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Recently, Massively Multiplayer Online Game (MMOG) has become very popular; there 

are thousands of games built to be played online, where hundreds or thousands of users 

from all around the world can play the game at the same time. The hottest issue in the 

MMOG is the real-time (RT) service, where the players can share their game status in a 

real-time manner. The main need for the RT platform is to guarantee the quality of services, 

the platform should deliver a robust and excellent quality, besides, the service should be 

loosely couple oriented to support the growth of MMOG applications. 

We present a new platform solution to deal with the real-time online gaming using a DDS 

middleware. An RTinDDS is a real-time platform built based on the DDS middleware. 

This middleware can guarantee to provide the developers, designers, and end users with a 

suitable platform to build their online real-time gaming and to deliver it in a robust manner 

to the end users. The platform also allows designers to make the best decision for a specific 

situation.  
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The results of the experimental work show that RTinDDS improved the reliability, 

scalability, throughput, and latency. Chapter 6. 

We improved RTinDDS by implementing a new smart algorithm based on the artificial 

neural network AIRTinDDS. This algorithm used to detect and resolve any issue will occur 

during the game running to guarantee to deliver a robust platform, the system able to adapt 

itself to any unexpected behavior. This will effect on many factors such as, sharing the 

resources fairly among the players, describing the issue to the players and inform them 

what to do and solve the issue without any break in the game. 

We have applied our algorithms RTinDDS/AIRTinDDS to build a game (PMS) over DDS 

middleware to measure and test the power of RTinDDS/AIRTinDDS, we tested many 

scenarios and profile to make sure that we covered most cases and circumstances. The 

results show very good throughput with a very reasonable latency, with the ability to scale 

the number of players. 
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 بشار محمد موسى خطيب :الكامل الاسم

عبر الانترنت باستخدام أدوات من اللاعبين بناء منصة قوية لألعاب الفيديو ذات الاعداد الهائلة  :الرسالة عنوان

 اس الوسيطة( التي تدعم تقنية الوقت الحقيقي.  ديتحسين الجودة المدعومة من )دي 

 الآلي الحاسب هندسة :التخصص

 December 2016:  العلمية الدرجة تاريخ

 

الآلاف  هناك .مما لا شك فيه أنه في الآونة الأخيرة، كثر عدد الألعاب التي تدعم اعداداً هاىلة من المستخدمين عبر الانترنت

 كبيرة من المستخدمين ليلعبوا ويشاركوا حالالتهم عبر شبكة الانترنت، حيث المئات أو اعداداً من الألعاب التي بنيت لتدعم 

أهم قضية في هذه الأنواع من  .الوقت الآلاف من المستخدمين من جميع أنحاء العالم يمكن أن يلعبوا نفس اللعبة في نفس

ً ، حيث يمكن للمستخدمي (RT) خدمة في الوقت الحقيقيالالالعاب هي  الحاجة الرئيسية  .ن مشاركة حالتهم بنفس الوقت تماما

لضمان نمو اعداد اللاعبين نوعية قوية وممتازة،  مان تقدمنصة هذه اليجب على حيث هي لضمان جودة الخدمات،   RTلمنصة

 .بنفس الوقت دون حدوث أي خلل يؤثر على جودة وأداء اللعبة 

) الألعاب هذه النوعية امل مع وية قادرة على توفير جميع الاحتياجات اللازمة للتعفي هذه الرسالة, قمنا بالعمل لتقديم منصة ق

في الوقت الحقيقي بنيت على أساس  هي منصة تعمل DDS   ,RTinDDSالوسيطة باستخدام  (الوقت الحقيقي عبر الإنترنت

هذه النوعية من  ية مناسبة لبناءأرض واللاعبين,ضمان تزويد المطورين والمصممين  ، وهذا يمكن الوسيطة DDSالوسيطة

القدرة على اختيار انسب منصة قادرة أيضا على السماح للمصممين هي  . النهائيين وتقديمها بطريقة قوية للمستخدمين الالعاب

 .القرارات اثناء بناء اللعبة لتحقيق أفضل النتائج 

عملت   RTinDDSحيث أظهرت النتائج أن, DDSفي هذه الرسالة, قمنا بتجارب عملية عن طريق بناء لعبة مدعومة بالوسيطة 

  Throughput, latency.على تحسين ال 

مع  اثناء اللعب في نفس الوقت( bandwidth, CPU, and memoryعادة ما يستهلك اللاعبين اثناء لعبهم موارد الشبكة ) 
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تعمل من خلال تنفيذ خوارزمية ذكية جديدة   RTinDDSبتحسين قمنا, لهذا. أنحاء العالم كل من ر من اللاعبين عدد كبي

 ما قد يحدث من مشاكل غير متوقعة اثناء اللعب.لكشف وحل الذكاء الاصطناعي, باستخدام تقنية 

،  RTinDDS / AIRTinDDSواختبار قوة الوسيطة لقياس  DDSعلى  (PMS)لبناء لعبةهذه الخوارزميات قمنا بتطبيق  لقد

ان هذه الخوارزميات معظم الحالات والظروف، فقد بينت النتائج  شمول وتغطية للتأكد منوضعنا العديد من السيناريوهات 

 منخفض .  Latencyعالي بالتناسب مع اعداد اللاعبين, وفي نفس الوقت   Throughputقادرة على إعطاء 

 

 

 

 

 

 

 



1 
 

1 CHAPTER 1 

INTRODUCTION 

Massively Multiplayer Online Games (MMOG) defined as a virtual world where a massive 

number of players can set together virtually and interact with each other in a real-time 

manner. One of the most popular challenges in this area is the huge amount of the real-time 

exchange messages over a huge number of users[1]. Many technologies in the literature 

tried to deal with this kind of challenges by applying different algorithms and different 

middlewares, no one used the Data Distribution Service (DDS) middleware to build 

MMOG, which is one of the lead middleware in delivering real-time messages with a very 

powerful quality of services.[1]. 

1.1 History of MMOG 

The first game in the MMOG world is called Ultima Online7, it was released in 1997. The 

main objective of this game was the commercials; it showed a very successful achievement 

in the commercial world.[2]. 

In 1998, a new game called Lineage was released in Korea. It was popular all over Korea. 

In 1999 EverQuest was released; this game was overall expectation. It had unexpected 

subscribers. EverQuest was considered a break point in MMOG world. Many new 

MMOGs have been released after this game. The next successful game in that period was 

called Asheron's Call; it was popular wide world.[2]. 

https://en.wikipedia.org/wiki/Data_Distribution_Service
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Many games have been released up until now were considered a role-playing game 

(MMORPGs). We have different kinds of MMOG categories, such as shooter players, first 

person shoot game, race players, and many others. There were many issues and difficulties 

regarding many factors, one of the most important factor was the real-time issue. Many 

research and works are done in order to overcome all these issues.  

In a typical MMOG, players collaborate or compete in a virtual world. Each player sees a 

graphical representation of the world and controls an avatar that performs various actions, 

such as moving, picking up objects, or communicating with other players. To provide a 

shared sense of space among players, each player must maintain a copy of the (relevant) 

game state on his computer. When one player performs an action that affects the world, the 

game state of all other players affected by that action must be updated. This can be done 

by sending either the action or its effects over the network. 

In DDS middleware, by using the suitable QoS policies in terms of all MMOG 

circumstances, it can provide a Scalable, Consistent, Reliable, and fairness systems. 

1.2 Technical requirement  
 

1.2.1 Scalability 

The biggest challenge in MMOGs is the scalability. Ideally, thousands of players all over 

the globe could play together in the same virtual world, regardless of varying network 

connection quality. Bad network conditions can result in high latency, meaning that it takes 

more time for a message to reach its destination.[3][4] and [5]. Moreover, the bandwidth 

that is, the maximum throughput of data—is also limited and varies depending on 
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connection quality and the number of joining players, our platform should be able to handle 

the growing number of players where this affect on the latency, the bandwidth, and the 

quality of service.  

1.2.2 Consistency 

MMOGs are complex distributed systems. Each player interacts with the game in real time, 

so the player's machine must know about the state of the game in near real time at least, 

that part of the game state most relevant to the player.[6]. Owing to the network latency 

problem, this game state is, unfortunately, never 100 percent up to date because of other 

players constantly and concurrently modify the game world. The challenge is to 

nevertheless provide a consistent view of the virtual world to players or to provide a means 

to tolerate inconsistencies so that they do not negatively affect gameplay.[7]. 

1.2.3 Reliability 

The probability of a single node's failure in a distributed system is low, but it grows along 

with the number of nodes. It is almost certain that in MMOG with thousands of 

participating nodes, failures will occur fairly often. In addition to that, network connections 

can also fail. MMOG must, therefore, be able to cope with node and network failures with 

minimal disturbance to gameplay.[7]. 

1.2.4 Fairness 

The basis for an enjoyable game experience is that all players are treated equally despite 

the game implementation's distributed nature. This requires coping both with the imbalance 

of player machines' resources in terms of CPU power and network bandwidth and with 
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cheating players who exploit weaknesses in the game design and implementation to their 

advantage. 

1.3 Communication models 

There are different kinds of communication architecture where MMOG can be built over. 

1.3.1 Client/Server model 

C/S model is a network architecture where each node on the network is either a client or a 

server. Servers usually have chosen to be powerful computers or processes abled to manage 

the huge number of client requests and updates. [8]. Figure 1-1. 

 Thin-Client model: Applications and ‘heavy work’ resides on server(s).  Client(s) 

serve as an interface for the server(s). 

 Fat-Client model: Most of the programming logic resides on the client(s) side.  

Server(s) handles data. 

 Applet model: intermediate model. 
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Figure 1-1: Architecture view of client-server 

 

1.3.2 Synchronous/Asynchronous model 

In synchronous communication, the source sends the data and waits for a reply by the 

destination. If the transmission is successful, the destination sends a positive 

acknowledgment (ACK) otherwise, the sender receives a negative acknowledgment 

(NACK). Synchronous communication is used in middleware documentations to point to 

reliable communication features.[8]. 

 

Figure 1-2: synchronous communication model[8] 
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On the other hand, in asynchronous communication, senders keep pushing data to 

destinations without waiting for replies. Non-Reliable communication is used to describe 

asynchronous middleware. Different techniques are used to assure reliable communication 

when the asynchronous model is used. One of the simplest tricks used is to number the 

messages and on the destination side the sequence of the message is checked and missed 

messages are requested again. 

 

Figure 1-3: asynchronous communication model[8] 

1.3.3 Fan Out/In Model 

The main feature of the fan out model is the limited number of data sources and a huge 

number of destinations. This model is more suitable for data distributions, stocks feeds, 

and news services applications.  
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Figure 1-4: Fan-out model 

On the other hand, the fan-in model is found in applications such as network management, 

data acquisition, fraud detection, and data collection. The common feature of these 

applications is the huge number of data sources (publishers) and a limited number of 

receivers (subscribers). For example, the publisher could be a network device signaling 

particular events and subscribers could be network administrator responsible for the 

systems. An industrial example for this model is the oil wells drilling column where sensors 

measure certain values and send them to a central server for analysis.[8] 

 

Figure 1-5: Fan-in model 
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1.3.4 P2P/M2N Models 

Point-To-Point (P2P) model is usually seen in industrial environment applications where 

thousands of processes perform a certain task and many of them send (publish) data to 

limited number (mostly one) process. 

Many to many is a combination of the fan-in and fan-out model. Many data sources send 

data to many destinations. Production planning and scheduling systems are one of the good 

examples for this model where production lines have to send production report for each 

material to several systems such as quality control, production monitoring and logistic 

management system.  

1.4 Middleware software 

Middleware is defined as a “Software that facilitates interoperability by mediating between 

an application program and a network, thus masking differences or incompatibilities in 

network transport protocols, hardware architecture, operating systems, database systems, 

remote procedure calls, etc. ”[8]. In other words, it is a kind of delivering a service between 

different platforms, including both hardware and software, and the applications. The 

services shared common protocols and standards between these different platform taking 

into account the different types of software, hardware, and applications. Middleware used 

to be reusable, where developers and designers can update, edit, modify the services as it 

fits their applications. 

