301,983 research outputs found

    Contribution the Failure Mode Analysis and Criticality Evaluation Method to the Rehabilitation of Cork Oak (Quercus suber) Forests in Forest Massif of Tlemcen (Algeria)

    Get PDF
    The controling of forest sustainability and preforest ecosystems in achieving stability of forest ecosystem require the identification of biophysical indicators, anthropological, and technological. The significant degradation of Quercus suber formations in forest massif of Tlemcen (Algeria) are imposed by both climatic factors, the fires, the overgrazing land, anthropogenic aggression as well as by ineffective management. The making of a reference matrix would make possibility the identification of probable hazards and risks. This study aimed to identify the understanding how the mode of operation of a system to identify failures and treat, and the create the intention of eliminating or minimizing the associated risks. This matrix will consist of relevant indicators which easy guide to estimate and following the understanding of the forest degradation process in Algeria. The FMECA method allowed identification of 20 main defective targets which be grouped into 3 categories namely: technical, ecological, organizational, and facilitate of remediation. Each error can be scored and action plans can be prioritized, allowing different with all forest sector players to better understand the degradation of this natural space in order to implement efficient and appropriate remediation plans. &nbsp

    A genetic-based prognostic method for aerospace electromechanical actuators

    Get PDF
    Prior awareness of impending failures of primary flight command electromechanical actuators (EMAs) utilizing prognostic algorithms can be extremely useful. Indeed, early detection of the degradation pattern might signal the need to replace the servomechanism before the failure manifests itself. Furthermore, such algorithms frequently use a model-based approach based on a direct comparison of the real (High Fidelity) and monitor (Low Fidelity) systems to discover fault characteristics via optimization methods. The monitor model enables the gathering of accurate and exact data while requiring a minimal amount of processing. This work describes a novel simplified monitor model that accurately reproduces the dynamic response of a typical aerospace EMA. The task of fault detection and identification is carried out by comparing the output signal of the reference system (the high fidelity model) with that acquired from the monitor model. The Genetic Algorithm is then used to optimize the matching between the two signals by iteratively modifying the fault parameters, getting the global minimum of a quadratic error function. Once this is found, the optimization parameters are connected with the assumed progressive failures to assess the system's health. The high-fidelity reference model examined in this study is previously conceptualized, developed, implemented in MATLAB-Simulink and finally experimentally confirmed

    Aircraft Flight Envelope Determination using Upset Detection and Physical Modeling Methods

    Get PDF
    The development of flight control systems to enhance aircraft safety during periods of vehicle impairment or degraded operations has been the focus of extensive work in recent years. Conditions adversely affecting aircraft flight operations and safety may result from a number of causes, including environmental disturbances, degraded flight operations, and aerodynamic upsets. To enhance the effectiveness of adaptive and envelope limiting controls systems, it is desirable to examine methods for identifying the occurrence of anomalous conditions and for assessing the impact of these conditions on the aircraft operational limits. This paper describes initial work performed toward this end, examining the use of fault detection methods applied to the aircraft for aerodynamic performance degradation identification and model-based methods for envelope prediction. Results are presented in which a model-based fault detection filter is applied to the identification of aircraft control surface and stall departure failures/upsets. This application is supported by a distributed loading aerodynamics formulation for the flight dynamics system reference model. Extensions for estimating the flight envelope due to generalized aerodynamic performance degradation are also described

