24 research outputs found

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Enhancing trustability in MMOGs environments

    Get PDF
    Massively Multiplayer Online Games (MMOGs; e.g., World of Warcraft), virtual worlds (VW; e.g., Second Life), social networks (e.g., Facebook) strongly demand for more autonomic, security, and trust mechanisms in a way similar to humans do in the real life world. As known, this is a difficult matter because trusting in humans and organizations depends on the perception and experience of each individual, which is difficult to quantify or measure. In fact, these societal environments lack trust mechanisms similar to those involved in humans-to-human interactions. Besides, interactions mediated by compute devices are constantly evolving, requiring trust mechanisms that keep the pace with the developments and assess risk situations. In VW/MMOGs, it is widely recognized that users develop trust relationships from their in-world interactions with others. However, these trust relationships end up not being represented in the data structures (or databases) of such virtual worlds, though they sometimes appear associated to reputation and recommendation systems. In addition, as far as we know, the user is not provided with a personal trust tool to sustain his/her decision making while he/she interacts with other users in the virtual or game world. In order to solve this problem, as well as those mentioned above, we propose herein a formal representation of these personal trust relationships, which are based on avataravatar interactions. The leading idea is to provide each avatar-impersonated player with a personal trust tool that follows a distributed trust model, i.e., the trust data is distributed over the societal network of a given VW/MMOG. Representing, manipulating, and inferring trust from the user/player point of view certainly is a grand challenge. When someone meets an unknown individual, the question is “Can I trust him/her or not?”. It is clear that this requires the user to have access to a representation of trust about others, but, unless we are using an open source VW/MMOG, it is difficult —not to say unfeasible— to get access to such data. Even, in an open source system, a number of users may refuse to pass information about its friends, acquaintances, or others. Putting together its own data and gathered data obtained from others, the avatar-impersonated player should be able to come across a trust result about its current trustee. For the trust assessment method used in this thesis, we use subjective logic operators and graph search algorithms to undertake such trust inference about the trustee. The proposed trust inference system has been validated using a number of OpenSimulator (opensimulator.org) scenarios, which showed an accuracy increase in evaluating trustability of avatars. Summing up, our proposal aims thus to introduce a trust theory for virtual worlds, its trust assessment metrics (e.g., subjective logic) and trust discovery methods (e.g., graph search methods), on an individual basis, rather than based on usual centralized reputation systems. In particular, and unlike other trust discovery methods, our methods run at interactive rates.MMOGs (Massively Multiplayer Online Games, como por exemplo, World of Warcraft), mundos virtuais (VW, como por exemplo, o Second Life) e redes sociais (como por exemplo, Facebook) necessitam de mecanismos de confiança mais autónomos, capazes de assegurar a segurança e a confiança de uma forma semelhante à que os seres humanos utilizam na vida real. Como se sabe, esta não é uma questão fácil. Porque confiar em seres humanos e ou organizações depende da percepção e da experiência de cada indivíduo, o que é difícil de quantificar ou medir à partida. Na verdade, esses ambientes sociais carecem dos mecanismos de confiança presentes em interacções humanas presenciais. Além disso, as interacções mediadas por dispositivos computacionais estão em constante evolução, necessitando de mecanismos de confiança adequados ao ritmo da evolução para avaliar situações de risco. Em VW/MMOGs, é amplamente reconhecido que os utilizadores desenvolvem relações de confiança a partir das suas interacções no mundo com outros. No entanto, essas relações de confiança acabam por não ser representadas nas estruturas de dados (ou bases de dados) do VW/MMOG específico, embora às vezes apareçam associados à reputação e a sistemas de reputação. Além disso, tanto quanto sabemos, ao utilizador não lhe é facultado nenhum mecanismo que suporte uma ferramenta de confiança individual para sustentar o seu processo de tomada de decisão, enquanto ele interage com outros utilizadores no mundo virtual ou jogo. A fim de resolver este problema, bem como os mencionados acima, propomos nesta tese uma representação formal para essas relações de confiança pessoal, baseada em interacções avatar-avatar. A ideia principal é fornecer a cada jogador representado por um avatar uma ferramenta de confiança pessoal que segue um modelo de confiança distribuída, ou seja, os dados de confiança são distribuídos através da rede social de um determinado VW/MMOG. Representar, manipular e inferir a confiança do ponto de utilizador/jogador, é certamente um grande desafio. Quando alguém encontra um indivíduo desconhecido, a pergunta é “Posso confiar ou não nele?”. É claro que isto requer que o utilizador tenha acesso a uma representação de confiança sobre os outros, mas, a menos que possamos usar uma plataforma VW/MMOG de código aberto, é difícil — para não dizer impossível — obter acesso aos dados gerados pelos utilizadores. Mesmo em sistemas de código aberto, um número de utilizadores pode recusar partilhar informações sobre seus amigos, conhecidos, ou sobre outros. Ao juntar seus próprios dados com os dados obtidos de outros, o utilizador/jogador representado por um avatar deve ser capaz de produzir uma avaliação de confiança sobre o utilizador/jogador com o qual se encontra a interagir. Relativamente ao método de avaliação de confiança empregue nesta tese, utilizamos lógica subjectiva para a representação da confiança, e também operadores lógicos da lógica subjectiva juntamente com algoritmos de procura em grafos para empreender o processo de inferência da confiança relativamente a outro utilizador. O sistema de inferência de confiança proposto foi validado através de um número de cenários Open-Simulator (opensimulator.org), que mostrou um aumento na precisão na avaliação da confiança de avatares. Resumindo, a nossa proposta visa, assim, introduzir uma teoria de confiança para mundos virtuais, conjuntamente com métricas de avaliação de confiança (por exemplo, a lógica subjectiva) e em métodos de procura de caminhos de confiança (com por exemplo, através de métodos de pesquisa em grafos), partindo de uma base individual, em vez de se basear em sistemas habituais de reputação centralizados. Em particular, e ao contrário de outros métodos de determinação do grau de confiança, os nossos métodos são executados em tempo real