The main role of middleware is to ease the task of designing, developing and managing 

distributed systems by providing simple and consistent integrated programming 
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environment. Middleware increases the interoperability, portability and flexibility of 

distributed systems.  

The main usages of middleware in developing distributed systems are to be used by 

applications to locate transparently across the network by providing interaction with 

another application or server since it is independent of network services. In the other hand, 

the middleware is always reliable and available which can Scale up in capacity without 

losing function. 

 

Figure 1-6: Middleware Architecture 

1.4.1 Middleware usages 

Middleware can be classified into three groups from a usage point view, distributed system 

services which include critical mission systems, peer-to-peer communication, and data 

management services. RPCs, MOMs, and ORBs are suitable for those usages. And the 

second one is the application enabling services which give applications access to 

distributed services and the underlying network. Transaction Processing Monitors (TPMs) 

and Structured Query Language (SQL) are the most used services in this category. The last 
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type is the middleware management services, which provide transparent network 

communication between heterogeneous systems. 

The most commonly used middleware technologies are: 

 Distributed Computing Environment (DCE) by Open Software Foundation 

 Common Object Request Broker Architecture (CORBA) by Object Management 

Group 

 Distributed/Component Object Model (DCOM/COM) by Microsoft 

The different programming model is supported by different middleware platforms. One of 

the most popular models is object-oriented middleware in which applications are structured 

into objects that communicate via location transparent method invocation. The main 

examples of this type of middleware are the OMG's CORBA and Microsoft's Distributed 

COM., Both of these platforms offer an interface definition language (IDL) which is used 

to abstract over the fact that objects can be implemented in any suitable programming 

language. An object request broker which is responsible for transparently directing method 

invocations to the appropriate target object, and a set of services (e.g. naming, time, 

transactions, replication etc.) which further enhance the distributed programming 

environment.[8]. 

Not all middleware is object based. Two other popular paradigms are event-based 

middleware and message-oriented middleware, both of which mainly employ ‘single shot’ 

communications rather than the request-reply style communication found in object-based 

middleware. 
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Event based middleware is particularly suited to the construction of non-centralized 

distributed applications that must monitor and react to changes in their environment. 

Examples are process control, Internet news channels and stock tracking. It is claimed that 

event-based middleware has potentially better scaling properties for such applications than 

object-based middleware. 

Message-oriented middleware, on the other hand, is biased toward applications in which 

messages need to be persistently stored and queued. Workflow and messaging applications 

are good examples. 

1.4.2 Middleware types 

1.4.2.1 Transaction processing 

Transaction processing (TP) middleware are used to provide a complete environment for 

transaction application that accesses a relational database. In TP middleware, clients call 

remote procedures stored on the server, which contain a set of SQL statements 

(transaction). Procedures execute set of SQL statements, which all succeed or all fail as a 

unit.  

Application based on TP used to be mission-critical applications with strong controls over 

database’s security and integrity and usually are known as on-line transaction processing 

(OLTP). 

TP is considered efficient from the communication overhead side because it requires only 

a single request/reply statement and the multiple SQL statement are kept on the server side. 

It is not suitable for program-to-program communications because it tends to be 
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heavyweight and expensive, and it requires deep experience to implement and tune. TP 

middleware cannot run properly without service contracts from the vendor in most cases, 

and the most important features provided by TP middleware are[8]: 

 Application development tools: User interaction and database interfaces 

 System administration: Security, tuning and users management 

 Transaction execution: Scheduling and load balancing 

1.4.2.2 Remote Procedure Calls (RPCs) 

RPCs have been used for a long time, they are one of the earliest forms of inter-program 

communication mechanism. they are easy to understand although they operate in low level. 

The code calls a procedure that resides on a remote system and the results are returned. 

This is considered to be a synchronous communication while the programs call and wait 

for results.  

RPCs are point-to-point communication rather than one data source to many destinations 

and this makes them work well for small and simple applications. Experts stated that RPCs 

do not scale well to large, mission-critical systems as they leave important to the 

programmer such as managing network and system failures, managing multiple 

connections, flow control and buffering, portability and synchronization between 

processes. 
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1.4.2.3 Object Request Brokers 

Object Request Brokers (ORBs) are similar to RPCs but they are language independent 

and object-oriented. They are strictly object-oriented and point-to-Point communication. 

The main technology providers for ORBs are the Object Management Group (OMG) and 

Object Web (Open Source), where Open CORBA Component Model Platform 

(OpenCCM) is defined. It consists of an open development tool set, an open deployment 

infrastructure and an open run-time container. 

1.4.2.4 Object Management Group (OMG) 

Where two technologies are provided, the Common Object Request Broker Architecture 

(CORBA) where the CORBA is vendor-independent architecture and infrastructure that 

can be used by almost any computer, operating systems, Programming language and 

network to communicate together. OMG-specified also CORBA Event Service as a 

standard service layered over CORBA. It is clear that CORBA requires strict object-

oriented approach and it uses request-reply (Synchronous) communication. 

In addition, the other technology is the Model Driven Architecture (MDA), it provides an 

open, vendor-neutral approach to the challenge of interoperability, building upon and 

leveraging the value of OMG's established modeling standards: Unified Modeling 

Language (UML); Meta-Object Facility (MOF); and Common Warehouse Meta-model 

(CWM). Platform-independent Application descriptions built using these modeling 

standards can be realized using any major open or proprietary platform, including CORBA, 

Java, NET, XMI/XML, and Web-based platforms.[8] 
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1.4.2.5 Sun Microsystems 

Which has two main technologies, the Java Remote Method Invocation (RMI), which it 

enables programmers to develop Java-based and distributed applications. In RMI, methods 

of remote java objects can be invoked by another java virtual machine on same or different 

hosts. A reference to the remote object is required, which can be obtained from the 

bootstrap naming service provided by RMI or as an argument value.  

And the other one is the JINI Network Technology which it is an open architecture, which 

helps developers to program network centric services that are highly adaptive to changes. 

Jini is suitable for the dynamic computing environment. Its main uses are scalable, 

evolvable and flexible systems. 

1.4.2.6 Microsoft 

Which has also two main technologies, the Distributed Component Object Model (DCOM) 

which it is a protocol enables network objects to communicate directly in reliable, secure 

and efficient manner. DCOM designed to be used across several network transport 

including Internet protocols. DCOM is based on the Open Software Foundation’s DCE-RP 

spec. Component Object Model (COM) can be used with Java applets and ActiveX 

components. 

The other technology is the .NET, it is a set of Microsoft software technologies, which 

enables a high level of programs integration by using XML web services.  
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1.5 Publish/Subscribe Middleware 

Publish-Subscribe (PS) communication concept is very similar to printed periodicals 

publication and subscription mechanism. Applications communicate by sending and 

receiving issues of named publication. An issue consists of 

 Topic: A string chosen by the user to identify the publication. The topic identifies 

the user data that will be sent to the distributed system without a need for network 

address or port number. 

 Type: which defined the data format of an issue. It is used to provide automatic 

type conversion between computer architectures. Type is usually a structure’s 

name. 

 Issue identification: a number used internally by the middleware to uniquely 

identify each issue of a publication. 

 User data: The actual content defined by the application for a certain issue, which 

changes in every issue. 

Communication in PS has three phases, the declaration of intent to generate data by the 

publisher, declaration of interest by the subscriber and the transporting the issue from 

publisher to subscriber. 

When a certain issue is generated, the middleware routes the issue to all subscribers over 

the net. These three steps can happen in any order. For example, a publisher sent a topic to 

all subscribers and then a new subscriber joined the network. All issues those are still valid 

(the persistence period specified by the publisher did not expire) will be sent to the new 
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subscriber. PS model is event driven in nature. Subscription to the certain issue can be in 

two modes. The application can be notified immediately when a new issue is generated or 

the issues are stored till the subscriber polls for them. PS can work in one-to-many mode 

because many applications can subscribe to certain topic and all of them will receive a copy 

of new issues of that topic. The publishing application does need to know the number of 

subscribers currently existing on the net or any details about them. Figure 1-7  

 

Figure 1-7: PS vs. Polling 

PS is more efficient than client-server in latency and bandwidth utilization, it reduces the 

overhead required in client-server because it does not need a request for each new data 

generated. This elimination of outgoing request messages improves PS latency and save 

network resources. It is capable to support one-to-many connectivity with redundant 

publishers and subscribers, which makes PS suitable for re-configurable dynamic 

applications in a robust manner. Furthermore, PS maps well to connectionless protocols. 

For instance, it can take advantages of multicast technology to efficiently send data to 

multiple users.[8]. 
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1.6 Distributed and Real-Time systems 

A distributed system is a collection of autonomous nodes, connected through a network 

and distribution middleware, which enables nodes to communicate and coordinate between 

each other and to share their resources, so we can see the system as one integrated system. 

There are many advantages and disadvantages for this kind of distributed systems, one of 

the most common issue is the complexity, since the system will be consisting of thousands 

and sometimes hundreds of thousands of nodes as in our case where we have a massive 

number of players. Also, since we have a huge number of nodes, the security will become 

an issue as the system become difficult to be managed and predicted. 

On the other hand, distributed systems gave us the ability to scale our systems, where 

hundreds of thousands were able to join the system simultaneously. In addition to the 

scalability, the nodes can share the resources easily, this will affect on the resource 

limitation and can help us to manage and control the resources. 

As we studied all other middlewares, we chose to use Real-Time Publish/Subscribe 

Middleware (RTPS), since it is also used in the DDS middleware. 

1.6.1 Real-Time Publish/Subscribe Middleware (RTPS) 

RTPS was specifically developed to support the unique requirements of data distributions 

systems. As one of the application domains targeted by DDS, the industrial automation 

community defined requirements for a standard publish- subscribe wire-protocol that 

closely match those of DDS. As a direct result, a close synergy exists between DDS and 
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the RTPS wire-protocol, both in terms of the underlying behavioral architecture and the 

features of RTPS. 

The RTPS protocol is designed to be able to run over multicast and connectionless best-

effort transports such as UDP/IP. The main features of the RTPS protocol include:[9]. 

 Performance and quality-of-service properties to enable best-effort and reliable 

publish-subscribe communications for real-time applications over standard IP 

networks. 

 Fault tolerance to allow the creation of networks without single points of failure. 

 Extensibility to allow the protocol to be extended and enhanced with new services 

without breaking backward compatibility and interoperability. 

 Plug-and-play connectivity so that new applications and services are automatically 

discovered and applications can join and leave the network at any time without the 

need for reconfiguration. 

 Configurability to allow balancing the requirements for reliability and timeliness 

for each data delivery.  

 Modularity to allow simple devices to implement a subset of the protocol and still 

participate in the network.  

 Scalability to enable systems to potentially scale to very large networks.  

  Type-safety to prevent application programming errors from compromising the 

operation of remote nodes. 
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The above features make RTPS an excellent match for a DDS wire-protocol. Given its 

publish-subscribe roots, this is not a coincidence, as RTPS was specifically designed for 

meeting the types of requirements set forth by the DDS application domain. 

All RTPS entities are associated with an RTPS domain, which represents a separate 

communication plane that contains a set of Participants. A Participant contains local 

Endpoints. There are two kinds of endpoints: Readers and Writers. Readers and Writers 

are the actors that communicate information by sending RTPS messages. Writers inform 

of the presence and send locally available data on the Domain to the Readers which can 

request and acknowledge the data. Figure 1-8. 

 

Figure 1-8: RTPS Structure 

RTPS adds few features to PS to overcome conflicting goals of timing, memory, and 

reliability. Those features are: 

 Timestamps and numbers every issue 
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 Allows the application to trade-off deterministic timing with reliable delivery. 

 Adds bi-directional request-reply communication over PS 

 Controls memory usage 

 Works well in RTOS environment 

 The main communication objects in RTPS are publications, subscription, clients 

and servers. These objects together support unidirectional (PS send-receive) and bi-

directional (request-reply) communications.  

