153 research outputs found

    Reducing the Number of Homogeneous Linear Equations in Finding Annihilators

    Get PDF
    Given a Boolean function ff on nn-variables, we find a reduced set of homogeneous linear equations by solving which one can decide whether there exist annihilators at degree dd or not. Using our method the size of the associated matrix becomes νf×(∑i=0d(ni)−μf)\nu_f \times (\sum_{i=0}^{d} \binom{n}{i} - \mu_f), where, νf=∣{x∣wt(x)>d,f(x)=1}∣\nu_f = |\{x | wt(x) > d, f(x) = 1\}| and μf=∣{x∣wt(x)≤d,f(x)=1}∣\mu_f = |\{x | wt(x) \leq d, f(x) = 1\}| and the time required to construct the matrix is same as the size of the matrix. This is a preprocessing step before the exact solution strategy (to decide on the existence of the annihilators) that requires to solve the set of homogeneous linear equations (basically to calculate the rank) and this can be improved when the number of variables and the number of equations are minimized. As the linear transformation on the input variables of the Boolean function keeps the degree of the annihilators invariant, our preprocessing step can be more efficiently applied if one can find an affine transformation over f(x)f(x) to get h(x)=f(Bx+b)h(x) = f(Bx+b) such that μh=∣{x∣h(x)=1,wt(x)≤d}∣\mu_h = |\{x | h(x) = 1, wt(x) \leq d\}| is maximized (and in turn νh\nu_h is minimized too). We present an efficient heuristic towards this. Our study also shows for what kind of Boolean functions the asymptotic reduction in the size of the matrix is possible and when the reduction is not asymptotic but constant

    Feynman integral relations from parametric annihilators

    Full text link
    We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sabbah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.Comment: v2: new section 3.1 added, several misprints corrected and additional remark

    Algebraic Dependencies and PSPACE Algorithms in Approximative Complexity

    Get PDF
    Testing whether a set f\mathbf{f} of polynomials has an algebraic dependence is a basic problem with several applications. The polynomials are given as algebraic circuits. Algebraic independence testing question is wide open over finite fields (Dvir, Gabizon, Wigderson, FOCS'07). The best complexity known is NP#P^{\#\rm P} (Mittmann, Saxena, Scheiblechner, Trans.AMS'14). In this work we put the problem in AM ∩\cap coAM. In particular, dependence testing is unlikely to be NP-hard and joins the league of problems of "intermediate" complexity, eg. graph isomorphism & integer factoring. Our proof method is algebro-geometric-- estimating the size of the image/preimage of the polynomial map f\mathbf{f} over the finite field. A gap in this size is utilized in the AM protocols. Next, we study the open question of testing whether every annihilator of f\mathbf{f} has zero constant term (Kayal, CCC'09). We give a geometric characterization using Zariski closure of the image of f\mathbf{f}; introducing a new problem called approximate polynomials satisfiability (APS). We show that APS is NP-hard and, using projective algebraic-geometry ideas, we put APS in PSPACE (prior best was EXPSPACE via Grobner basis computation). As an unexpected application of this to approximative complexity theory we get-- Over any field, hitting-set for VP‾\overline{\rm VP} can be designed in PSPACE. This solves an open problem posed in (Mulmuley, FOCS'12, J.AMS 2017); greatly mitigating the GCT Chasm (exponentially in terms of space complexity)

    A Geometric Algorithm for the Factorization of Spinor Polynomials

    Full text link
    We present a new algorithm to decompose generic spinor polynomials into linear factors. Spinor polynomials are certain polynomials with coefficients in the geometric algebra of dimension three that parametrize rational conformal motions. The factorization algorithm is based on the "kinematics at infinity" of the underlying rational motion. Factorizations exist generically but not generally and are typically not unique. We prove that generic multiples of non-factorizable spinor polynomials admit factorizations and we demonstrate at hand of an example how our ideas can be used to tackle the hitherto unsolved problem of "factorizing" algebraic motions

    Feynman Integrals and Intersection Theory

    Full text link
    We introduce the tools of intersection theory to the study of Feynman integrals, which allows for a new way of projecting integrals onto a basis. In order to illustrate this technique, we consider the Baikov representation of maximal cuts in arbitrary space-time dimension. We introduce a minimal basis of differential forms with logarithmic singularities on the boundaries of the corresponding integration cycles. We give an algorithm for computing a basis decomposition of an arbitrary maximal cut using so-called intersection numbers and describe two alternative ways of computing them. Furthermore, we show how to obtain Pfaffian systems of differential equations for the basis integrals using the same technique. All the steps are illustrated on the example of a two-loop non-planar triangle diagram with a massive loop.Comment: 13 pages, published versio

    Effective Scalar Products for D-finite Symmetric Functions

    Get PDF
    Many combinatorial generating functions can be expressed as combinations of symmetric functions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel's work by providing algorithms that compute differential equations these generating functions satisfy in the case they are given as a scalar product of symmetric functions in Gessel's class. Examples of applications to k-regular graphs and Young tableaux with repeated entries are given. Asymptotic estimates are a natural application of our method, which we illustrate on the same model of Young tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur functions with itself.Comment: 51 pages, full paper version of FPSAC 02 extended abstract; v2: corrections from original submission, improved clarity; now formatted for journal + bibliograph
    • …
    corecore