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This paper is dedicated to Bob Meyer
Abstract. In [5, 6], Belnap proposed a number of amendments to
Rescher’s strategy for reasoning with maximal consistent subsets. More
recently in [18], Horty explicitly endorsed Belnap’s amendment to ad-
dress a related problem in handling inconsistent instructions and com-
mands. In this paper, we’ll examine Belnap’s amendment and point out
that Belnap’s suggestion in the use of conjunctive containment is open
to the very objection he raised. We’ll propose a way out. The strategy
turns on the use of First Degree Entailment in combination with Quine’s
notion of prime implicate.
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1. Introduction

A common complaint against reasoning based on maximal consistent
subsets is that it is too sensitive to the underlying syntax of the logi-
cal representation. This may result in information being isolated from
each other, and thereby preventing useful information to be extracted.
Consider the following example:
Example 1.1. Two information sources may disagree with respect to p
while not disagreeing in other respects: Γ = {p ∧ ¬q,¬p ∧ (q ∨ r)}.
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In our example, there is a sufficiently clear sense in which neither
¬q nor q ∨ r are directly involved in an inconsistency, though they are
conjoined with something that is inconsistent. Splitting Γ into consistent
subsets will prevent us from deducing the potentially useful information
r. Hence according to Belnap,

[. . . ] Rescher’s method gives wildly different accounts depending
on just how many ampersands are replaced by commas, or vice
versa. It depends too much on how our [. . . ] subtheory [. . . ] is
itself separated into sentential bits. [2, p. 544]

Belnap’s criticism is fair. It is intuitively implausible that an infer-
ence mechanism for handling inconsistent information should give wildly
different conclusions for minor syntactic variations in the logical represen-
tation. But Belnap’s criticism also applies to other formal mechanisms
for handling inconsistency such as belief revision. Any syntax-based re-
vision of Γ with r would require us to give up at least one member of Γ
(see Nebel’s [25, 26]). This may incur unwanted information loss.

In [5], Belnap proposed a particular amendment to Rescher’s strat-
egy for reasoning with maximal consistent subsets. In [6] Belnap made
a further amendment to his earlier amendment. More recently in [18],
Horty explicitly endorsed Belnap’s second amendment to address a re-
lated problem in handling inconsistent instructions and commands. In
actual fact, Belnap’s suggestions on both occasions amount to the same
strategy of finding different ways to articulate the input logical repre-
sentation. According to Belnap, the input logical description Γ is first
to be closed under some non-classical logic generating a superset Γ∗ and
then Rescher’s strategy can be applied to Γ∗ in the normal way. The
role of Γ∗ is to make explicit the content of Γ so that the kind of dif-
ficulties that arise in situations similar to Example 1.1 can be avoided.
In [5], Belnap’s suggestion was to use Angell’s analytic containment. In
[6], Belnap’s suggestion was to use an even more restrictive non-classical
logic based on the idea of conjunctive containment.

In this paper, we’ll examine Belnap’s amendment and point out that
Belnap’s suggestion in the use of conjunctive containment is open to the
very objection he raised. We’ll propose a way out. The strategy turns on
the use of First Degree Entailment in combination with Quine’s notion
of prime implicate.
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2. Rescher Hypothetical Reasoning

In many ways Rescher’s method of reasoning from maximal consistent
subsets has anticipated many recent developments in AI. One in par-
ticular is the nonmonotonic formalism called default logic developed by
Reiter in [33]. Since the publication of [33], default logic has been revised
and extended (see Schaub [37] for a summary). Many of these new devel-
opments have been shown to be expressively equivalent to various forms
of belief revision formalism. We’ll not be able to summarise all these new
developments here. But since many of these extensions are theoretically
grounded in some form of reasoning from maximal consistent subsets,
Belnap’s methodological criticism is still in force here. We’ll begin by
recalling some standard definitions.