In unidirectional communication, information flows in one way from publishers to 

subscribers while publication and subscriptions specify how the issues are sent and 

received.[8]. 

A typical sequence illustrating the exchanges between an RTPS Writer and a matched 

RTPS Reader is shown in Figure 1-9. 
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Figure 1-9: RTSP Behavior[9]. 

1. The DDS user writes data by invoking the write operation on the DDS DataWriter. 

2. The DDS DataWriter invokes the new_change operation on the RTPS Writer to create a 

new CacheChange. Each CacheChange is identified uniquely by a SequenceNumber. 

3. The new_change operation returns. 

4. The DDS DataWriter uses the add_change operation to store the CacheChange into the 

RTPS Writer’s HistoryCache. 

5. The add_change operation returns. 
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6. The write operation returns; the user has completed the action of writing Data. 

7. The RTPS Writer sends the contents of the CacheChange changes to the RTPS Reader 

using the Data Sub message and requests an acknowledgment by also sending a Heartbeat 

Sub message. 

8. The RTPS Reader receives the Data message and, assuming that the resource limits 

allow that, places the CacheChange into the reader’s HistoryCache using the add_change 

operation. 

9. The add_change operation returns. The CacheChange is visible to the DDS DataReader 

and the DDS user. The conditions for this depend on the reliabilityLevel attribute of the 

RTPS Reader. 

a. For a RELIABLE DDS DataReader, changes in its RTPS Reader’s HistoryCache 

are made visible to the user application only when all previous changes (i.e., 

changes with smaller sequence numbers) are also visible. 

b. For a BEST_EFFORT DDS DataReader, changes in its RTPS Reader’s 

HistoryCache are made visible to the user only if no future changes have already 

been made visible (i.e., if there are no changes in the RTPS Receiver’s 

HistoryCache with a higher sequence number). 

10. The DDS user is notified by one of the mechanisms described in the DDS Specification 

(e.g., by means of a listener or a WaitSet) and initiates reading of the data by calling the 

take operation on the DDS DataReader. 
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11. The DDS DataReader accesses the change using the get_change operation on the 

HistoryCache.  

12. The get_change operation returns the CacheChange to the DataReader.  

13. The take operation returns the data to the DDS user. 

14. The RTPS Reader sends an AckNack message indicating that the CacheChange was 

placed into the Reader’s HistoryCache. The AckNack message contains the GUID of the 

RTPS Reader and the SequenceNumber of the change. This action is independent from the 

notification to the DDS user and the reading of the data by the DDS user. It could have 

occurred before or concurrently with that. 

15. The StatefulWriter records that the RTPS Reader has received the CacheChange and 

adds it to the set of acked_changes maintained by the ReaderProxy using the 

acked_changes_set operation. 

16. The DDS user invokes the return_loan operation on the DataReader to indicate that it 

is no longer using the data it retrieved by means of the previous take operation. This action 

is independent from the actions on the writer side as it is initiated by the DDS user. 

17. The DDS DataReader uses the remove_change operation to remove the data from the 

HistoryCache.  

18. The remove_change operation returns. 

19. The return_loan operation returns. 
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20. The DDS DataWriter uses the operation is_acked_by_all to determine which 

CacheChanges have been received by all the RTPS Reader endpoints matched with the 

StatefulWriter. 

21. The is_acked_by_all returns and indicates that the change with the specified ‘seq_num’ 

SequenceNumber has been acknowledged by all RTPS Reader endpoints. 

22. The DDS DataWriter uses the operation remove_change to remove the change 

associated with ‘seq_num’ from the RTPS Writer’s HistoryCache. In doing this, the DDS 

DataWriter also takes into account other DDS QoS such as DURABILITY. 

23. The operation remove_change returns. 

1.6.2 Publication 

The publication represents the sending side and can be described by the following 

properties: 

 Topic: a string label that uniquely identifies the distributed issues. 

 Type: a string label that identifies the issue’ data format to help the middleware 

in serialization and de-serialization process. 

 Strength and persistence: these two values allow subscription to arbitrate among 

issues of the same topic sent by multiple publishers. Strength expresses the 

relative priority of one publisher relative to another. And persistence indicates 

the time for which the issue remains valid after its publishing time. Subscription 
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receives issues from the strongest publication and accepts issues from a weaker 

publication when the issues of the stronger are expired. 

 Time to keep: is a value to specify how long to store new issues. New 

subscribers receive all issues that have not surpassed the publication’s time to 

keep period. 

 Publication mode: which specify when the publication should send new issues 

to subscribers.  

o Synchronous mode: issues are sent immediately and in the same context 

of the application thread. 

o Signaled mode: issues are sent immediately but by another thread 

provided by the middleware. This feature is important when the 

application thread is time-critical and cannot afford the non-

deterministic delay caused by making a network call. 

o Asynchronous mode: issues should not be sent immediately but stored 

temporarily and another middleware’s process sends all stored issues 

periodically.  

1.6.3 Subscription 

Subscription represents the receiving side in unidirectional communication. Subscription 

has the following properties: 

 Topic: to specify the issue to be received. 

 Type: to help the middleware to select the appropriate operations to serialize and 

de-serialize the issues. 
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 Minimum separation time: which specify the smallest time period between two 

issues that the receiving application can handle. Minimum separation is timing 

constraint that helps to control the issues flow. The middleware should not deliver 

any issue before the minimum separation time since the last issue. 

 Deadline: which is the maximum waiting time the receiving application can wait 

without new data. The middleware should notify the application when new issues 

do not arrive before deadline time. 

1.7 MMOG Classifications 

The classifications of MMOG type has many different definitions. The main definition of 

MMOG or MOG is to be able to support thousands or hundreds of thousands of players 

playing at the same time. 

Based on the type of the game, we can categorize the MMOG into: 

• Massively Multiplayer Online Role-playing Game (MMORPG). 

• Massively Multiplayer First-person Shooter (MMOFPS). 

• Massively Multiplayer Online Real-time Strategy Game (MMORTSG). 

• Massively Multiplayer Online Turn-based Strategy Game (MMOTBSG). 

• Massively Multiplayer Online Sports Game (MMOSG). 

• Massively Multiplayer Online Racing Game (MMORG). 



27 
 

• Massively Multiplayer Online Rhythm Game (MMORG). 

• Massively Multiplayer Online Management Game (MMOMG). 

• Massively Multiplayer Online Social Game (MMOSG). 

• Massively Multiplayer Online Bulletin Board Game (MMOBBG). 

MMOGs have two main categorizations based on the game time aspects. They are real time 

and turn based games. In real-time games, the time is kept continuously without any stop 

regardless of what the users are doing. This kind of games is usually considered to be more 

realistic because it reflects the real life. On the other hand, real-time games usually 

consume more resources than other categories during its operation. With the game time 

keeps running all the time, the demand of game calculations are surely higher.[2]. 

Turn based games is not a real-time game, it runs the game by giving each user time to 

make his decision about what to do. The best example of this type of game is the chess. In 

a chess game, one player can take an action at a time. Because of this mechanism, the use 

of turn based time system is not always a choice for many games, it is kind of limited type 

with these games like chess.[2]. 
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2 CHAPTER 2 

LITERATURE REVIEW 

Lately, MMOG has come to be as an online game that allows hundreds or thousands of 

players from all world wild to interact with each other at the same time. 

Because of the dramatic increase in the number of the online players, the classic 

implementation architecture is no longer appropriate for this kind of real-time situations, a 

scalable number of users, network bandwidth, high-quality graphics, reliable, fault-

tolerant, low-cost, load-balancing, and secured network. All this require a loosely coupled 

architecture to support evolution in Massive Multiplayer Online Game application. 

The need for the specific requirements of the online multiplayer game makes the well-

known protocols belong to TCP/IP family is very limited to be used to overcome all issues 

may be faced. Based on this fact, many researches have been done to come up with suitable 

protocols to provide the exact functionalities required and to eliminate any overhead that 

may affect the performance. 

It is assumed that a game service provider can have access to a number of servers located 

over the world, finding the most suitable way to partition the world into servers is a very 

hot topic on the subject of multiplayer online gaming. Choosing the locale servers in such 

a way that reduces the total interactive communication delay perceived by all users is the 

main objectives of many researches.[1].  
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Client-server model introduces a single way to handle thousands of users and point of 

failure to the game, by distributing the players over many servers remove this bottleneck, 

but require special synchronization techniques to provide a consistent game for all players. 

The classic synchronization methods are not optimized for the requirements of fast-paced 

multiplayer games. Using multiple copies of the game state and rollbacks is one way to 

deal with this kind of low-latency consistency.[10].  

Some efforts have been done to manage overall system power consumption while users 

playing online games, ARIVU is a special middleware tries to capture both longer possible 

sleep times and shorter ones for efficient power management, it also collects data about the 

status of the game based on already existing information.[11].  

The work has been done to minimize the energy consumption by adaptively varying 

resource consumption.  

Gendu is a middleware used to transform asynchronous remote writes into synchronous 

local operations using local locks only, to accomplish this, a consistency strategy consisting 

of three parts has been developed, Position-based, Asynchronous Remote-Write and Write 

operations. The main idea of this middleware is to transform the Locking systems into 

Lockless. This is because the lockless systems have very special properties over the locking 

systems such as simplicity, ideally and improved performance. The actual implementation 

Gendu meets the expected high-level design by implementing a cell-scape and a server 

network, and by enforcing the consistent communication protocol, all of which are 

encapsulated into Gendu's middleware. It manages the cells, the server network and all of 

the other consistency-specific behavior.[12].  
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Massiv middleware is a middleware used to shorten the implementation process of the 

distributed MMOGs. Furthermore, this middleware is implemented to run on more than 

one server in the worldwide. Therefore, and to make sure that these servers are consistent, 

it takes into account the issues of latency, security, and synchronization.[13].  

ZeroC Internet Communications Engine is a powerful middleware as Corba, and to avoid 

the complexity in the CORBA, ICE used many features to simplify this complicated cores 

in CORBA. This helps in MMOG maintenance and development, like the update of the 

software, protocols capability, and it supports Multilanguage.[6].  

Microforté is a BigWorld Technology includes a reliable, scalable and customizable, 

platform that can deal with thousands of thousands of users, it uses special tools to build 

the virtual globe, since it is a 3D based, it uses a special 3D engine. The main feature of 

the BigWorld server is that it can be reconfigured at runtime.[13].  

DoIT is a middleware that attempts to meet most of the required features for the MMOGs, 

it is slightly close to our design in one main feature, it is customizable, designer or 

developer can customize it easily. While still it does not use pub/sub model. It is an event 

driven model, since that it uses a message-oriented rather than an RPC architecture, 

because of this feature, it ensures to provide a smooth gaming states rather than 

blocking/waiting model for the updates from the server.[13].  

Cloud-DReAM is a cloud-based dynamic resource provisioning middleware; it 

automatically allocates resources from a cloud-computing provider whenever the current 

resources prove insufficient to handle the load imposed on the system. In addition, it 
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disposes of previously acquired resources when they are no longer necessary. This way, 

CloudDReAM allows game companies to deploy their own private server clusters without 

over–provisioning them, and resort to the services of a cloud provider when their own 

resources are not sufficient to handle the load. As a result, resources are used more 

efficiently and the costs of supporting the game are reduced, benefiting every stakeholder 

involved. Cloud-DReAM allows game infrastructures to be deployed conservatively and 

scale continuously according to runtime load, allowing game managers to pay for 

infrastructure according to demand.[14].  

The Lucid middleware affords different layers for the game architecture. One of the most 

important features is the use of the special protocol in an attempt to use advanced routing, 

but the model itself represented as a c/s model.[15].  

Atlas provides virtual globe platform based on either a c/s or a peer-server architecture. 

The virtual globe is divided among many servers. Atlas providing a special interface and 

different components to support management, replication control, scalability, mutual 

exclusion, and to balance the load.[3].  

