53 research outputs found

    A QBF-based Formalization of Abstract Argumentation Semantics

    Get PDF
    Supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project).Peer reviewedPostprin

    Computing inconsistency measure based on paraconsistent semantics

    Get PDF

    FDE Circumscription

    Get PDF
    In his article "Reassurance via Translation" Marcel Crabbe proposed a formalism to obtain reassurance and classical recapture in the setting of minimal FDE. His formalism proved to be general enough to be extended in order to formalize other forms of non-monotonic systems based on preference relations. It is the aim of this article to show how his result can be extended in a natural way by combining two different reasoning systems, namely minimal FDE and circumscription, in order to get a paraconsistent and paracomplete version of circumscription, which we will call paracomplistent circumscription, which has the advantages of FDE and circumscription but is neither explosive nor lacks modus ponens in consistent contexts. Furthermore, we will complete a proof Crabbe left unfinished

    Minimising disjunctive information

    Get PDF
    In [5, 6], Belnap proposed a number of amendments to Rescher’s strategy for reasoning with maximal consistent subsets. More recently in [18], Horty explicitly endorsed Belnap’s amendment to address a related problem in handling inconsistent instructions and commands. In this paper, we’ll examine Belnap’s amendment and point out that Belnap’s suggestion in the use of conjunctive containment is open to the very objection he raised. We’ll propose a way out. The strategy turns on the use of First Degree Entailment in combination with Quine’s notion of prime implicate

    Reasoning with Inconsistent Information

    No full text
    In this thesis we are concerned with developing formal and representational mechanisms for reasoning with inconsistent information. Strictly speaking there are two conceptually distinct senses in which we are interested in reasoning with inconsistent information. In one sense, we are interested in using logical deduction to draw inferences in a symbolic system. More specifically, we are interested in mechanisms that can continue to perform deduction in a reasonable manner despite the threat of inconsistencies as a direct result of errors or misrepresentations. So in this sense we are interested in inconsistency-tolerant or paraconsistent deduction. … ¶ In this thesis we adopt a novel framework to unify both logic-as-deduction and logic-as-representation approaches to reasoning with inconsistent information. …

    Extended RDF as a Semantic Foundation of Rule Markup Languages

    Full text link
    Ontologies and automated reasoning are the building blocks of the Semantic Web initiative. Derivation rules can be included in an ontology to define derived concepts, based on base concepts. For example, rules allow to define the extension of a class or property, based on a complex relation between the extensions of the same or other classes and properties. On the other hand, the inclusion of negative information both in the form of negation-as-failure and explicit negative information is also needed to enable various forms of reasoning. In this paper, we extend RDF graphs with weak and strong negation, as well as derivation rules. The ERDF stable model semantics of the extended framework (Extended RDF) is defined, extending RDF(S) semantics. A distinctive feature of our theory, which is based on Partial Logic, is that both truth and falsity extensions of properties and classes are considered, allowing for truth value gaps. Our framework supports both closed-world and open-world reasoning through the explicit representation of the particular closed-world assumptions and the ERDF ontological categories of total properties and total classes

    States in flux: logics of change, dynamic semantics, and dialogue

    Get PDF

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    Tractable depth-bounded approximations to FDE and its satellites

    Get PDF
    FDE, LP and K3 are closely related to each other and admit of an intuitive informational interpretation. However, all these logics are co-NP complete, and so idealized models of how an agent can think. We address this issue by shifting to signed formulae, where the signs express imprecise values associated with two bipartitions of the corresponding set of standard values. We present proof systems whose operational rules are all linear and have only two structural branching rules that express a generalized Principle of Bivalence. Each of these systems leads to defining an infinite hierarchy of tractable approximations to the respective logic, in terms of the maximum number of allowed nested applications of the two branching rules. Further, each resulting hierarchy admits of an intuitive 5-valued non-deterministic semantics
    corecore