In [34, 35], Rescher proposes a way of reasoning from a set of hy-
potheses or data which may be inconsistent with a given background
theory or a given set of scientific laws. The main idea is that each con-
clusion we draw from the data should be consistent with our background
theory or laws. The strategy is to isolate data that are inconsistent with
our background theory. In Rescher’s framework, a background theory is
first represented in terms of a modal family. Then preferred subsets of
data are selected relative to the modal family. And finally conclusions
are extracted by applying classical logic to each prefered subset.

Definition 2.1. A modal family M is a sequence of sets of (proposi-
tional) formulae 〈Σ1, . . . , Σn〉 such that

1. for each i < j, Σi ⊂ Σj ,
2. for each i < n, Σi is closed under classical consequence,
3. Σn = Φ.

A modal family is thus an increasing sequence of classically closed
sets such that for each i < n, Σi is consistent (on pain of violating the
proper containment condition). Intuitively, we may think of Σ1 as the
most reliable or confirmed part of a theory and each subsequent Σi as
less reliable statements of the theory. Our total background theory is
then represented by Σn−1.

Definition 2.2. Relative to a given modal familyM = 〈Σ1, . . . , Σn〉 and
a set of hypothesis Γ, we define the set of preferred subsets, P, through
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recursion as follows (we use M(Γ) to denote the collection of maximally
consistent subsets of Γ):

P1 =


{Γ ∩ Σ1} if Γ ∩ Σ1 is consistent

{∆| ∆ ∈M(Γ ∩ Σ1)} else
...

Pi =


{(Γ ∩ Σi) ∪Π| Π ∈ Pi−1} if (Γ ∩ Σi) ∪Π is consistent

{Π ∪∆| Π ∈ Pi−1 and
Π ∪∆ ∈M((Γ ∩ Σi) ∪Π)} else

Let P = Pn

Informally, the set of preferred subsets of Γ is constructed by first
picking out members of Γ that are in the first n − 1 strata of a modal
family M. This selected subset is clearly consistent since Σn−1 is con-
sistent. The selected subset is then consistently extended to maximality
with the remaining members of Γ. Clearly we are not guaranteed to have
a single preferred subset in every case. In one sort of cases, a report A
may directly contradict our theory. But it is also possible that competing
claims may each be consistent with our theory and so there may be more
than one preferred subset.

Σ

Σ

Γ

1

n

Figure 1. Rescher’s Hypothetical Reasoning
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In applying classical reasoning to our preferred subsets, there are
clearly two choices: we may accept a claim as long as it is a classical
conclusion of some preferred subset, or alternatively we may accept a
claim as long as it is a classical conclusion of every preferred subset.

Definition 2.3. Relative to an arbitrary but fixed modal family M =
〈Σ1, . . . , Σn〉,

• A is a U -consequence (universal-consequence) of Γ iff for every Π ∈ P,
Π ` A, and

• A is a E-consequence (existential-consequence) of Γ iff for some Π ∈ P,
Π ` A.

We should note that if M is just 〈Φ〉, then the U -consequences (E-
consequences) of Γ are just formulae classically derivable from every
(some) maximally consistent subset of Γ.1 In the remaining, we’ll make
the simplifying assumption thatM = 〈Φ〉.

We note that Rescher’s formalism for U -consequence (resp. E-con-
sequence) in fact corresponds to a special class of (propositional) de-
fault logics called prerequisite-free normal default theories. In [38, 15],
Stillman and Gottlob independently show that the complexity of the de-
cision problem(s) for deciding whether a formula is a credulous (skep-
tical) consequence of a prerequisite-free normal default theory is Σp

2-
complete (Πp

2-complete). Given these results, deciding U -consequence
(E-consequence), in the worst case, is likely to require an NP -oracle
exponential amount of time to solve.