The Real-Time platform middleware is slightly close to our design in its use of a pub/sub 

model for controlling the management issues. RTF handles the replication issue in the 

broadcasted objects shadow, if there is any replication it can handle it automatically. It uses 

the serialization model to pass the messages in an object-based messaging, even though the 

design is mainly organized toward server-based messaging.[5].  
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Colyseus is a middleware is also slightly close to our design, filtering data based on some 

specific constrains with regard to the management interest while it does not use the pub/sub 

model. The design built based on an interest range requests, such as an object discovery 

model should gather specific data at runtime constrained with some conditions, enhanced 

by a predictive and replica mechanisms.[16].  

Journey is a middleware architecture for massively multiplayer gaming, it attempts to 

address the ability to satisfy the MMOG fundamental requirement such as load balancing, 

failure discovery, game cheating, capability, and scalability by applying layers model. It is 

considered as a multilayer middleware.[7].  

Lamoth is a cloud middleware for MMOGs that provides an interface for in-game message 

dissemination. Lamoth handles the exchange of game messages between nodes by making 

use of an arbitrary number of off-the-shelve pub/sub servers deployed in the cloud 

depending on the game scenario. Lamoth used Redis, a popular ready-to-use open-source 

cloud middleware, which provides, amongst other things, efficient pub/sub capabilities. 

The evaluation shows that Lamoth allows the MMOG to scale to high numbers of players 

and can properly handle extremely demanding in-game situations if enough resources are 

provided[4].  

Many peer-to-peer architectures for massively multiplayer gaming have been proposed in 

the literature trying to minimize host traffic and accessing data, many middleware plugins 

used to transform the network into a hybrid architecture to partition some of the server 

tasks to the client nodes. The middleware appears as a transparent middle layer for the both 
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client and the server. It allows it to be modified without any significant changes in the client 

or server sides. 

In the client/server massively multiplayer online game architecture, client nodes 

communicate directly to the server where it hosts the game. Multiple users running the 

client nodes are allowed to communicate just with the server to be able to interact with 

each. The server preserves the state of the game, aware of every change in the virtual 

worldwide, while each client preserves the status of its local state, only aware of what 

happening in its area. 

When a user does an action, the client generates an event, and send it to the server. The 

server then processes the event and update the state based on the game logic, which is 

performed to the worldwide state. Moreover, the server should broadcast the changes to all 

clients in the same interest to modify it to the local states. This is called an update based 

massively multiplayer online game model. 

When the middleware broadcasted some of the jobs of the server to all connected peers, it 

should have similar jobs to the game's node. It needs kind of a state awareness, functionality 

to spread both changes and actions, the capability to produce the new state changes from 

specific actions, and the ability to keep the server’s status consistent with the middleware 

state.[17].  

Another peer-to-peer work aims to expand upon Homura and Net Homura frameworks, 

with a focus towards developing a unified deployment and networking system. Which 

combines Java Enterprise Edition (EE) 5/6 application technologies with low-level 
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networking support to provide a unified platform for the deployment and execution of both 

P2P and Client-Server based games, which can be analyzed within a real-world 

context.[18].  

 

 

Figure 2-1: Peer-to-Peer Architecture [18]. 

PKTown 2.0 is a third party peer-peer middleware, it is the second version of PKTown 1.0, 

and it is developed in order to solve old issues in version 1. The main contributions of the 

PKTown are to make the task of the server side is loosely coupled and remodeled them to 

be as simple-tasks, like Forward, NAT, and Meta Server. Furthermore, it lets each server 

to work in parallel, according to which area the users are located. In addition to that, it 

provides a solution for the distributed database to make them work in parallel, it splits the 

two main tables into sub stables and spread them to different servers of databases. With 

these features, the application will scale up to help thousands of users to be at the same 

time.[19].  
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The other side of this work is applying the neural network to make the work smarter and 

adaptive as in some cases it is required to change some QoS immediately at the runtime, 

Chapter 4 will explain more. 

Because of the increase in the number of the online players, the traditional implementations 

for the MMOG is no longer appropriate for this kind of real-time situations, a scalable 

number of users, network bandwidth, high-quality graphics, reliable, fault-tolerant, low-

cost, and load-balancing. This requires a loosely coupled architecture to support the 

evolution in the MMOG. 

Lin and Shen have proposed an algorithm called CloudFog, which is used the cloud 

computing as clouds can free players from huge requirements. They proposed a new node 

called supernode where this node connects the end user to the cloud.  

The cloud sends the data and the updated information to the supernodes, and then the 

supernodes generate the game streaming and stream it to the users. They have their own 

topology to select the most suitable supernode taking into account the QoS.[20]. 

Carter et al. have proposed a novel hybrid peer-to-peer platform and its requirements. They 

did a comparison with existing platforms to show how their work addressed the issues. 

They conclude that the combinations of grouping and topology are required in order to 

deduce the efficacy and to determine the gameplay scenarios.[21]. 

Carlini and Ricci have focused on the interest management problem in MMOG; they 

proposed a gossip-based work to a build a P2P overlay with the best effort. They tested 

their protocol on the game “Second life” and it showed very encouraging results.[22]. 
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Croucher and Engelbrecht have proposed a middleware for an existing MMOG client-

server architecture; it can transform the games network into a hybrid that delivers data 

between players and the server. If there is any change in the server side, the players will 

not be affected, just reconfigure the middleware.[18]. 

Weng and Wang used the artificial neural network to propose a dynamic resource 

allocation in the MMOG, they divided the method into two phases, the load prediction 

phase, and resource allocation phase, they collected the data, which includes the CPU, 

network load, and the memory. They have designed and implemented an ANN and an 

adaptive neural fuzzy (ANFIS) to detect and predict the suitable resource allocation based 

on each zone, their work shows that the ANN behaves quite better than the ANFIS.[23].  

Prasetya used the neural network to detect pot cheating on MMOG, the author showed that 

the ANN is potentially able to detect the pot, but it needs a proper training and input data 

to perform well. ANN can be used as an additional filter for the cheater, also the results 

show that ANN could be used to detect not only the pot cheater, but also another type of 

cheating, but it needs different models of ANN.[24].  

Gaspareto et al. applied ANN to deal with the speed cheating in the MMOG, they applied 

two different approaches, the multi-layer Perceptron network (MLP) and the focused time 

lagged network (FTLFN), it was possible to conclude that their utilization avoiding speed 

cheating in MMOG is possible, once good results were found in this work. The MLP 

network showed the best performance, where less than one percent of false positive were 

obtained.[25].  
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Nae, Iosup, and Prodan proposed a dynamic resource provisioning and data management 

resources, they proposed a prediction algorithm based on neural network, they tested many 

scenarios that focused on MMOG-specific properties and data center hosting policies. It is 

shown that the static resource provisioning is less efficient than the dynamic provisioning 

by 5 to 10 times.[26].  

Again, Nae, Prodan, and Fahringer presented a neural network prediction service, but this 

time for the management purposes in the MMOG, they focused on the first person shoot 

(FPS) games. Their approach was based on the distributing the game for sub-areas in a 

suitable size. The role of the neural network here is to adapt the entity counts accurately 

and quickly.[27].  

Gorlatch et al. proposed a load prediction platform that based on ANN, their approach 

differs from the others that the ANN realize the load balancing at a generic level, the system 

loads the balance at real time using the collected information of the application.[28].  

Shi et al. used a DR algorithm which is based on the ANN to predict and calculate more 

accurate readings about the player’s motion, they employed the Q-Learning  to the platform 

to decide the impact of the ANN on prediction, their results showed that their method 

decreased the data transfer rate, the network traffic, and improve the prediction 

accuracy.[29].  

Negrão et al. proposed a middleware called CloudDReAM used to monitor the load on the 

servers; it also can load the balance when it is reached to the provided threshold. 

CloudDReAM can use new resources if needed from the cloud provider.[14].  
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Chen et al. investigated that the network traffic analysis could be different when a bot is 

playing rather than the player, Bednar and Miller proposed a hybrid GRNN to get the same 

result by using less information and data. Their GRNN showed that the bots were identified 

correctly with 99% while the player only by 6%.[30]. 
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3 CHAPTER 3 

WORK OBJECTIVES 

Massively Multiplayer Online Game (MMOG) has become very popular; there are 

thousands of games built to be played online, where hundreds/thousands of users from all 

around the world can play at the same time for the same game. The hottest issue in the 

MMOG is the real-time (RT) service, where the players can share their game status in a 

real-time manner. The main need for the RT platform is to guarantee the quality of service, 

the platform should deliver a robust and excellent quality in terms of throughput, latency 

and all other technical requirements as in section 1.2, on besides, the service should be 

loosely coupled oriented to support the growth of MMOG application. 

We are presenting a new platform solution to deal with the real-time online gaming using 

the DDS middleware. RTinDDS and AIRTinDDS are real-time platforms based on the 

DDS middleware, this middleware can guarantee to provide the developers, designers, and 

end users a suitable platform to build their online real-time gaming and to deliver it in a 

robust manner for the end users. The platform able to allow designers to make the best 

decision for a specific situation. RTinDDS is a real-time platform that has been 

implemented by choosing the best QoS in the DDS middleware for the default situation 

(stable situation) to deliver the best performance. We have implemented a game we call it 

Plane Model Simulation (PMS). After running our game scenario. Figure 3-1, we have 

chosen the best QoS and we applied it on the PMS. 
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Figure 3-1: PMS over DDS middleware, two players are playing. 

PMS shows a very robust real-time platform, the results show that RTinDDS in PMS 

delivered a very good QoS in terms of reliability, throughput, and latency. 

The second part of the work is by making RTinDDS smart enough to adapt itself when any 

issue occurred at runtime; we have implemented a new platform called AIRTinDDS, this 

platform can adapt and correct itself once an issue occurred. This is done by choosing the 

best QoS in that situation using artificial intelligent (AI). Sometimes, it is needed to change 

some QoS at runtime to accommodate the new unexpected changes. We have applied the 

AIRTinDDS algorithm in the RTI Connext simulation; it shows a very robust and adaptive 

platform. 

We can list our objective as below. 

 The main objective is to prepare and build a full infrastructure (platform) to work 

with the massively multiplayer online gaming (MMOG) which we can prepare and 
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deliver it as a provider for anyone needs to work with MMOG systems under DDS 

middleware. 

 The main aim of DDS middleware is to deliver the correct data at the right place at 

the precise time, even between asynchronous publishers and subscriber. We used 

DDS to guarantee to deliver correct data at a correct time. 

 Build a simulation, plane model simulation (PMS) to prove that the used QoS 

supported by DDS is working as expected. 

 Use the suitable QoS to deal and resolve all issues faced by the network to deliver 

a real-time behavior  

 Apply the AI (Artificial intelligent) to make the system smart to resolve any 

unexpected issue or behavior by itself. 
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4 CHAPTER 4 

DDS MIDDLEWARE ARCHITECTURE 

 

The main aim of DDS middleware is to deliver the correct data to the right place at the 

precise time, even between asynchronous publishers and subscriber. The DDS Middleware 

is a middle layer that attempts to hide all complex detail of the OS for our MMOG platform. 

The beauty of this middleware is that it provides APIs for many different languages so you 

can use whatever supported programming languages to build your own application. All 

low-level details such as the connection protocols, nodes discovery, IP broadcasting, data 

managements, special formats, QoS, etc., are managed by this DDS middleware. Figure 

4-1. 

 

Figure 4-1: DDS Middleware 

Usually, real-time applications have their own requirement to model their communication 

protocols as a central data exchange, where nodes publish data which is then available to 

the other remote nodes that are waiting for. Real-time applications can be found in many 
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areas, it could be found in industrial automation, sensor network, simulation, network 

management systems, distributed control, and telecom control. Generally, any application 

needs information spreading is a candidate for this kind of network architecture. As in our 

work we use it to develop MMOG. 

Predictable distribution of information with very low overhead is a primary concern in 

these real-time systems. Because of it is not feasible to add as much as infinite resources, 

it is important to be able to decide what is the available resources and provide them policies 

makes the middleware able to assign the resources to the highest important requirements. 