    Cross-Channel Impedance Measurement for Monitoring Implanted Electrodes

    Get PDF
    Implanted electrodes, such as those used for cochlear implants, brain-computer interfaces, and prosthetic limbs, rely on particular electrical conditions for optimal operation. Measurements of electrical impedance can be a diagnostic tool to monitor implanted electrodes for changing conditions arising from glial scarring, encapsulation, and shorted or broken wires. Such measurements provide information about the electrical impedance between a single electrode and its electrical reference, but offer no insights into the overall network of impedances between electrodes. Other solutions generally rely on geometrical assumptions of the arrangement of the electrodes and may not generalize to other electrode networks. Here, we propose a linear algebra-based approach, Cross-Channel Impedance Measurement (CCIM), for measuring a network of impedances between electrodes which all share a common electrical reference. This is accomplished by measuring the voltage response from all electrodes to a known current applied between each electrode and the shared reference, and is agnostic to the number and arrangement of electrodes. The approach is validated using a simulated 8-electrode network, demonstrating direct impedance measurements between electrodes and the reference with 96.6% \ub10.2% accuracy, and cross-channel impedance measurements with 93.3% \ub10.6% accuracy in a typical system. Subsequent analyses on randomized systems demonstrate the sensitivity of the model to impedance range and measurement noise. Clinical Relevance- CCIM provides a system-agnostic diagnostic test for implanted electrode networks, which may aid in the longitudinal tracking of electrode performance and early identification of electronics failures

    An Authentication Survey on Retail Seafood Products Sold on the Bulgarian Market Underlines the Need for Upgrading the Traceability System

    Get PDF
    Economically motivated or accidental species substitutions lead to economic and potential health damage to consumers with a loss of confidence in the fishery supply chain. In the present study, a three-year survey on 199 retail seafood products sold on the Bulgarian market was addressed to assess: (1) product authenticity by molecular identification; (2) trade name compliance to the list of official trade names accepted in the territory; (3) adherence of the list in force to the market supply. DNA barcoding on mitochondrial and nuclear genes was applied for the identification of whitefish (WF), crustaceans (C) and mollusks (cephalopods-MC; gastropods-MG; bivalves-MB) except for Mytilus sp. products for which the analysis was conducted with a previously validated RFLP PCR protocol. Identification at the species level was obtained for 94.5% of the products. Failures in species allocation were reconducted due to low resolution and reliability or the absence of reference sequences. The study highlighted an overall mislabeling rate of 11%. WF showed the highest mislabeling rate (14%), followed by MB (12.5%), MC (10%) and C (7.9%). This evidence emphasized the use of DNA-based methods as tools for seafood authentication. The presence of non-compliant trade names and the ineffectiveness of the list to describe the market species varieties attested to the need to improve seafood labeling and traceability at the national level

    A FAULT TOLERANT, DATA FUSION SYSTEM FOR NAVIGATION APPLICATIONS TO A DUCTED FAN VTOL UAV

    Get PDF
    A Fault Tolerant, Data Fusion (FTDF) algorithm for a Ducted Fan Unmanned Aerial Vehicle (DFUAV) Navigation System is presented. The algorithm have two parts: Gradient Descent (GD) for the Attitude and Heading Reference System (AHRS) and an Interacting Multiple Model (IMM) for position estimation. The GD methodology was designed to fuse the gyroscope, accelerometer, and geomagnetic sensors. The IMM algorithm is able to identify and compensate for multiple sensors data failures. There are three parts in the presentation. Firstly, system identification and the Allan Variance method is used to build dynamic models and noise models for multiple Sensors and Actuators. Secondly, a GD filter is developed for application to the Inertial Measurement Unit (IMU) consisting of tri-axis gyroscopes, accelerometers and magnetometers. The GD filter implementation incorporates magnetic distortion and gyroscope bias drift compensation. The filter uses a quaternion representation, allowing accelerometer and magnetometer data to be used in an analytically derived and optimized algorithm to compute the direction of the gyroscope measurement error as a quaternion derivative. . Finally, the IMM algorithm is used to combine data from multiple sensors simultaneously. This filter uses multiple models that incorporate sensor failures. The probabilities of these models being correct is generated by the IMM. These probabilities can be used to identify sensor failures and compensate for these failures

    Electromechanical actuators affected by multiple failures: Prognostic method based on spectral analysis techniques