    Distributed Current Flow Betweeness Centrality

    Get PDF
    —The computation of nodes centrality is of great importance for the analysis of graphs. The current flow betweenness is an interesting centrality index that is computed by considering how the information travels along all the possible paths of a graph. The current flow betweenness exploits basic results from electrical circuits, i.e. Kirchhoff’s laws, to evaluate the centrality of vertices. The computation of the current flow betweenness may exceed the computational capability of a single machine for very large graphs composed by millions of nodes. In this paper we propose a solution that estimates the current flow betweenness in a distributed setting, by defining a vertex-centric, gossip-based algorithm. Each node, relying on its local information, in a selfadaptive way generates new flows to improve the betweenness of all the nodes of the graph. Our experimental evaluation shows that our proposal achieves high correlation with the exact current flow betweenness, and provides a good centrality measure for large graphs

    Building Robust Distributed Infrastructure Networks

    Get PDF
    Many competing designs for Distributed Hash Tables exist exploring multiple models of addressing, routing and network maintenance. Designing a general theoretical model and implementation of a Distributed Hash Table allows exploration of the possible properties of Distributed Hash Tables. We will propose a generalized model of DHT behavior, centered on utilizing Delaunay triangulation in a given metric space to maintain the networks topology. We will show that utilizing this model we can produce network topologies that approximate existing DHT methods and provide a starting point for further exploration. We will use our generalized model of DHT construction to design and implement more efficient Distributed Hash Table protocols, and discuss the qualities of potential successors to existing DHT technologies

    Supporting Non-Linear and Non-Continuous Media Access in Peer-to-Peer Multimedia Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    Get PDF
    International audienceBiofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. We show, through 3D numerical simulations, that our approach is capable of discriminating between situations where the paddle wheel is rapidly moving water or slowly agitating the process. Moreover, the simulated velocity fields can provide lagrangian trajectories of the algae. The resulting light pattern to which each cell is submitted when travelling from light (surface) to dark (bottom) can then be derived. It will then be reproduced in lab experiments to study photosynthesis under realistic light patterns
    corecore