This need leads to the ability to control Quality of Service properties and values that affect 

resource utilization, overhead, and predictability. 

The necessity to scale the publisher and subscribers to hundreds or hundreds of thousands 

in a robust manner is also an important need. This is actually not only affects the scalability 

but also the flexibility: on many of these systems, applications can be added with any 

necessity to reconstruct the whole system. Data-centric communications architecture 

decouples publishers from subscribers; the less coupled the senders and the receivers are, 

the easier these extensions become. 

Distributed shared memory is a traditional model that allows data-centric exchanges. 

However, this kind of models is not able to implement efficiently over a network and does 

not afford the needed flexibility and scalability. Therefore, another model, the Data-Centric 

Publish-Subscribe (DCPS) model, has become very common in many real-time systems. 

This model builds on the idea of a “global data space” that is accessible to all concerned 

applications. Applications that want to share information to this "global data space" 
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announce their intent to become “Publishers.” On the other hand, applications that want to 

read this data space announce their intent to become “Subscribers.” Then, each time this  

Publisher application posts new data into this “data space,” the middleware propagates the 

information and the data to all interested applications (Subscribers)[31]. 

4.1 Publish-Subscribe model 

Because of the complexity of these days’ applications, the architecture for servers or nodes 

is no longer acceptable to be one single machine, the trends nowadays to make the nodes 

be distributed across many places. As program needs became more complex, some parts 

of the program were distributed to separate systems. Nowadays applications often utilize 

dozens to thousands of single computers that interact with each other. These systems are 

using synchronous communication and point-to-point connections in most cases. As a 

result, new problems like limited scalability, fragile reliability, or restricted flexibility arise. 

Further, this approach led to difficult large-scale application development as the aspects of 

communication were dominating. To cope with the issues mentioned, Pub/Sub systems 

have been developed. The main idea behind Pub/Sub is, to loosely couple the whole system 

using a messaging service component (or event notify- cation service). This is achieved by 

decoupling the creators of messages, referred to as publishers, from the consumers of these 

messages, referred to as subscribers. Publishers and subscribers do not require any direct 

mutual knowledge and act independently. A publisher offers a service for which 

subscribers can express their interest in. In the case of new data, a new message is created 

by the publisher and propagated automatically and asynchronously to all interested 

subscribers via the event notification service. 
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DDS uses the pub/sub model for discovery and management of data flows between the 

entities of the DDS, including publisher, subscriber entities, services of durability, and 

databases. Many other patterns are built on this powerful model. Figure 4-2. 

 

Figure 4-2: Architectural view of Publisher-Subscriber 

4.2 QoS Architecture for MMOG 

The DDS depends on the use of QoS. A QoS can be defined as a set of characteristics that 

controls some aspect of the behavior of the DDS Service. QoS is comprised of individual 

QoS policies.[31]. 

We discuss the suitable QoS of DDS used to improve MMOG and get the best effort of the 

network with regard to its reliability, availability, scalability, robustness, and congestion 

issues. 

Many QoS implemented in the DDS middleware to make it as adaptive as possible in a 

different situation depends on the application. In MMOG, by changing a specific QoS, that 

can affect directly to the performance of the MMOG application if used wisely. 
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4.2.1 Durability 

The decoupling between DataReader (player reads data) and DataWriter (player writes 

data) offered by the Pub/Sub model allows the system to write data even if there are no 

current subscribers on the network. Moreover, a subscriber who joins the system after some 

data has been written could potentially be interested in accessing the most current values 

of the data as well as some history. This QoS policy controls whether the service will 

actually make data available to late-joining players. Note that although related, this does 

not strictly control what data the game will maintain internally. That is, the game may 

choose to maintain some data for its own purposes and yet not make it available to late-

joining players if the DURABILITY QoS policy is set to VOLATILE.[31]. 

Sometimes it could be a case where the new joining player needs some old information 

about the game while it is already started for a while, this QoS can handle this situation, 

and it would send all old required information to the new joining ones. 

4.2.2  Presentation 

This policy controls the extent to which changes to data instances can be made dependent 

on each other and also the kind of dependencies that can be propagated and maintained by 

the game. 

The Presentation QoS can be set with different flavors, the setting of coherent_access 

controls whether the game will preserve the groupings of changes made by the publishing 

application by means of the operations begin_coherent_change and end_coherent_change. 
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The setting of ordered_access controls whether the game will preserve the order of 

changes. The granularity is controlled by the setting of the access_scope.[31]. 

We use this QoS to handle the way of how the information should be delivered to the 

joining players, some data could be delivered as a group and some as an individual, it 

depends on the type of the data. 

4.2.3 Deadline 

This QoS policy is useful for cases where the data is expected to have each instance updated 

periodically. On the publishing side, this setting establishes a contract that the application 

must meet. On the subscribing side, the setting establishes a minimum requirement for the 

remote publishers that are expected to supply the data values. 

When the Service ‘matches’ a DataWriter and a DataReader it checks whether the settings 

are compatible (i.e., offered deadline period<= requested deadline period) if they are not, 

the two entities are informed (via the listener or condition mechanism) of the 

incompatibility of the QoS settings and communication will not occur. 

Assuming that the reader and writer ends have compatible settings, the fulfillment of this 

contract is monitored by the Service and the application is informed of any violations by 

means of the proper listener or condition. 

The value offered is considered compatible with the value requested if and only if the 

inequality “offered deadline period <= requested deadline period” evaluates to ‘TRUE.’ 
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The setting of the DEADLINE policy must be set consistently with that of the 

TIME_BASED_FILTER. For these two policies to be consistent the settings must be such 

that “deadline period>= minimum_separation.”[31]. 

We use this QoS to detect when a link is overloaded, a network congestion occurs and 

affects the packet loss and the latency. In DDS middleware, a deadline quality of service 

can be used to control and detect the congestion in the network. 

4.2.4  Latency-Budget 

This policy provides a means for the game to indicate to the middleware the “urgency” of 

the data-communication. By having a non-zero duration the Service can optimize its 

internal operation. 

This policy is considered as a hint. There is no specified mechanism as to how the service 

should take advantage of this hint. 

The value offered is considered compatible with the value requested if and only if the 

inequality “offered duration <= requested duration” evaluates to ‘TRUE.’[31]. 

We used this QoS, to determine if the connection is stable and can handle the game load 

or not, it can be used to send the players a message to tell them that your connection is not 

stable; you can reconnect to get a better connection.  
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4.2.5  Reliability 

This policy indicates the level of reliability requested by a DataReader or offered by a 

DataWriter. These levels are ordered, BEST_EFFORT being lower than RELIABLE. A 

DataWriter offering a level is implicitly offering all levels below. 

The setting of this policy has a dependency on the setting of the RESOURCE_LIMITS 

policy. In case the RELIABILITY kind is set to RELIABLE the write operation on the 

DataWriter may block if the modification would cause data to be lost or else cause one of 

the limits in specified in the RESOURCE_LIMITS to be exceeded. Under these 

circumstances, the RELIABILITY max_blocking_time configures the maximum duration 

the write operation may block. 

If the RELIABILITY kind is set to RELIABLE, data-samples originating from a single 

DataWriter cannot be made available to the DataReader if there are previous data samples 

that have not been received yet due to a communication error. In other words, the service 

will repair the error and re-transmit data samples as needed in order to reconstruct a correct 

snapshot of the DataWriter history before it is accessible by the DataReader. 

If the RELIABILITY kind is set to BEST_EFFORT, the service will not re-transmit 

missing data samples. However, for data- samples originating from any one DataWriter the 

service will ensure they are stored in the DataReader history in the same order they 

originated in the DataWriter. In other words, the DataReader may miss some data samples 

but it will never see the value of a data object change from a newer value to an order 

value.[31] 
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To achieve a reliable system, a Reliable QoS policy can provide settings in different flavors 

to track the system reliability. It can ignore some unimportant data while it can ensure to 

deliver the critical ones. 

4.2.6 Transport-Priority 

The purpose of this QoS is to allow the application to take advantage of transports capable 

of sending messages with different priorities. 

This policy is considered a hint. The policy depends on the ability of the underlying 

transports to set a priority on the messages they send. Any value within the range of a 32-

bit signed integer may be chosen; higher values indicate higher priority. However, any 

further interpretation of this policy is specific to a particular transport and a particular 

implementation of the Service. For example, a particular transport is permitted to treat a 

range of priority values as equivalent to one another. It is expected that during transport 

configuration the application would provide a mapping between the values of the 

TRANSPORT_PRIORITY set on DataWriter and the values meaningful to each transport. 

This mapping would then be used by the infrastructure when propagating the data written 

by the DataWriter. 

This QoS used to prioritize sending the information to the players. High priorities could be 

set for the hot data while lower priority for usual data.  
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4.2.7 History 

This policy controls the behavior of the Service when the value of an instance changes 

before it is finally communicated to some of its existing DataReader entities. 

If the kind is set to KEEP_LAST, then the Service will only attempt to keep the latest 

values of the instance and discard the older ones. In this case, the value of depth regulates 

the maximum number of values (up to and including the most current one) the Service will 

maintain and deliver. The default (and most common setting) for depth is one, indicating 

that only the most recent value should be delivered. 

If the kind is set to KEEP_ALL, then the Service will attempt to maintain and deliver all 

the values of the instance to existing subscribers. The resources that the Service can use to 

keep this history are limited by the settings of the RESOURCE_LIMITS QoS. If the limit 

is reached, then the behavior of the Service will depend on the RELIABILITY QoS. If the 

reliability kind is BEST_EFFORT, then the old values will be discarded. If reliability is 

RELIABLE, then the Service will block the DataWriter until it can deliver the necessary 

old values to all subscribers.[31]. 

This QoS used where some important data should be delivered even not in the real time 

manner; this QoS can handle such these cases. It can save some data in the history to be 

delivered when the player is ready. This can ensure a reliable and a robust service. 
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4.2.8 Resource-Limits 

This policy controls the resources that the service can use in order to meet the 

requirements imposed by the application and other QoS settings. 

If the DataWriter objects are communicating samples faster than they are ultimately taken 

by the DataReader objects, the middleware will eventually hit against some of the QoS-

imposed resource limits. Note that this may occur when just a single DataReader cannot 

keep up with its corresponding DataWriter. The behavior, in this case, depends on the 

setting for the RELIABILITY QoS. If reliability is BEST_EFFORT, then the service is 

allowed to drop samples. If the reliability is RELIABLE, the Service will block the 

DataWriter or discard the sample at the DataReader in order not to lose existing samples. 

This QoS used to determine if the joining player has the minimum required resources to be 

able to launch the game, The system sends him a message to inform him that these 

resources you are using are not good enough to join the game. 

We have chosen the suitable QoS of DDS to improve PMS and get the best effort of the 

network with regard to its reliability, availability, scalability, robustness, and congestion 

issues. 
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5 CHAPTER 5 

PROBLEM STATEMENT AND PROPOSED SOLUTION 

Because of the dramatic increase in the number of the players in online gaming, the classic 

implementation architecture is no longer appropriate for this kind of real-time situations, 

as it may raise scalability and interdependence issues [1][32]. A scalable number of users, 

network bandwidth, high-quality graphics, reliable, fault-tolerant, low-cost, load 

balancing, and security. All these features require a loosely coupled architecture to support 

the evolution of improvement in the Massive Multiplayer Online Gaming application. 

The need for the specific requirements of online multiplayer games makes the well-known 

protocols belong to TCP/IP family is very limited to be used to overcome all issues may 

be faced [1]. E.g. peer to peer consumes a lot of bandwidth. It is also less reliable in terms 

of security as global game state is stored in local peer. So malicious peers can modify the 

game state and propagate to other peers [1]. Based on this, many researches have been done 

to come up with suitable protocols to provide the exact functionalities required and to 

eliminate any overhead that may affect the performance. 

