reachable from h through a and U(h, ~r) ~ U~(k, p) for i- i~k1. Because

otherwise, by (ES) and Lemma I, there exists x E L(h) - with ~rh(z) - ~r and xk

chosen arbitrarily in E(k) for all k E fl`Ho such that k' is not, but P(k) is

reachable from h though ~r - implying that x E aE(h). If a E H~`II~~̀„ there exists

k E H such that P(k) is reachable from h through a and, tor all p E TI~„

11~(h, ~r) G ll~(k, p) for i - i~kl. Bccausc othcrwisc, thcrc cxist.s x E.~'~, - with



x~`(x) - ~r and xk E X~ satisfying U~(h, A) ? U(k', ak (x)) for t- iP~k f for all

k E fl`Ho such that k' is not, but P(k) is reachable from h though a - implying

that RE II~ The optimistic external stability in the tree situation follows since, for

each h E H, 0~ oE(h) c Il~ o

Proof of Corollary 1. (a) Proposition 1. (b) Proposition 1. (c) Proposition 1(b)

and 2(c'). o

Proof of Corollary 2. (a) Proposition 1. (b) Propositions 1 and 2. (c) Proposi-

tion 2(c'). o

Proof of Proposition 3. (i) Since a Strotz-Pollak path exists, there exists a SB o

that is optimistic stable on II. By (ES), P E a(0) since there do not exist h E H`Ho

reachable from 0 through ~r and P' E II~` ~ o(h) such that U~(p) ~ U~(h, p') for

i- i. By (IS), U~(~r) - Ut(p) for i- i- 1. (ái) Define the SB o on II by, for each

h E fi`Ho, o(h) -{~r E IIti~ a is optimal and time consistent}. Let o' be any SB that

is optimistic stable on II. If rr E Q(h), there do not exist k E ti`HO reachable from h

through a and p E II~` ~ a(k) such that U(h, n) c U~(k, p) for i- i~`. Hence, Q

satisfiicw (IS), and by (F.S) of o', for each h E Il`Ho, a(h) C v'(h). If n E II~`a(h),

then there exist k E tl`Ho reachable from h through ~r and p E v(k) C o-'(k) such

that U~(h, ~r) ~ U~(k, p) for i- ik. Hence, o satisfies (ES), and by (IS) of v', for

each h E II~Ho, a(h) 7 o'(h). a

Proof of Proposition 4. Trivially, E defined by, for each h E fi`Ho,

E(h) - X~ is the unique SB that is optimistic stable on XE, The result follows from

Propositions 1 and 2. o

ProojojProposition 6. Follows directly from Definition 1 of Asheim ( 1990). o

ProofoJCorollary 3. Proposition 1 of Asheim ( 1990). a



Proofof Proposition 7. Suppose that some symmetric revision-proof equilibrium

y is not reconsideration-proof. Then there exists a symmetric equilibrium z' such

that u~(y) c uo(x'). Sincc y is revision-proof, there exists a S13 ?.', with y E s.'(0),

that is optimistic stable on X. Ry (TS) of E, x' E J11E(o). Ry ( I;S) of E, there exist

h E H and x E E(h) such that ( ua(y)) C u~(x') c uh(x) for í - i. `I'his contradicts

(IS) of E. Hence, if a revision-proof equilibrium is symmetric, then it is

reconsideration-proof. The converse is trivial. o

Proof of Claim 1. (i) Consider the class of paths {x~}, j E N, where ~

consists of the play of 1 j times, followed by ~r~. The first j plays of ~ is ca,lled

the stationary phase; i.e., the last play of 1-,13e is part of the non-stationary phasc.

Construct the following strategy profile r Start with a~. Deviation from the

stationary phase of x~ is not punished; deviation from ~ when ~ prescribes the

play of ,0~ , j' E {0, 1, 2, ...}, triggers x' . This determines a unique path á~ - ~rh( z)

in each subgame h E H. Let o be defined by o(h) -{~rh} for all h E H. Part (i)

follows if o is optimistic stable on H. The (IS) of o is trivial. In order to establish

(ES), suppose p E Ilh`o(h) - Hh`{ir~`} and there dces not exist k E H reachable from

It Lhrough p such that U~(h, p) G U~(k, à~) fur i- iE. If p dilfcrs fruiu ir~` unly

during the stationary phase of xh, then U~(h, p) c U~(h, ir~`) - U~(k, irk) for i- i

where k is the last node at which p differs from irh. Therefore, p diffcrs from á~

during the non~tationary phase of ~rl`. Let the first deviation during the non-

stationary phase occur when ~rh prescribes the play of a. Let h' denote the node

following this deviation such that the deviation occurs at P(h'). Let (h, p) -(h', p').

Then p' E III` `{irh } because otherwise U(h', p') ~ Q. U~(P(h'), irPl~` 1) for i- i~h l.

Furthermore, there exists k' reachable from h' through p' such that U~(k, ir~ )-

1~(lt~) for i- i. By induction, this leads to a contradiction since ~m, U,(h, p) S; -~ ~
I~(1-p), where i- i, and establishes (ES) of a.

(ii) Let y be a symmetric equilibrium. Suppose there exist a SB E, with



y E E(0), that is optimistic stable on X. By (IS) of E, i E X`E(0). By (ES) of E,

there exist h E H and x E E(h) such that (u~`(y)) c ub(ï) c u~`(x) for i- i. This

contradicta (IS) of E, establishing that no such optimistic stable E exists. o

Proojof Claim 2. ( i) Construct the strategy profiles x~, j- 0, 1, 2, as follows:

Start with ~. Deviation from ~ when ~ prescribes the play of 1 is not punished;

deviation írom ~ when ~ prescribes the play of 0 triggers ~r2. Note that xo, xl,

and xZ are all SPEa, and that ~ro, al, and a2 are the only feasible paths that yield

all players along the paths a payoff of at least 0.

(ii) Let o~, j- 0, 1, 2, be deFined by a~(h) -{a~`(x~)} for all h E K Pazt (ii)

follows if a~, j- 0, 1, 2, are optimistic stable on II. The (IS) of oa is trivial. In

order to establish (ES), assume p E II~` and there does not exist k E H reachable from

h through p such that U~(h, p) c U~(k, Ak(x~) for i- i. Let h' be reachable from

h through p with rrh (x~) - al. Let (h, p) -(h', p'). Then p' -(1, 0, 0, n, a, ...)

since al yields player i the payoff 1. If h' ~ h, this in turn implies that

(h, p) -(P(h'), (1, p')) since a~~ ~(í~) - n2 yielding player i~~ ~ the payoff 0.

What remains is to show that p' - Ac if a~`~(x~ - x~ and (h, p) -(h', p'). Suppose

k is the first node reachable from h' through p' at which p' differs from ~ro; i.e.,

i- i plays 1 instead of 0. Then it follows from the above that -1 - U~(h', p')

~ U~(k', ~rk (x~)) - 0 for i- i, which establishes (ES) of a~, j- 0, 1, 2.

(iii) Proof of Claim 1(ii) with i- z', j E {0, 1, 2}. o
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