3,619 research outputs found

    Reduction of blocking artifacts in both spatial domain and transformed domain

    Get PDF
    In this paper, we propose a bi-domain technique to reduce the blocking artifacts commonly incurred in image processing. Some pixels are sampled in the shifted image block and some high frequency components of the corresponding transformed block are discarded. By solving for the remaining unknown pixel values and the transformed coefficients, a less blocky image is obtained. Simulation results using the Discrete Cosine Transform and the Slant Transform show that the proposed algorithm gives a better quantitative result and image quality than that of the existing methods

    Simple and fast subband de-blocking technique by discarding the high band signals

    Get PDF
    In this paper, we propose a simple and fast post-processing de-blocking technique to reduce blocking artifacts. The block-based coded image is first decomposed into several subbands. Only the low frequency subband signals are retained and the high frequency subband signals are discarded. The remaining subband signals are then reconstructed to obtain a less blocky image. The ideas are demonstrated by a cosine filter bank and a modulated sine filter bank. The simulation result shows that the proposed algorithm is effective in the reduction of blocking artifacts

    Transform Domain-Based Perceptual Detection and Reduction of Blocking Artifacts

    Get PDF
    In this paper, provide a simple and effective method for measuring blocking artefacts with an ideal 2-D step function in this study. First, a basic edge detection technique for measuring blocking artefacts is proposed. The ideal 2-D step function is chosen based on the presence of blocking artefacts in the edge image. The blocking artefact reduction algorithm in frequency domain is designed to extract all of the parameters required to detect the presence of blocking artefacts and replace the optimal step function with a ramp function by replacing the coefficient of the first row of horizontal blocks with the coefficient of the shifted block. The proposed strategy was tested on various standard benchmark photos and found to increase the perceptual quality of JPEG compressed images after blocking artefact removal with the proposed method

    A SVD based scheme for post processing of DCT coded images

    Get PDF
    In block discrete cosine transform (DCT) based image compression the blocking artifacts are the main cause of degradation, especially at higher compression ratio. In proposed scheme, monotone or edge blocks are identified by examining the DCT coefficients of the block itself. In the first algorithm of the proposed scheme, a signal adaptive filter is applied to sub-image constructed by the DC components of DCT coded image to exploit the residual inter-block correlation between adjacent blocks. To further reduce artificial discontinuities due to blocking artifacts, the blocky image is re-divided into blocks in such a way that the corner of the original blocks comes at the center of new blocks. These discontinuities cause the high frequency components in the new blocks. In this paper, these high frequency components due to blocking artifacts in monotone area are eliminated using singular value decomposition (SVD) based filtering algorithm. It is well known that random noise is hard to compress whereas it is easy to compress the ordered information. Thus, lossy compression of noisy signal provides the required filtering of the signal
    corecore