A DDS middleware is one of the most suitable solutions to deal with this kind of 

applications, DDS middleware ensures to deliver a very high-performance, scalable 

application, reliable, robust, high availability rate and low congestion issues. This is can be 

done by using the QoS policies integrated with this DDS middleware. 
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DDS middleware specifies a very powerful QoS that can be used in a smart way to make 

the MMOG powerful compared to other platforms. 

In this work, we make a comparative and an experimental study to show the power of this 

middleware in the MMOG field. We create a complete infrastructure contains the suitable 

QoS and the suitable configuration in different situations depends on the need of the game, 

this will help the designers of the game, the developers and for sure the end users. 

There are many quality of services implemented in the DDS middleware used to make 

adaptive and robust behavior for different situation depends on the application. In MMOG, 

there are main QoSs that can affect directly to the performance of the MMOG application. 

We can improve the performance as we use them wisely. 

5.1 Durability 

As described the benefit of this QoS in the previous section, we set the suitable value based 

on the game scenario. This will be shown in details in chapter 6. 

Durability = TRANSIENT_LOCAL 

History = KEEP_LAST 

Or  

History = KEEP_ALL 

Two types of design, this can be chosen based on the game scenario, Chapter 6 will explain 

scenarios and QoS profiles. 
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5.2 Presentation 

This QoS can be set as follows: 

Presentation = INSTANCE 

Coherent_access = true and order_access = true in different situations depends on the 

configuration. 

In the case of sending information data to the players, Coherent_access = true and 

order_access = false could be used. And on the other hand, if orders or actions have to be 

sent, then Coherent_access = false and order_access = true could be used. 

5.3 Deadline 

This QoS should be set a suitable amount of time, based on the game configuration and 

scenario; it could be changed from game to game.  

If there is no data sent during this deadline period, we can detect that there is an issue 

(congestion) on the network. 

5.4 Latency-Budget 

This QoS policy is used to determine whether the connection is stable and can handle the 

game load or not, it can be used to send a message to the player to inform that your 

connection is not stable, you can reconnect to get a better connection.  

Latency-Budget = ‘maximum acceptable delay’ based on the game configuration. In this 

work 400ms is used. 
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5.5 Reliability 

Scenarios could be best effort or reliable. 

Reliability = RELIABLE and in some cases, it could be Reliability = BEST_EFFORT 

5.6 Transport-Priority 

High priorities could be set for the hot data while lower priority for usual data.  

Transport-priority = 100 for hot data and Transport-priority = 10 for ordinary data 

5.7 History 

This QoS can save some data in the history to be delivered when the player is ready. This 

can ensure reliable and robust service. 

History = KEEP_LAST with depth=100, the depth can be changed based on the 

configuration. 

Or  

History = KEEP_ALL 

5.8 Resource-Limits 

A warning message could be sent to the player to inform him that the resources you use 

are not good enough to join the game. 
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5.9 Proposed algorithm 

Figure 5-1, Figure 5-2 show the infrastructure of RTinDDS/AIRTinDDS implementation 

for the MMOG/PMS. Seven topics have been implemented, as we believe these topics will 

cover all required data in the MMOG/PMS context. 

1- Instruction Topic (the main topic), this topic used to send the instructions and orders 

between the players, e.g. location updates, levels, … 

2- Configuration Topic, this topic used to update some configuration related to the 

shape, color, size, etc. 

3- Score Topic, this topic used to deal with the scores of the players. 

4- Game Status Topic, this topic used to show the status of the game, e.g. start, restart, 

stop, exit, etc. 

5- Interest management Topic, this topic used to specify which objects will be 

interested between the players. 

6- Location topic, description of object's location. 

7- Velocity, Obtain object's current velocity. 

 

Figure 5-1: DDS infrastructure. 
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Where each topic has its own QoS configuration based on the type of the topic, Figure 5-2 

shows the hierarchy of the designed model. 

 

Figure 5-2: The hierarchy of the designed model 

 

As all these QoS have been set in the work, the result shows that the DDS middleware is a 

suitable solution to deal with the MMOG application. DDS middleware ensures to deliver 

a very high-performance, scalable application, reliable, robust, high availability rate and 

low congestion issues. This can be done by using the mentioned QoS policies with their 

suitable values integrated with the DDS middleware. 

An experimental study has been done to show the power of this middleware in the 

MMOG field. A complete infrastructure has been implemented that contains the suitable 

QoS and the suitable configuration in different situations depends on the need of the 

game, The proposed solution will help the designer of the game, the developers and for 

sure this will reflect to the end users. 
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5.10 Proposed algorithm for RTinDDS 

This algorithm has been applied on the PMS. Any issue can be detected and resolved by 

changing the suitable QoS in that situation. 

 

Figure 5-3: RTinDDS Algorithm flowchart 

At the starting of PMS, the system read the default QoS file which contains all default 

values for the required QoS based on the scenario. While running PMS for a long time, 

sometimes the system read some warnings and hints that informs us that the PMS could 



60 
 

go in an unstable state (Deadline QoS sends receives call-back messages from the 

subscriber as a warning, Latency-Budget, and Resource-limit do the same), the system 

keeps checking these messages and warnings and do the required changes with regards to 

the suitable QoS based on that situation. 

The system logs that issue in a log file, then define the issue and chose the corresponding 

QoS that fixes that issue. All this handled at run time while the game is running. The 

following is a pseudo code for this algorithm. 

5.10.1 RTinDDS Proposed Solution  

 

Initial state - Set default QoS for the system 

While  running/joining player  

 if an error has been detected: error = true 

  Log the error for later checking 

  Define the issue and the cause 

  Choose the corresponding QoS with the defined issue 

  Reconfigure the middleware 

 If error = false 

  Log the transaction to keep track the system 
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As we wanted to make PMS adaptive to any issue at runtime, and as mentioned in the 

above sections, we come up with the second part of the work, which is AIRTinDDS. A 

new algorithm has been developed based on Artificial Neural Network (ANN) to make 

the PMS smart enough to adapt itself.  

The following algorithm is applied to the experimental work. The AIRTinDDS detects if 

there is a specific issue and solve it with its corresponding solution by changing the suitable 

QoS using the ANN. Figure 5-4. 
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Figure 5-4: AI Algorithm (AIRTinDDS) flowchart 

 

The above flowchart shows that the system now has its own capability to adapt itself to 

any unexpected behavior. The system trained in good circumstances to make it, as it is 

the stable system. Now, an error AI detector used to detect any error based on what the 

system learned. The algorithm can reconfigure the middleware with the new suitable QoS 

based on the error logging setup. 

The following is the new pseudo code for the AIRTinDDS. 



63 
 

5.10.2 Algorithm Proposed Solution  

 

Initial state - Set default QoS for the system 

While  running/joining player  

 if AI detect an error: error = true 

  Log the error for later checking 

  Define the issue and the cause 

  Choose the corresponding QoS with the defined issue 

  Reconfigure the middleware 

 If error = false 

  Log the transaction to keep track the system 

From the pseudo code above we can notice that the AI unit can detect any error while the 

player is joining, when an error occurs, The AI unit can define the type of the issue and 

define the cause, once this is done, AI can tell what is the best QoS needs to be changed. 

When all this is happening, PMS can reconfigure itself with the new QoS values at 

runtime. 
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6 CHAPTER 6 

EXPERIMENTAL SETTINGS/IMPLEMENTATION AND 

RESULTS 

In this chapter, we describe the environment and methodology we use to perform the 

experiments. The goal of the experiment is as below: 

• Evaluate and compare between both RTinDDS and AIRTinDDS in our PMS. 

• Evaluate the feasibility of using DDS middleware in MMOG context. 

• Compare results while the number of players increases, test the scalability. 

• Prove that AIRTinDDS can adapt itself. 

• Prove that RTinDDS/AIRTinDDS can work on real-time manner. 

• Set different scenarios with different profiles, and record the observations. 

In this section, we evaluate the performance of the proposed solution by implementing a 

game, Plane Model Simulation (PMS) and apply the algorithms on it. We carried the 

experiment using the following software and monitor tools as in Table 6-1. 
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Table 6-1: Tools and Programs 

Tool Version Use 

Eclipse Java Mars Mars Release (4.5.0) To implement the game based on 

the DDS middleware and the 

suitable QoS 

RTI Connext 5.1.0 Real Time 

Wireshark 1.2.3 Used to evaluate the proposed 

experiment. 

RTI Perftest  

 

5.2.0 Combined Latency and 

Throughput Performance Test 

NeurophStudio 2.92 Java neural network framework 

6.1 Experiment setup and Performance Metrics 

We discuss the result of applying our suggested QoS in the DDS middleware, and how it 

improved the performance of the MMOG system. It shows that it gets the best effort of the 

network concerning its reliability, availability, scalability throughput, and latency. 

These charts below show the latency for publish/subscribe messaging in applications. 

Latency was measured, in microseconds, by having the consumer (DDS DataReader) echo 

messages back to the producer (DDS DataWriter). This allowed round-trip latency to be 

measured on the sending machine, avoiding time synchronization issues. Figure 6-1 
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Figure 6-1: PerfTest echo requests/replies 

As shown in Figure 6-2, this is the throughput graph for applying different data payload on 

the same game setup for PMS; this shows the throughput for the publisher/subscriber nodes 

on the network while running the game. 

We have repeated the simulation (running the game and play our PMS) six times and each 

time we increased the load exponentially, we started by sending data load 32 bytes and 

ended up by sending 1024 bytes. 

 

Figure 6-2:  PMS Throughput 

By applying different scenarios and different data load, the throughput keeps showing a 

very good result based on the QoS setup. 
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The results show that the system is always available where there is no such failure recorded, 

also no packet loss for those topics where we assigned their priority to be the highest. This 

proved the availability and the reliability for our MMOG platform. 

We repeat the experiment with different data size set, the results keep showing that each 

time we doubled the data load; we got an increased throughput without any loss in the 

packets. Figure 6-3. 

 

Figure 6-3: Data load Vs. Throughput 

Figure 6-4 shows the average number of packets per seconds where we doubled the 

transmitted data and repeated seven times. It shows that there is no packet loss, whenever 

the data load increased, the Avg. packet increased. 
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Figure 6-4: Data load Vs. Avg. packet/sec 

On the other hand, we have measured the latency for PMS, as mentioned earlier, we used 

a perfTest tool powered by RTI  DDS middleware, this tool allows us to measure the round 

trip time as it sends an echo requests with timestamp and waits for the echo replies with 

the same timestamp and then at the publisher side, it calculates the latency by subtracting 

the timestamps on the same machine. Figure 6-5 

 

Figure 6-5: PMS Latency 

We can notice from Figure 6-5 that we can guarantee by 99% that the latency is equal or 

less than 4724 microseconds. 
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However, we were not able to focus on the scalability in our PMS experimental work, even 

though we sent more than million sample per the running time (few minutes), so we have 

carried out another experimental work using RTI Connext (platform compliant with the 

Data Distribution Service (DDS) standard) to allow thousands of players to join the game 

with the same QoSs we have already chosen for the experiment work. 

As we mentioned in chapter 5 we set 7 topics to be published in our PMS, our experiment 

shows that these seven topics can cover all data needed to make the PMS stable and works 

as expected. We have carried out our work with the following configuration. Table 6-2. 

Table 6-2: Configuration table  

Topics LT VT IT IntT CT ST GST 

Frequencies 2 2  1 2 0.5 0.5 1 

Simulation 

Period 

~4 hours 

Number of sent 

samples per 

second 

~1000 samples/sec 

Number of 

pub/sub per 

simulation period 

~10,000 

Topic size 65KB 

Avg. data 

sent/sec 

65MB 

We've calculated some important statistics. And based on the algorithm and the choice of 

the QoS, We can ensure that the experiment has shown a robust QoS configuration with 

very high throughput with very low latency. 