3. Belnap’s Conjunctive Containment

In [2], Belnap considered a strategy to improve the Rescher-mechanism
by finding different articulations for a set of logical descriptions. Recall
that Belnap’s main criticism of Rescher is that reasoning with maximal
consistent subsets is too syntax dependent in the sense that a minor
syntactic variant of a logical representation may yield wildly different
conclusions. Belnap’s main idea is that given a set of data Γ we can pre-
process Γ with certain closure operations so that the content of the data

1E-consequences (U -consequences) are typically called credulous (skeptical) conse-
quences in the default logic literature.
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can be made explicit and information not involved in any inconsistency,
the ‘innocent part’ of the data, can be isolated. Once this is done, we
can then apply the Rescher-mechanism to reason with the extended data
set. Indeed Belnap’s suggestion is not fundamentally different from the
methodology of knowledge compilation in AI (see [22, 23]). In knowledge
compilation, the general aim is to give a sound and complete translation
of data represented in a general language to a target language with lower
computational complexity. The translation is done off-line so that the
computational cost of inference is shifted from run time query-answering
to off-line compilation. Thus in knowledge compilation, reasoning can
be viewed as a two stage process involving both data preparation and
formal deduction from prepared data. For Belnap however, the concern
is not so much to reduce the computational cost but to reduce the effect
of syntactic variations on inferences from the innocent part of the data
set. Clearly this can be seen as a form of data preparation. In both cases,
the key step is to perform some sort of content preserving operations on
a data set prior to the application of (automated) deduction.

It is instructive to recap Belnap’s reasons for rejecting the use of the
first degree entailment (FDE) of the relevant logic R, Parry’s analytic
implication (AI ) and Angell’s analytic containment (AC ) as candidate
closures or articulations of the input data:
Example 3.1. Γ = {p, ¬p, q}

In FDE and Parry’s AI we have, respectively

A `FDE A ∨B (1)
A ∧B `AI A ∨ ¬B (2)

Hence the closure of Γ under either FDE or AI yields ¬p ∨ ¬q which
conspires together with p to prevent q from being derived as a U -con-
sequence.
Example 3.2. Γ = {p, ¬p, q, r ∨ ¬q}

In Angell’s AC we have

A ∧ (B ∨ C) `AC A ∧ (B ∨ C) ∧ (A ∨ C) (3)

Hence we get ¬p ∧ (r ∨ ¬q) `AC ¬p ∨ ¬q. Once again ¬p ∨ ¬q conspires
together with p to prevent q from being derived as a U -consequence.
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In each of these cases, the use of a certain version of disjunction
introduction results in the introduction of additional inconsistencies. In-
deed this is symptomatic of the kind of difficulties involved in the use of
disjunction introduction in the presence of inconsistencies. Recall that
in C. I. Lewis’ original proof, disjunction introduction in its unrestricted
form (1), when combined with the use of disjunctive syllogism (DS),
A∧ (¬A∨B) ` B, yields the ex falso A∧¬A ` B. In the case of Parry’s
Analytic Implication, the combination of (2) and DS yields a kind of
inference which propagates inconsistencies:

(A ∧ ¬A) ∧B ` (B ∧ ¬B) (4)

We note that although B only occurs positively on the left of ` in
(4), the inconsistency of B ends up being the conclusion. We may think
of this as perhaps a case of guilt by association — B is hanging out with
the wrong crowd here. In the case of Angell’s Analytic Containment,
the combination of (3) and DS deliver a more subtle way to propagate
inconsistencies:

(A ∧ ¬A) ∧ (C ∨B) ∧ (D ∨ ¬B) ` (B ∧ ¬B) (5)

Note that in (5) both positive and negative occurrences of B on the
left of ` are required to produce B ∧¬B on the right. We also note that
neither B nor ¬B can be deduced without the use of the inconsistent A
and ¬A.2

