7 research outputs found

    Analysis of Long-Term Cloud Cover, Radiative Fluxes, and Sea Surface Temperature in the Eastern Tropical Pacific

    Get PDF
    Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided

    Impact of AVHRR channel 3b noise on climate data records: filtering method applied to the CM SAF CLARA-A2 data record

    Get PDF
    A method for reducing the impact of noise in the 3.7 micron spectral channel in climate data records derived from coarse resolution (4 km) global measurements from the Advanced Very High Resolution Radiometer (AVHRR) data is presented. A dynamic size-varying median filter is applied to measurements guided by measured noise levels and scene temperatures for individual AVHRR sensors on historic National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites in the period 1982–2001. The method was used in the preparation of the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data—Second Edition (CLARA-A2), a cloud climate data record produced by the EUMETSAT Satellite Application Facility for Climate Monitoring (CM SAF), as well as in the preparation of the corresponding AVHRR-based datasets produced by the European Space Agency (ESA) Climate Change Initiative (CCI) project ESA-CLOUD-CCI. The impact of the noise filter was equivalent to removing an artificial decreasing trend in global cloud cover of 1–2% per decade in the studied period, mainly explained by the very high noise levels experienced in data from the first satellites in the series (NOAA-7 and NOAA-9). View Full-Tex

    A procedure for the detection and removal of cloud shadow from AVHRR data over land.

    Get PDF
    Abstract-Although the accurate detection of cloud shadow in AVHRR scenes is important for many atmospheric and terrestrial applications, relatively little work in this area has appeared in the literature. This paper presents a new multispectral algorithm for cloud shadow detection and removal in daytime AVHRR scenes over land. It uses a combination of geometric and optical constraints, derived from the pixel-by-pixel cross-track geometry of the scene and image analysis methods to detect cloud shadow. The procedure works well in tropical and midlatitude regions under varying atmospheric conditions (wet-dry) and with different types of terrain. Results also show that underdetected cloud shadow can produce errors of 30-40% in observed reflectances for affected pixels. Moreover, radiative transfer calculations show that the effects of cloud shadow are comparable to or exceed those of aerosol contamination for affected pixels. The procedure is computationally efficient and hence could be used to produce improved weather forecast, land cover, and land analysis products. The method is not intended for use under conditions of poor solar illumination and/or poor viewing geometry

    Application of multi-window maximum cross-correlation to the mediterranean sea circulation by using MODIS data

    Get PDF
    In a previous study an improved Maximum Cross-Correlation technique, called Multi-Window Maximum Cross-Correlation (MW-MCC), was proposed, and applied to noise-free synthetic images in order to show its potential and limits in oceanographic applications. In this work, instead, the application of MW-MCC to high resolution MODIS images, and its capability to provide useful and realistic results for ocean currents, is studied. When applied to real satellite images, the MW-MCC is subject to cloud cover and image quality problems. As a consequence the number of useful MODIS images is greatly reduced. However, for every MODIS image, multiple spec-tral bands are available, and it is possible to apply the MW-MCC algorithm to the same scene as many times as the number of these bands, increasing the possibility of finding valid current vectors. Moreover, the comparison among the results from different spectral bands allows to verify both the consistency of the computed current vectors and the validity of using a spectral band as a good tracer for the ocean circulation. Due to the lack of systematic current measurements in the area considered, it has been not possible to perform an ex-tensive error analysis of the MW-MCC results, although a case study of a comparison between HF radar measurements and MW-MCC data is shown. Moreover, some comparison between numerical ocean model simulations and MW-MCC results are also shown. The coherence of the resulting circulation flow, the high number of current vectors found, the agreement among different spectral bands, and conformity with the currents measured by the HF radars or simulated by hydrodynamic models show the validity of the technique

    California cooperative oceanic fisheries investigations. Reports volume 37, January 1--December 31, 1995

    Full text link
    corecore