Table 6-3: Topics statistics 

Topics Mean 

Latency µ-sec 

median 

latency µ-sec 

std latency 

µ-sec 

max latency 

µ-sec 

min latency 

µ-sec 
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LoctionTopic 2.40  2.40 637 2.42 2.38 

VelocityTopic 84.2 84 163 84.2 84 

InstructionTopic 84.2 84 163 84.2 84 

IntrestTopic 84.2 84 163 84 84 

ConfigTopic 90.8 91 953 91 91 

ScoreTopic 90.8 91 953 90.8 90 

GameStatusTopic 2.41 2.4 476 2.41 2.4 

max latency value 91 µ-sec 

min latency value 2.38 µ-sec 

 

Table 6-4: Network statistics 

   Packets:  1000000 

   Avg. packets/sec:  9718 

   Avg packet size:  485.878 bytes 

   Avg Mbps:  40 

 

We address the performance evaluation for DDS QoS by carried out an experimental work 

and as mentioned above we have implemented a Plane model simulation (PMS) where 

many pub/sub-nodes can join and play the game. 

We calculated the average throughput by changing the data load each time; we ran the 

game many times and recorded the changing in the number of bytes per second while it is 

changed as the data load changed. The results show a very high throughput on the other 

side, a very low latency. In addition to that, we have carried out another experimental work 

where we wanted to prove the ability of our proposed platform to scale the number of 

nodes. We set the QoS to be exactly the same as in our PMS, we were able to scale the 
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number of nodes as there was a 10000 publish/subscribe players playing at the same time 

on different platforms, the results show also a very high throughput with very low latency. 

 

Figure 6-6: latency per each topic 

 

As shown in Table 6-3, we have calculated the max latency achieved by all topics, it shows 

that IntrestTopic shows the max latency and it is 90 µ-sec. As it is the hot topic in the 

massively online gaming. The other topics show very similar low latencies. Figure 6-7. 



72 
 

 

Figure 6-7: latency per each topic 

We tried a couple of scenarios to assure that our PMS still afford a very high throughput 

with low latency.  

In the other side of our work, the AIRTinDDS, this platform where it has, an AI module 

used to adapt and reconfigure the system from any unexpected behavior. 

6.2 Experiment setup for AIRTinDDS 

In this section, we discuss and compare the result of applying our suggested QoS in the 

DDS middleware (PMS) with before and after applying the AI algorithm. It shows that it 

gets the best effort of the network concerning its throughput, latency. In addition, it shows 

that after applying AI algorithm, we get a better performance in 12.11%. 
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As shown in Figure 6-8 (a), this is the throughput graph for unstable RTinDDS (we made 

our systems unstable by flood the network and by unexpected cut made on purpose) by 

applying different data load on the same game setup; this shows the throughput for the 

publisher/subscriber nodes on the network. 

By applying different scenarios and different data load, the throughput keeps showing a 

very good result based on our network configuration. 

(a)                                                                             (b) 

 

Figure 6-8: unstable RTinDDS (a) Vs AIRTinDDS (b) throughput 

Figure 6-8 (b) shows the throughput for our network after applying the AIRTinDDS 

algorithm. 

It is clear from the Figure 6-9 that the throughput is higher in AIRTinDDS than in RTinDDS 

(with unstable circumstances) 
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Figure 6-9: AIRTinDDS vs (unstable) RTinDDS 

Figure 6-9 shows that after applying AIRTinDDS, the throughput is increased by 12.11%. 

As we measured the throughput, we also measured the latency to see the different 

between unstable RTinDDS and AIRTinDDS. Figure 6-10. 

 

Figure 6-10: RTinDDS vs. AIRTinDDS latency 

Figure 6-10, show that after applying AIRTinDDS, the latency improved by 14.19%. 
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6.3 Experiment scenarios: 

We tried a couple of scenarios to assure that our PMS still afford a very high throughput 

with low latency. 

6.3.1 Scenario 1: 

Table 6-5: Configuration Scenario 1 

Topics LT VT IT IntT CT ST GST 

Frequencies 2 2  1 2 0.5 0.5 1 

Simulation 

Period 
~4 hours 

Number of sent 

samples per 

second 

~500 samples/sec 

Number of 

pub/sub per 

simulation period 

50 

Topic Size 65KB 

 

In this scenario, we made changes across the topics frequencies, as we considered that some 

states or conditions we have a higher priority for some topic over the others. In addition to 

that, we played with the number of sent topics as we increased the number of pub/sub for 

this scenario. We calculated the average throughput by changing the data load each time; 

we ran the game many times and recorded the changing in the throughput while the data 

load changed. The results still show a very high throughput on the other side, a very low 

latency with zero loss packet. Figure 6-11. 
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Figure 6-11: Throughput (scenario 1) 

We measured the latency in this scenario; we found that the max latency and the min 

latency was as follows. Table 6-6 

Table 6-6: latency scenario 1 

max latency value 4724 µ-s 

min latency value 138 µ-s 

 

 

Figure 6-12: Latency (scenario 1)  
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6.3.2 Scenario 2: 

 

Topics LT VT IT IntT CT ST GST 

Frequencies 1 1 1 1 1 1 1 

Simulation 

Period 

~4 hours 

Number of sent 

samples per 

second 

~700 samples/sec 

Number of 

pub/sub per 

simulation period 

100 

Topic size 65KB 

 

In this scenario, we made changes across the topics frequencies and the number of pub/sub 

per running period, as we considered in this case that all topics have the same priority, no 

one has a higher priority than other does. In addition to that, we played with the number of 

sent topics as we increased the number of pub/sub for this scenario. We measured the 

average throughput by changing the data load each time. The results still show a very high 

throughput, and on the other side, a very low latency with zero loss packet. Figure 6-13, 

Figure 6-14. 
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Figure 6-13: Throughput (scenario 2) 

 

Table 6-7: latency scenario 2 

max latency value 5249 µ-s 

min latency value 284 µ-s 

 

Figure 6-14: Latency (scenario 2) 
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6.3.3 Scenario 3: 

 

Topics LT VT IT IntT CT ST GST 

Frequencies 3 3 1 2 1 1 2 

Simulation 

Period 
~4 hours 

Number of sent 

samples per 

second 

~2000 samples/sec 

Number of 

pub/sub per 

simulation period 

150 

Topic size 65KB 

 

In this scenario, we have increased the priority for location, velocity, and interest 

management topics, as we believe in this scenario; we have a very high frequency for the 

location and velocity as well as interest management. This kind of configuration fits those 

games that need to share the velocity and the location of the objects, such as race car, flight 

models. (Any race games). 

In addition to that, we changed the number of sent topics as we increased the number of 

pub/sub for this scenario. We measured the average throughput by changing the data load 

each time. The results still show a very high throughput, and on the other side, a very low 

latency with zero loss packet. Figure 6-15, Figure 6-16. 
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Figure 6-15: Throughput (scenario3) 

 

Table 6-8: latency scenario 3 

max latency value 5921 µ-s 

min latency value 327 µ-s 

 

 

Figure 6-16: Latency (scenario 3) 
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6.3.4 Scenario 4: 

 

Topics LT VT IT IntT CT ST GST 

Frequencies 3 1 1 6 1 1 1 

Simulation 

Period 
~4 hours 

Number of sent 

samples per 

second 

~3000 samples/sec 

Number of 

pub/sub per 

simulation period 

200 

Topic size 65KB 

 

In this scenario, we have increased the priority for the Interest management topic (IntT), as 

we considered this scenario to be as we have a very hot data (shared environment. Where 

the other topics still send their samples in low frequency.  This kind of configuration fits 

those games that need to share specific environment (shapes, colors, existing objects, static 

objects…etc.). 

In addition to that, we changed the number of sent topics as we increased the number of 

pub/sub for this scenario. Again, we measured the average throughput by changing the data 

load each time. The results still show a very high throughput, and on the other side, a very 

low latency with zero loss packet. Figure 6-17, Figure 6-18. 
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Figure 6-17: Throughput (scenario 4) 

 

Table 6-9: latency scenario 4 

max latency value 9428 µ-s 

min latency value 4195 µ-s 

 

 

Figure 6-18: Latency (scenario 4) 
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All previous scenarios (scenario 1,2,3 and 4) have been done under the standard QoS we 

have chosen, we can conclude that in all scenarios, the throughput keeps showing a very 

good result, as it keeps growing without any packet loss. In very reasonable latency. Figure 

6-19, Figure 6-20. 

 

Figure 6-19: Throughput (All scenarios ) 

 

Figure 6-20: Latency (All scenarios) 
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The second part of our experimental work using different profile by repeating our scenarios 

with changes in QoS. We have changed some critical QoS and we observe the results. 

6.4 Experiment QoS Profiles 

Configuration Table 6-10 used for all profiles. 

Table 6-10: configuration table 

Topics LT VT IT IntT CT ST GST 

Frequencies 2 2  1 2 0.5 0.5 1 

Simulation 

Period 
~4 hours 

Number of sent 

samples per 

second 

~500 samples/sec 

Number of 

players per 

simulation period 

50 

Topic size 65KB 

 

 

6.4.1 Profile 1: 

We fixed our configuration table 11 to be used for all profiles, the following is a set of 

QoS, and we are going to set for each profile with its suitable QoS values. Table 6-11. 

Table 6-11: profile 1 - QoS configuration 

QoS Possible values Chosen value What our chosen will affect 

Durability VOLATILE/ 

TRANSIENT_LOCAL/ 

PERSISTENT 

VOLATILE 

 

 

 

 

 

The game will only attempt to provide 

the data to the existing players. Any 

new joining player will start with the 
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 new coming data, there is nothing in the 

history for those players. 

History KEEP_LAST/ 

KEEP_ALL 

KEEP_LAST 

"depth"=100 

The game will only attempt to keep the 

most recent samples of each instance of 

data. 

Deadline Any suitable value 1 second The player expects a new sample 

updating the value of each instance at 

least once every deadline period. The 

game indicates that the application 

commits to write a new value for each 

instance at least once every deadline 

period. 

Latency-Budget 

 

the maximum 

acceptable delay 

400ms Specifies the maximum acceptable 

delay from the time the data is written 

until the data is inserted in the receiver's 

application-cache and the receiving 

application is notified of the fact. This 

policy is a hint to the Service, not 

something that must be monitored or 

enforced. The Service is not required to 

track or alert the user of any violation. 

The default value of the duration is zero 

indicating that the delay should be 

minimized. 

Reliability RELIABLE/ 

BEST_EFFORT 

BEST_EFFORT It is acceptable to not retry sending any 

samples. Presumably, new values for 

the samples are generated often enough 

that it is not necessary to re-send or 

acknowledge any samples. 
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Transport-Priority 

 

We can set priorities for 

the hot data while we 

can reduce the priority 

rank for some usual 

data. 

Transport-

priority = 100 

Varies between 

different 

players. 

This policy is a hint to the infrastructure 

as to how to set the priority of the 

underlying transport used to send the 

data 

 

We ran our experimental work with the above QoS configuration, we calculated the latency 

for each profile. Figure 6-21, Figure 6-22. 

 

Figure 6-21: Latency - Profile 1 
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Figure 6-22: profile 1 – latency per message 

  

6.4.2 Profile 2: 

In this profile, we changed the durability, reliability, and history, as we believe profile one 

will behave better, as we set the reliability to be reliable and the history to be "keep_all". 

Table 6-12. 

Table 6-12: profile 2 - QoS configuration 

QoS Possible values Chosen value What our chosen will affect 

Durability VOLATILE/ 

TRANSIENT_LOCAL/ 

PERSISTENT 
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History KEEP_LAST/ KEEP_ALL KEEP_ALL The game will attempt to keep all 

samples until the can be delivered 

to the end players. 

Deadline Any suitable value 1 The player expects a new sample 

updating the value of each instance 

at least once every deadline period. 

The game indicates that the 

application commits to write a new 

value for each instance at least 

once every deadline period. 

Latency-Budget 

 

the maximum acceptable 

delay 

400ms Specifies the maximum acceptable 

delay from the time the data is 

written until the data is inserted in 

the receiver's application-cache 

and the receiving application is 

notified of the fact. This policy is a 

hint to the Service, not something 

that must be monitored or 

enforced. The Service is not 

required to track or alert the user of 

any violation. The default value of 

the duration is zero indicating that 

the delay should be minimized. 