In recent years, Hewitt ([16, 17]) has investigated a logic (called Di-
rect Logic) in which (4) is rejected. Hewitt describes Direct Logic as
a logic of “strong paraconsistency”. Accordingly to Hewitt,“. . . for the
purposes of reasoning about large software systems, a stronger principle
is needed . . . it requires P,¬P, Q 0 ¬Q because the inconsistency be-
tween P and ¬P is not relevant to Q” ([16], page 113). As noted by
Hewitt ([16], page 118), the propositional fragment of Direct Logic ap-
pears to be closely related to the relevant logic R-Mingle (i.e. the logic
R with the Mingle Axiom ` A→ (A→ A) added, a.k.a RM). While we
may agree that most “paraconsistent logics” are unsuitable for reasoning
about large software systems—rejection of the ex falso alone appears too

2Besnard and Hunter ([7, 19, 20, 21]) have developed an interesting strategy to
block the harmful interaction between (1) and DS. In their Quasi-Classical (QC) logic,
no proof is allowed to use DS subsequent to the use of (1).
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weak to quarantine inconsistencies, however, we do not know whether
Direct Logic or R-Mingle can circumvent the more subtle form of incon-
sistencies spread in principles like (5) either.

Returing to Belnap’s original line of argument, Belnap’s own con-
clusion is that none of FDE , AI and AC can be used as a basis to
articulate the content of the inconsistent data—each of (1), (2) and (3)
would provide an alternative route to contaminate the ‘innocent part’ of
the data. To overcome this problem, Belnap proposes the use of con-
junctive containment. First we recall some of Belnap’s definitions. To
simplify the matter, we’ll assume that our language is restricted to the
truth functional connectives {¬,∧, ∨}.

Definition 3.1. A subformula B of a given formula A is said to be a zero
subformula if it is within the scope of zero negations, an even subformula
if it is within the scope of zero or an even number of negations, otherwise
it is said to be odd.

Definition 3.2. Belnap’s replacement rules are given as follows:

[∗] . . . (B ∧ C) . . .

. . . B . . . . . . C . . .

provided that (B ∧ C) is an even subformula.

[#] . . . (B ∨ C) . . .

. . . B . . . . . . C . . .

provided that (B ∨ C) is an odd subformula.

Clearly for any given A we can built a finite binary tree T such that
(1) the root of T is just A, (2) each branching is an application of either
[#] or [∗], (3) a node is either the root of T or a formula obtained by
[#] or [∗], and (4) the leaves or end points are formulae which contain
no even subformulae of the form (B ∧C) and no odd subformulae of the
form (B ∨ C).

For convenience we shall draw a tree with the root at the bottom
and all branches extending upward, i.e. we apply the replacement rules
as if they are upside down. Since the order in which we apply [#] and
[∗] can be permuted, clearly such a tree is not unique for a given A in
general. But there can be at most finitely many such trees for a given
A. Thus we can associate with each A a finite set of trees {T A

1 , . . . , T A
n }
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where each T A
i is a finite binary tree built in the prescribed way. We’ll

call these the Belnap trees associated with A.

Lemma 3.1. Let (B ∧ C) be a zero subformula in D = . . . (B ∧ C) . . .,
then D is classically equivalent to D′ = ((. . . B . . .) ∧ (. . . C . . .)).

Proof. Since (B ∧ C) is a zero subformula, we can equivalently trans-
form D into the following form:

D0 =
n+1︷ ︸︸ ︷

(. . . ( B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗n An)

where ∗i is either ∧ or ∨.
Since both ∧ and ∨ are commutative, we note any step in the trans-

formation from D to D0 is reversible and equivalence preserving. We’ll
denote the transformation from D to D0 as T and the reverse of T as
T ′. We’ll show by induction on the depth d of (B ∧C), defined in terms
of the number of ‘(’ to the left of B ∧ C, that D0 is equivalent to

D′0 = [
n︷ ︸︸ ︷

(. . . ( B ∗1 A1) ∗2 . . .) ∗n An) ∧
n︷ ︸︸ ︷

(. . . ( C ∗1 A1) ∗2 . . .) ∗n An) ]

For the basis d = 1: this is trivial since (B∧C) is equivalent to itself. For
the inductive step, we’ll make the assumption that the statement holds
for d = k and show that it holds for the case when d = k + 1. Since we
assume that d = k + 1, D0 must be of the form:

k+1︷ ︸︸ ︷
(. . . ( B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗k Ak)

