2,444 research outputs found

    Accurate Tracking of Aggressive Quadrotor Trajectories using Incremental Nonlinear Dynamic Inversion and Differential Flatness

    Full text link
    Autonomous unmanned aerial vehicles (UAVs) that can execute aggressive (i.e., high-speed and high-acceleration) maneuvers have attracted significant attention in the past few years. This paper focuses on accurate tracking of aggressive quadcopter trajectories. We propose a novel control law for tracking of position and yaw angle and their derivatives of up to fourth order, specifically, velocity, acceleration, jerk, and snap along with yaw rate and yaw acceleration. Jerk and snap are tracked using feedforward inputs for angular rate and angular acceleration based on the differential flatness of the quadcopter dynamics. Snap tracking requires direct control of body torque, which we achieve using closed-loop motor speed control based on measurements from optical encoders attached to the motors. The controller utilizes incremental nonlinear dynamic inversion (INDI) for robust tracking of linear and angular accelerations despite external disturbances, such as aerodynamic drag forces. Hence, prior modeling of aerodynamic effects is not required. We rigorously analyze the proposed control law through response analysis, and we demonstrate it in experiments. The controller enables a quadcopter UAV to track complex 3D trajectories, reaching speeds up to 12.9 m/s and accelerations up to 2.1g, while keeping the root-mean-square tracking error down to 6.6 cm, in a flight volume that is roughly 18 m by 7 m and 3 m tall. We also demonstrate the robustness of the controller by attaching a drag plate to the UAV in flight tests and by pulling on the UAV with a rope during hover.Comment: To be published in IEEE Transactions on Control Systems Technology. Revision: new set of experiments at increased speed (up to 12.9 m/s), updated controller design using quaternion representation, new video available at https://youtu.be/K15lNBAKDC

    On-demand Aerodynamics in Integrally Actuated Membranes with Feedback Control

    Get PDF
    This paper is a numerical investigation on model reduction and control system design of integrally actuated membrane wings. A high-fidelity electro-aeromechanical model is used for the simulation of the dynamic fluid-structure interaction between a low-Reynolds-number flow and a dielectric elastomeric wing. Two reduced-order models with different levels of complexity are then derived. They are based on the projection of the fullorder discretisation of fluid and structure on modal shapes obtained from eigenvalue analysis and Proper Orthogonal Decomposition. The low-order systems are then used for the design of Proportional-Integral-Derivative and Linear Quadratic Gaussian feedback schemes to control wing lift. When implemented in the full-order model, closed-loop dynamics are in very good agreement with the reduced-order model for both tracking and gust rejection, demonstrating the suitability of the approach. The control laws selected in this work were found to be effective only for low-frequency disturbances due to the large phase delay introduced by the fluid convective time-scales, but results demonstrate the potential for the aerodynamic control of membrane wings in outdoor flight using dielectric elastomers

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise

    Towards Testable Neuromechanical Control of Architectures for Running

    Get PDF
    Our objective is to provide experimentalists with neuromechanical control hypotheses that can be tested with kinematic data sets. To illustrate the approach, we select legged animals responding to perturbations during running. In the following sections, we briefly outline our dynamical systems approach, state our over-arching hypotheses, define four neuromechanical control architectures (NCAs) and conclude by proposing a series of perturbation experiments that can begin to identify the simplest architecture that best represents an animal\u27s controller

    Echo State Networks: analysis, training and predictive control

    Full text link
    The goal of this paper is to investigate the theoretical properties, the training algorithm, and the predictive control applications of Echo State Networks (ESNs), a particular kind of Recurrent Neural Networks. First, a condition guaranteeing incremetal global asymptotic stability is devised. Then, a modified training algorithm allowing for dimensionality reduction of ESNs is presented. Eventually, a model predictive controller is designed to solve the tracking problem, relying on ESNs as the model of the system. Numerical results concerning the predictive control of a nonlinear process for pH neutralization confirm the effectiveness of the proposed algorithms for the identification, dimensionality reduction, and the control design for ESNs.Comment: 6 pages,5 figures, submitted to European Control Conference (ECC

    A Unified Framework for the Study of Anti-Windup Designs

    Get PDF
    We present a unified framework for the study of linear time-invariant (LTI) systems subject to control input nonlinearities. The framework is based on the following two-step design paradigm: "Design the linear controller ignoring control input nonlinearities and then add anti-windup bumpless transfer (AWBT) compensation to minimize the adverse eflects of any control input nonlinearities on closed loop performance". The resulting AWBT compensation is applicable to multivariable controllers of arbitrary structure and order. All known LTI anti-windup and/or bumpless transfer compensation schemes are shown to be special cases of this framework. It is shown how this framework can handle standard issues such as the analysis of stability and performance with or without uncertainties in the plant model. The actual analysis of stability and performance, and robustness issues are problems in their own right and hence not detailed here. The main result is the unification of existing schemes for AWBT compensation under a general framework

    Design and experimental validation of a piezoelectric actuator tracking control based on fuzzy logic and neural compensation

    Get PDF
    This work proposes two control feedback-feedforward algorithms, based on fuzzy logic in combination with neural networks, aimed at reducing the tracking error and improving the actuation signal of piezoelectric actuators. These are frequently used devices in a wide range of applications due to their high precision in micro- and nanopositioning combined with their mechanical stiffness. Nevertheless, the hysteresis is one the main phenomenon that degrades the performance of these actuators in tracking operations. The proposed control schemes were tested experimentally in a commercial piezoelectric actuator. They were implemented with a dSPACE 1104 device, which was used for signal generation and acquisition purposes. The performance of the proposed control schemes was compared to conventional structures based on proportional-integral-derivative and fuzzy logic in feedback configuration. Experimental results show the advantages of the proposed controllers, since they are capable of reducing the error to significant magnitude orders.The authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputación Foral de Álava (DFA), through the project CONAVANTER, and to the UPV/EHU, through the project GIU20/063, for supporting this work
    corecore