    Get PDF
    The proposal of prognostic algorithms able to identify precursors of incipient failures of primary flight command electromechanical actuators (EMA) is beneficial for the anticipation of the incoming failure: an early and correct interpretation of the failure degradation pattern, in fact, can trig an early alert of the maintenance crew, who can properly schedule the servomechanism replacement. An innovative prognostic model-based approach, able to recognize the EMA progressive degradations before his anomalous behaviors become critical, is proposed: the Fault Detection and Identification (FDI) of the considered incipient failures is performed analyzing proper system operational parameters, able to put in evidence the corresponding degradation path, by means of a numerical algorithm based on spectral analysis techniques. Subsequently, these operational parameters will be correlated with the actual EMA health condition by means of failure maps created by a reference monitoring model-based algorithm. In this work, the proposed method has been tested in case of EMA affected by combined progressive failures: in particular, partial stator single phase turn to turn short-circuit and rotor static eccentricity are considered. In order to evaluate the prognostic method, a numerical test-bench has been conceived. Results show that the method exhibit adequate robustness and a high degree of confidence in the ability to early identify an eventual malfunctioning, minimizing the risk of fake alarms or unannounced failures. © 2017 Author(s)

    A novel model-based metaheuristic method for prognostics of aerospace electromechanical actuators equipped with PMSM

    Get PDF
    The prior knowledge of incipient failures of primary flight command electromechanical actuators (EMAs) with prognostic algorithms can be very beneficial. Indeed, early and proper detection and interpretation of the deterioration pattern can warn for replacing the servomechanism before the actual manifestation of the abnormal behaviour. Furthermore, such algorithms often exploit a model-based approach established on the direct comparison between the actual (High Fidelity) and the monitor (Low Fidelity) systems to identify fault parameters through optimization processes. The monitor model allows the acquisition of accurate and precise results with a contained computational effort. The authors developed a new simplified monitor model capable of faithfully reproducing the dynamic response of a typical aerospace EMA equipped with a Permanent Magnet Sinusoidal Motor (PMSM). This digital twin senses mechanical and electrical faults: friction, backlash, coil short circuit, static rotor eccentricity, and proportional gain. Fault detection and identification task are performed by comparing the output signal of the reference system (real or simulated) with the one obtained from the monitor model. After that, the Genetic Algorithm is chosen as the optimization algorithm to match the two signals by iteratively changing the fault parameters to detect the global minimum of a quadratic error function. Once a suitable fit is obtained, the corresponding optimization parameters are correlated with the considered progressive failures to evaluate the system's health status. The high-fidelity reference models analysed in this work have been previously conceived, developed, implemented in Matlab-Simulink, and validated experimentally by researchers of the ASTRA group of the DIMEAS of Politecnico di Torino

    Assessment Study of the State of the Art in Adaptive Control and its Applications to Aircraft Control

    Get PDF
    Many papers relevant to reconfigurable flight control have appeared over the past fifteen years. In general these have consisted of theoretical issues, simulation experiments, and in some cases, actual flight tests. Results indicate that reconfiguration of flight controls is certainly feasible for a wide class of failures. However many of the proposed procedures although quite attractive, need further analytical and experimental studies for meaningful validation. Many procedures assume the availability of failure detection and identification logic that will supply adequately fast, the dynamics corresponding to the failed aircraft. This in general implies that the failure detection and fault identification logic must have access to all possible anticipated faults and the corresponding dynamical equations of motion. Unless some sort of explicit on line parameter identification is included, the computational demands could possibly be too excessive. This suggests the need for some form of adaptive control, either by itself as the prime procedure for control reconfiguration or in conjunction with the failure detection logic. If explicit or indirect adaptive control is used, then it is important that the identified models be such that the corresponding computed controls deliver adequate performance to the actual aircraft. Unknown changes in trim should be modelled, and parameter identification needs to be adequately insensitive to noise and at the same time capable of tracking abrupt changes. If however, both failure detection and system parameter identification turn out to be too time consuming in an emergency situation, then the concepts of direct adaptive control should be considered. If direct model reference adaptive control is to be used (on a linear model) with stability assurances, then a positive real or passivity condition needs to be satisfied for all possible configurations. This condition is often satisfied with a feedforward compensator around the plant. This compensator must be robustly designed such that the compensated plant satisfies the required positive real conditions over all expected parameter values. Furthermore, with the feedforward only around the plant, a nonzero (but bounded error) will exist in steady state between the plant and model outputs. This error can be removed by placing the compensator also in the reference model. Design of such a compensator should not be too difficult a problem since for flight control it is generally possible to feedback all the system states
    • …
    corecore