By the induction hypothesis, the following subformula of D0

k︷ ︸︸ ︷
(. . . ( B ∧ C) ∗1 A1) ∗2 A2) ∗3 . . .) ∗k−1 Ak−1)

is equivalent to

[
k︷ ︸︸ ︷

(. . . ( B ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ∧
k︷ ︸︸ ︷

(. . . ( C ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ]

Hence D0 must be equivalent to
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E =
(
[

k︷ ︸︸ ︷
(. . . ( B ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ∧

k−1︷ ︸︸ ︷
(. . . ( C ∗1 A1) ∗2 . . .) ∗k−1 Ak−1) ] ∗k Ak

)
There are two cases to consider: either ∗k is ∧ or ∨. In the first case E
is equivalent to

[
k+1︷ ︸︸ ︷

(. . . ( B ∗1 A1) . . . ∗k−1 Ak−1)∧Ak)∧
k+1︷ ︸︸ ︷

(. . . ( C ∗1 A1) . . . ∗k−1 Ak−1)∧Ak)]

In the later case, using distribution of ∨ over ∧, E is equivalent to

[
k+1︷ ︸︸ ︷

(. . . ( B ∗1 A1) . . . ∗k−1 Ak−1)∨Ak)∧
k+1︷ ︸︸ ︷

(. . . ( C ∗1 A1) . . . ∗k−1 Ak−1)∨Ak)]

This suffices to show that D0 and D′0 are equivalent. To complete
the proof we make use of the fact that the transformation T from D to
D0 is reversible. Hence by applying the reverse transformation T ′ to the
left and right conjuncts of D′0, the equivalence of D and D′ follows. a

Proposition 3.1. If E and F are obtained from A by an application of
either [∗] or [#], then E ∧ F is classically equivalent to A.

Proof. If E and F are obtained from A by an application of [∗], then
E and F must be obtained via an even subformula (B ∧ C) of A. Since
(B∧C) is even, repeat applications of pushing negations onto (B∧C) will
result in an even number of occurrences of negation in front of (B ∧C).
By double negation elimination we can transform A into an equivalent
formula A′ where (B ∧ C) is a zero subformula. Using Lemma 3.1 and
reversing the relevant transformation steps, the desired result follows.

If E and F are obtained via [#], then E and F must be obtained via
an odd subformula (B ∨ C) of A. Since (B ∨ C) is odd, repeat applica-
tion of pushing negation onto (B∨C) will result in an odd occurrences of
negation in front of (B ∨ C). Using double negation elimination repeat-
edly and pushing the remaining negation into (B ∨ C) will result in an
even subformula (¬B ∧ ¬C). Again applying Lemma 3.1 and reversing
all relevant transformation steps, the desired result follows. a

Corollary 3.1. For any Belnap tree T A associated with A, A is clas-
sically equivalent to the conjunction of all the leaves in T A.
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Definition 3.3. Belnap’s Closure, CB, on a given A is defined as follows:
D ∈ CB(A) iff D is a node of some Belnap tree associated with A. For
a given set of formulae Γ, CB(Γ) = {D ∈ CB(A) : A ∈ Γ}.

A set Γ conjunctively contains A in the strict sense iff A ∈ CB(Γ),
i.e. A is a node of some Belnap tree associated with some B ∈ Γ.

The extended Belnap’s Closure, C+
B on a set Γ is defined as follows:

A ∈ C+
B (Γ) iff every member of CB(A) is classically equivalent to a

conjunction of some members of CB(Γ).

Alternatively we may define CB(Γ) simply as the least superset of Γ
that is closed under [∗] and [#]. However, the use of Belnap’s tree gives
us an easy way to visualise the underlying mechanism: each piece of
information A is conjunctively eliminated at each level of a Belnap’s tree
until all hidden conjunctions are eliminated; since [∗] and [#] preserve the
(classical) model(s) of their premises, all information implicitly encoded
in A is successively passed on to the next level in its Belnap’s tree.

