11,690 research outputs found

    Redundancy based feature selection for microarray data

    Full text link

    Information-Theoretic Inference of Large Transcriptional Regulatory Networks

    Get PDF
    The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR), an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes) network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A framework for high dimensional data reduction in the microarray domain

    Full text link
    Microarray analysis and visualization is very helpful for biologists and clinicians to understand gene expression in cells and to facilitate diagnosis and treatment of patients. However, a typical microarray dataset has thousands of features and a very small number of observations. This very high dimensional data has a massive amount of information which often contains some noise, non-useful information and small number of relevant features for disease or genotype. This paper proposes a framework for very high dimensional data reduction based on three technologies: feature selection, linear dimensionality reduction and non-linear dimensionality reduction. In this paper, feature selection based on mutual information will be proposed for filtering features and selecting the most relevant features with the minimum redundancy. A kernel linear dimensionality reduction method is also used to extract the latent variables from a high dimensional data set. In addition, a non-linear dimensionality reduction based on local linear embedding is used to reduce the dimension and visualize the data. Experimental results are presented to show the outputs of each step and the efficiency of this framework. © 2010 IEEE

    A multi-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data

    Get PDF
    Background: Feature selection techniques are critical to the analysis of high dimensional datasets. This is especially true in gene selection from microarray data which are commonly with extremely high feature-to-sample ratio. In addition to the essential objectives such as to reduce data noise, to reduce data redundancy, to improve sample classification accuracy, and to improve model generalization property, feature selection also helps biologists to focus on the selected genes to further validate their biological hypotheses.Results: In this paper we describe an improved hybrid system for gene selection. It is based on a recently proposed genetic ensemble (GE) system. To enhance the generalization property of the selected genes or gene subsets and to overcome the overfitting problem of the GE system, we devised a mapping strategy to fuse the goodness information of each gene provided by multiple filtering algorithms. This information is then used for initialization and mutation operation of the genetic ensemble system.Conclusion: We used four benchmark microarray datasets (including both binary-class and multi-class classification problems) for concept proving and model evaluation. The experimental results indicate that the proposed multi-filter enhanced genetic ensemble (MF-GE) system is able to improve sample classification accuracy, generate more compact gene subset, and converge to the selection results more quickly. The MF-GE system is very flexible as various combinations of multiple filters and classifiers can be incorporated based on the data characteristics and the user preferences. <br /

    An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data

    Get PDF
    Classification of microarray data plays a significant role in the diagnosis and prediction of cancer. However, its high-dimensionality (&gt;tens of thousands) compared to the number of observations (&lt;tens of hundreds) may lead to poor classification accuracy. In addition, only a fraction of genes is really important for the classification of a certain cancer, and thus feature selection is very essential in this field. Due to the time and memory burden for processing the high-dimensional data, univariate feature ranking methods are widely-used in gene selection. However, most of them are not that accurate because they only consider the relevance of features to the target without considering the redundancy among features. In this study, we propose a novel multivariate feature ranking method to improve the quality of gene selection and ultimately to improve the accuracy of microarray data classification. The method can be efficiently applied to high-dimensional microarray data. We embedded the formal definition of relevance into a Markov blanket (MB) to create a new feature ranking method. Using a few microarray datasets, we demonstrated the practicability of MB-based feature ranking having high accuracy and good efficiency. The method outperformed commonly-used univariate ranking methods and also yielded the better result even compared with the other multivariate feature ranking method due to the advantage of data efficiency

    Identification of disease-causing genes using microarray data mining and gene ontology

    Get PDF
    Background: One of the best and most accurate methods for identifying disease-causing genes is monitoring gene expression values in different samples using microarray technology. One of the shortcomings of microarray data is that they provide a small quantity of samples with respect to the number of genes. This problem reduces the classification accuracy of the methods, so gene selection is essential to improve the predictive accuracy and to identify potential marker genes for a disease. Among numerous existing methods for gene selection, support vector machine-based recursive feature elimination (SVMRFE) has become one of the leading methods, but its performance can be reduced because of the small sample size, noisy data and the fact that the method does not remove redundant genes. Methods: We propose a novel framework for gene selection which uses the advantageous features of conventional methods and addresses their weaknesses. In fact, we have combined the Fisher method and SVMRFE to utilize the advantages of a filtering method as well as an embedded method. Furthermore, we have added a redundancy reduction stage to address the weakness of the Fisher method and SVMRFE. In addition to gene expression values, the proposed method uses Gene Ontology which is a reliable source of information on genes. The use of Gene Ontology can compensate, in part, for the limitations of microarrays, such as having a small number of samples and erroneous measurement results. Results: The proposed method has been applied to colon, Diffuse Large B-Cell Lymphoma (DLBCL) and prostate cancer datasets. The empirical results show that our method has improved classification performance in terms of accuracy, sensitivity and specificity. In addition, the study of the molecular function of selected genes strengthened the hypothesis that these genes are involved in the process of cancer growth. Conclusions: The proposed method addresses the weakness of conventional methods by adding a redundancy reduction stage and utilizing Gene Ontology information. It predicts marker genes for colon, DLBCL and prostate cancer with a high accuracy. The predictions made in this study can serve as a list of candidates for subsequent wet-lab verification and might help in the search for a cure for cancers

    Exploiting the accumulated evidence for gene selection in microarray gene expression data

    Get PDF
    Machine Learning methods have of late made signicant efforts to solving multidisciplinary problems in the field of cancer classification using microarray gene expression data. Feature subset selection methods can play an important role in the modeling process, since these tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this particular scenario, it is extremely important to select genes by taking into account the possible interactions with other gene subsets. This paper shows that, by accumulating the evidence in favour (or against) each gene along the search process, the obtained gene subsets may constitute better solutions, either in terms of predictive accuracy or gene size, or in both. The proposed technique is extremely simple and applicable at a negligible overhead in cost.Postprint (published version

    Hopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images

    Get PDF
    We study filter–based feature selection methods for classification of biomedical images. For feature selection, we use two filters — a relevance filter which measures usefulness of individual features for target prediction, and a redundancy filter, which measures similarity between features. As selection method that combines relevance and redundancy we try out a Hopfield network. We experimentally compare selection methods, running unitary redundancy and relevance filters, against a greedy algorithm with redundancy thresholds [9], the min-redundancy max-relevance integration [8,23,36], and our Hopfield network selection. We conclude that on the whole, Hopfield selection was one of the most successful methods, outperforming min-redundancy max-relevance when\ud more features are selected
    corecore