3 research outputs found

    Reducing Pull-In Voltage by Adjusting Gap Shape in Electrostatically Actuated Cantilever and Fixed-Fixed Beams

    No full text
    A gap with variable geometry is presented for both cantilever beam and fixed-fixed beam actuators as a method to reduce the pull-in voltage while maintaining a required displacement. The method is applicable to beams oriented either in a plane parallel to or perpendicular to a substrate, but is most suitable for vertically oriented (lateral) beams fabricated with a high aspect ratio process where variable gap geometry can be implemented directly in the layout. Finite element simulations are used to determine the pull-in voltages of these modified structures. The simulator is verified against theoretical pull-in voltage equations as well as previously published finite element simulations. By simply varying the gap in a linear fashion the pull-in voltage can be reduced by 37.2% in the cantilever beam case and 29.6% in the fixed-fixed beam case over a structure with a constant gap. This can be reduced a further 4.8% by using a polynomial gap shape (n = 4/3) for the cantilever beam and 1.2% for the fixed-fixed beam by flattening the bottom of the linearly varying gap

    Micro-Resonators: The Quest for Superior Performance

    Get PDF
    Microelectromechanical resonators are no longer solely a subject of research in university and government labs; they have found a variety of applications at industrial scale, where their market is predicted to grow steadily. Nevertheless, many barriers to enhance their performance and further spread their application remain to be overcome. In this Special Issue, we will focus our attention to some of the persistent challenges of micro-/nano-resonators such as nonlinearity, temperature stability, acceleration sensitivity, limits of quality factor, and failure modes that require a more in-depth understanding of the physics of vibration at small scale. The goal is to seek innovative solutions that take advantage of unique material properties and original designs to push the performance of micro-resonators beyond what is conventionally achievable. Contributions from academia discussing less-known characteristics of micro-resonators and from industry depicting the challenges of large-scale implementation of resonators are encouraged with the hopes of further stimulating the growth of this field, which is rich with fascinating physics and challenging problems
    corecore