With respect to the extended Belnap’s closure C+
B , the basic idea

is to regain some limited form of conjunction introduction with mem-
bers of CB while adding all those that are classically equivalent to these
conjunctions without creating unexpected nonequivalence.
Example 3.3. Let Γ = {p}. We have p∧p ∈ C+

B (Γ) but p∨(p∧q) /∈ C+
B (Γ)

even though p∧p is classically equivalent to p∨(p∧q). Note that although
we have p ∨ q ∈ CB({p ∨ (p ∧ q)}), p ∨ q is not classically equivalent to
any conjunction of members of CB(Γ).

Fact 3.1. CB and C+
B are closure operators in the sense of Tarski, i.e.

they satisfy inclusion, monotonicity and idempotence. C+
B is an extension

of CB, i.e. for any Γ ⊆ Φ, CB(Γ) ⊆ C+
B (Γ). Moreover they distribute

over union, i.e. CB(Γ ∪ Γ′) = CB(Γ) ∪ CB(Γ′)

While we may think of Belnap’s closure CB as an articulation of a
set of formulae, the extension C+

B is a proper E-equivalent extension of
CB in the following sense:

Definition 3.4. A closure operator C is a proper E-equivalent extension
of a closure operator C ′ iff for any premise set Γ ⊆ Φ,

1. C(Γ) and C ′(Γ) have exactly the same set of existential-consequences,
i.e. C∗E(C(Γ)) = C∗E(C ′(Γ)).
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2. C ′(Γ) ⊆ C(Γ).
3. C(C ′(Γ)) = C(Γ).

If condition (1) holds for C, then we say that C is E-equivalent to C ′.

Lemma 3.2. For an arbitrary but fixed Γ, let M(CB(Γ)) and M(C+
B (Γ))

be the collections of maximal consistent subsets of CB(Γ) and C+
B (Γ)

respectively. Then there is a bijection f with domain M(CB(Γ)) and
range M(C+

B (Γ)) such that for any A ∈ M(CB(Γ)), f(A) is classically
equivalent to A.

Proof. Let Γ be arbitrary but fixed. Let

M(CB(Γ)) = {Ai : i ∈ I}
M(C+

B (Γ)) = {Bj : j ∈ J}

We observe that:
1. For each i ∈ I there exists a j ∈ J such that Ai ⊆ Bj : by the

consistency of Ai and the fact that CB(Γ) ⊆ C+
B (Γ).

2. For each i ∈ I there is exactly one j ∈ J such that Ai ⊆ Bj :
from (1) the existence of such a Bj is guaranteed for each arbitrary but
fixed i ∈ I. Toward a contradiction assume that for some k ∈ J , k 6= j,
Ai ⊆ Bk. Note that since Bj 6= Bk, Bj ∪ Bk is inconsistent. Hence there
exists D1, . . . , Dm ∈ Bj and E1, . . . , En ∈ Bk such that

D1 ∧ . . . ∧Dm ` ¬(E1 ∧ . . . ∧ En)

We claim that every member of CB(D1) ∪ . . . ∪ CB(Dm) must be
classically equivalent to a conjunction of some members of Ai. Suppose
not. Then there must be a member of CB(D1)∪ . . .∪CB(Dm) classically
equivalent to a conjunction of members involving elements of (CB(Γ) \
Ai). But this is impossible since by the maximal consistency of Ai any
A ∈ CB(Γ) \ Ai is inconsistent with Ai and this would imply that Ai is
inconsistent with Bj . Similar argument also shows that every member of
CB(E1)∪ . . .∪CB(En) must be classically equivalent to a conjunction of
some members of Ai. But this clearly contradicts the consistency of A.
Hence Bj cannot be distinct from Bk afterall.