Reliability RELIABLE/ 

BEST_EFFORT 

RELIABLE The game will attempt to deliver 

all samples in its history. Missed 

samples may be retried. 

Transport-Priority 

 

We can set priorities for the 

hot data while we can reduce 

the priority rank for some 

usual data. 

Transport-

priority = 100 

Varies between 

different players. 

This policy is a hint to the 

infrastructure as to how to set the 

priority of the underlying transport 

used to send the data. The default 
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value of the transport_priority is 

zero. 

Figure 6-23, Figure 6-24 shows the latency. 

 

 

Figure 6-23: Latency (Profile 2) 
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Figure 6-24: profile 2 – latency per message 
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PERSISTENT joining players can outlive a system 

session. 

History KEEP_LAST/ KEEP_ALL KEEP_ALL The publisher will attempt to keep 

all samples until it can be delivered 

to the end players. 

Deadline Any suitable value 1 The player expects a new sample 

updating the value of each instance 

at least once every deadline period. 

The game indicates that the 

application commits to write a new 

value for each instance at least once 

every deadline period. 

Latency-Budget 

 

the maximum acceptable 

delay 

400ms Specifies the maximum acceptable 

delay from the time the data is 

written until the data is inserted in 

the receiver's application-cache and 

the receiving application is notified 

of the fact. This policy is a hint to 

the Service, not something that must 

be monitored or enforced. The 

Service is not required to track or 

alert the user of any violation. The 

default value of the duration is zero 

indicating that the delay should be 

minimized. 

Reliability RELIABLE/ 

BEST_EFFORT 

BEST_EFFORT 

 

it is acceptable to not retry sending 

any samples. Presumably, new 

values for the samples are generated 

often enough that it is not necessary 

to re-send or acknowledge any 

samples. 
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Transport-Priority 

 

We can set priorities for the 

hot data while we can reduce 

the priority rank for some 

usual data. 

Transport-

priority = 100 

Varies between 

different players. 

This policy is a hint to the 

infrastructure as to how to set the 

priority of the underlying transport 

used to send the data. The default 

value of the transport_priority is 

zero. 

 

 

Figure 6-25: profile 3 – latency 
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Table 6-14: profile 4 - QoS configuration 

QoS Possible values Chosen value What our chosen will 

affect 

Durability VOLATILE/ 

TRANSIENT_LOCAL/ 

PERSISTENT 

TRANSIENT_LOCAL The game will attempt to keep 

some samples so that they can 

be delivered to any late-

joining players. 

History KEEP_LAST/ KEEP_ALL KEEP_ALL The publisher will attempt to 

keep all samples until it can be 

delivered to the end players. 

Deadline Any suitable value 0.5 The player expects a new 

sample updating the value of 

each instance at least once 

every deadline period. The 

game indicates that the 

application commits to write a 

new value for each instance at 

least once every deadline 

period. 

Latency-Budget 

 

the maximum acceptable 

delay 

400ms Specifies the maximum 

acceptable delay from the time 

the data is written until the 

data is inserted in the 

receiver's application-cache 

and the receiving application 

is notified of the fact. This 

policy is a hint to the Service, 

not something that must be 

monitored or enforced. The 

Service is not required to track 
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or alert the user of any 

violation. The default value of 

the duration is zero indicating 

that the delay should be 

minimized. 

Reliability RELIABLE/ 

BEST_EFFORT 

BEST_EFFORT 

 

 

Transport-Priority 

 

We can set priorities for the 

hot data while we can reduce 

the priority rank for some 

usual data. 

Transport-priority = 

100 

Varies between 

different players. 

This policy is a hint to the 

infrastructure as to how to set 

the priority of the underlying 

transport used to send the data. 

The default value of the 

transport_priority is zero. 

 

Figure 33. Shows the latency for this profile. 

QoS Possible values Chosen value What our chosen will 

affect 

Durability VOLATILE/ 

TRANSIENT_LOCAL/ 

PERSISTENT 

VOLATILE The game will only attempt to 

provide the data to existing 

players.  

History KEEP_LAST/ KEEP_ALL KEEP_ALL 

 

The publisher will attempt to 

keep all samples until it can be 

delivered to the end players. 

Deadline Any suitable value 10 seconds The player expects a new 

sample updating the value of 

each instance at least once 

every deadline period. The 

game indicates that the 

application commits to write a 

new value for each instance at 
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least once every deadline 

period. 

Latency-Budget 

 

the maximum acceptable 

delay 

400ms Specifies the maximum 

acceptable delay from the time 

the data is written until the data 

is inserted in the receiver's 

application-cache and the 

receiving application is 

notified of the fact. This policy 

is a hint to the Service, not 

something that must be 

monitored or enforced. The 

Service is not required to track 

or alert the user of any 

violation. The default value of 

the duration is zero indicating 

that the delay should be 

minimized. 

Reliability RELIABLE/ 

BEST_EFFORT 

BEST_EFFORT 

 

 

Transport-Priority 

 

We can set priorities for the 

hot data while we can reduce 

the priority rank for some 

usual data. 

Transport-priority = 

100 

Varies between 

different players. 

This policy is a hint to the 

infrastructure as to how to set 

the priority of the underlying 

transport used to send the data. 

The default value of the 

transport_priority is zero. 
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Figure 6-26: profile 4 – latency 

6.4.5 Profile 5 

The main changes in this profile are the deadline and we set the durability to be volatile 

with keep all history, we can notice the difference between this profile and profile 1. Table 

6-15. 
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Table 6-15: profile 5 - QoS configuration 

 

 

Figure 6-27: Latency - profile 5 
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6.4.6 Profiles discussion: 

 

 

Figure 6-28: Profiles latency 

 

As we can have noticed from the figure above that the profile one is having the lowest 

latency, as it also makes much sense because we set the reliability to be 'best effort' and the 

history is 'keep last' with deadline equals to 1 second and with volatile durability. With this 

combination, we can get the lowest latency. We decided to set our PMS to be as the profile 

1 in its default case. Figure 6-29 also shows the mean values and the min/max values for 

the latency for all profiles. 
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Figure 6-29: mean, min, and max/profiles 
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6.5 Comparison between RTinDDS and other Platforms 

Latency dependencies have been a subject of research for all interactive networked 

multimedia applications since their inception. Acceptable latency values for MMORPGs 

appear to be game-specific 

This section compares between RTinDDS and other platforms to prove that RTinDDS can 

fulfill the requirement of an MMOG. 

 CloudCraft: Cloud-based Data Management  

CloudCraft presents the experimental results with a single game server in [33]. When the 

client number is not more than 500, the response time for each read/write command is 

under 15ms. That means, 500 concurrent clients put a little pressure on the game server as 

well as the 5-node Cassandra cluster. However, when the client number is up to 600, the 

game server throws many “time-out” exceptions, which block the acceptance of subsequent 

commands. So the maximum number of concurrent clients in the case of single game server 

is around 500. Each client randomly sends 500 read/write commands. 

In our case, the player number is around 200 players, the response time is less than 11ms. 

Since we have seven different topics, we have around 2000 read/write commands.  

As we have different profiles with different scenarios, all profile/scenarios have latency 

lower than 11ms Figure 6-28. We can tell that RTinDDS fulfills the requirement with 

compared to CloudCraft MMOG. 

 CloudFog:  Cloud-based gaming 
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The general response latency requirement is 100ms [20], 20ms is attributed to play out and 

processing delay and 80ms is the network latency. A user is covered by a data center or a 

supernode if the response latency is no more than the latency requirement of the user’s 

game. 

We showed that one of the highest case scenario Figure 6-30, we got latency less than 

70ms. 

 World of Warcraft based on TCP 

They evaluated the TCP delay based on packet dumps from a Wireshark client running on 

the WoW client. The RTT is the time a message needs to travel to a remote host and back 

again. This time is important to data systems which adapt their throughput rate based on 

the delay. In TCP the RTT is measured between segment transmission and ACK receipt. It 

is then estimated using Karn's Algorithm, TCP timestamps or Jacobson's algorithm. In their 

work, they estimated the RTT according to the Karn's algorithm. The delay is the RTT 

divided by two, 40ms of delay correspond to 80ms of RTT.[34]. 

We showed that one of the highest case scenario Figure 6-31, we got latency less than 

70ms. 

 Other Games 

Latency dependencies have been a subject of research for all interactive networked 

multimedia applications since their inception. Acceptable latency values for MMORPGs 

appear to be game-specific but within the certain bounds. Fritsch, it's been determined that 
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test game Everquest2 runs smoothly with latencies of up to 1250ms. Dick, Wellnitz, and 

Wolf performed a player survey and analysis of how latency affects player performance in 

different games, and among them a single RPG Diablo 2 which showed that players think 

of latencies around 80ms as the optimal, and those around 120ms as the maximum tolerable 

value.[33]. 

6.5.1 Conclusion 

We have different profiles with different scenarios, all profile/scenarios have latency lower 

than 70ms Figure 6-32, Figure 6-28. We can tell that RTinDDS fulfills the requirement 

compared with some of the well-known MMOGs. 
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7 CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

We are presenting a new platform solution to deal with the real-time online gaming using 

the DDS middleware. RTinDDS and AIRTinDDS are real-time platform based on the DDS 

middleware guarantees to provide the developers, designers, and end users a suitable 

platform to build their online real-time gaming and to deliver it in a robust manner for the 

end users. The platform also able to allow designers to make the best decision for a specific 

situation. RTinDDS is a real-time platform that has been implemented by choosing the best 

QoS in the DDS middleware for the default situation (stable situation) to deliver the best 

performance. We have implemented a game we call it Plane Model Simulation (PMS). 

After running our simulation scenario. We have chosen the best QoS and we applied it on 

the PMS. 

PMS shows a very robust real-time platform, the simulation results show that RTinDDS in 

PMS improved the reliability, scalability, throughput, and less packet loss. 

The second part of the work is by making RTinDDS is smart enough to adapt itself when 

any issue occurred at runtime; we have implemented a new platform called AIRTinDDS, 

this platform can adapt and correct itself once an issue occurred. This is done by choosing 

the best QoS in that situation using artificial intelligent (AI). Sometimes, it is needed to 

change some QoS at runtime to accommodate the new unexpected changes. We have 



104 
 

applied the AIRTinDDS algorithm in the RTI Connext simulation; it shows a very robust 

and adaptive platform 

This thesis addressed a performance evaluation for DDS QoS by carrying out an  

experimental and simulation work. 

We calculated the average throughput by changing the data load each time, we ran the 

game many times and recorded the changing in the number of bytes per second while it is 

changed as the data load changed. The results show a very high throughput while a very 

low latency. In addition to that, we have implemented a simulation where we wanted to 

prove the ability of our proposed platform to scale the number of nodes. We set the QoS to 

be exactly the same as in our PMS game, we were able to scale the number of nodes as 

there was a 10000 publish/subscribe players playing at the same time on different 

platforms, the results show also a very high throughput with very low latency. 

The other part of this thesis is AIRTinDDS, our algorithm is smart enough to detect and 

adapt any issue related to our assigned QoS.  The results show a very high throughput while 

a very low latency. In addition to that, we have implemented a simulation where we wanted 

to prove the ability of our proposed platform to scale the number of nodes. We set the QoS 

to be exactly the same as in our PMS game, we were able to scale the number of nodes as 

there was a 10000 publish/subscribe players playing at the same time on different 

platforms, the results show also a very high throughput with very low latency.  
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7.2 Future work 

Our work can be extended to cover the following: 

 Build a web-based application for PMS and apply both algorithms, RTinDDS and 

AIRTinDDS where you can test experimentally the scalable number of players. 

 Build a 3D game and focus on the Interest management issue, where the 

environment itself could be shared amongst all users which increased the load on 

the network. 

 Propose more special profiles and scenarios where it fits the previous point. So 

you will be able to manage any unexpected fault. 
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