3. For no i, i′ ∈ I, i 6= i′ do we have Ai ⊆ Bj and Ai′ ⊆ Bj for some
j ∈ J : by the consistency of each Bj .
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4. For each j ∈ J there exists an i ∈ I such that Ai ⊆ Bj : it is
straightforward to verify that for each j ∈ J , Bj ∩ CB(Γ) is a maximal
consistent subset of CB(Γ).

We now define the function f : CB(Γ) −→ C+
B (Γ) as follows: for each

i ∈ I
f(Ai) = Bj ⇔ Ai ⊆ Bj

for some j ∈ J . Clearly by observation (2), f is a well defined function.
By observation (4), f is surjective. By observation (3) f is injective.
Hence f is a bijection.

Finally to show that for every i ∈ I, Ai and f(Ai) are classically
equivalent, it suffices to observe that the argument for observation (2)
establishes that for every A ∈ f(Ai), every member of CB(A) is classi-
cally equivalent to a conjunction of some members of Ai. a

Proposition 3.2. C+
B is a proper E and U -equivalent extension of CB.

Proof. By Lemma 3.2, condition (1) of Definition 3.4 is clearly satisfied.
Moreover CB(Γ) ⊆ C+

B (Γ) clearly holds. It remains to verify that for any
Γ, C+

B (CB(Γ)) = C+
B (Γ).

(⊇): Since CB and C+
B are both Tarskian closure operators, we have

Γ ⊆ CB(Γ) and hence C+
B (Γ) ⊆ C+

B (CB(Γ)).
(⊆): If A ∈ C+

B (CB(Γ)), then for every B ∈ CB(A), there are C1, . . . ,
Cn ∈ CB(CB(Γ)) such that B is classically equivalent to C1 ∧ . . . ∧ Cn.
But CB(CB(Γ)) = CB(Γ), hence A ∈ C+

B (Γ) as required. a

Lemma 3.2 clearly gives a sufficient condition for E-equivalence—two
sets of formulae (with arbitrary cardinalities) are E-equivalent if a bijec-
tion of the suitable sort exists between the two collections of maximal
consistent subsets of the two sets. But it is unclear that this is also neces-
sary in cases where infinite cardinalities are considered. In [36], Rescher
and Manor give the necessary and sufficient conditions for E-equivalence
for finitely generated sets of formulae. But no general characterisation
is given there. For sets with finitely many maximal consistent subsets
(though not necessarily finitely generated in Rescher’s sense), the follow-
ing proposition gives a necessary condition for their E-equivalence:

Proposition 3.3. Let |M(Γ)| < ω. If Γ′ is E-equivalent to Γ, then
|M(Γ′)| = |M(Γ)|. Equivalently, for any Γ and Γ′, if |M(Γ′)| and |M(Γ)|
are finite and |M(Γ′)| 6= |M(Γ)|, then Γ and Γ′ are not E-equivalent.
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Proof. Without loss of generality, we may assume that Γ and Γ′ are
such that |M(Γ)| = n and |M(Γ′)| = m where m < n. Towards a
contradiction, we assume that Γ and Γ′ are E-equivalent. We let M(Γ) =
{A1, . . . ,An} and M(Γ′) = {B1, . . . ,Bm}. Since members of M(Γ′) are
pairwise inconsistent, by the standard compactness theorem, there exist
formulae A1, . . . , An such that for every i ¬ n,

1. Ai ` Ai and
2. Ai `

∧
i6=j ¬Aj

By our reductio assumption Γ and Γ′ are E-equivalent and hence by
(1) above for each i ¬ n there exists a k ¬ m such that Bk ` Ai. However
by our initial assumption m < n and thus by the pigeonhole principle,
there exists a t ¬ m such that Bt `

∧
i¬n ¬Ai. Clearly by the consistency

of each Ai ∈M(Γ), Ai 0
∧

i¬n ¬Ai. But this contradicts the assumption
that Γ and Γ′ are E-equivalent. This suffices to show that Γ and Γ′ are
not E-equivalent on the assumption that n 6= m. a

Thus for any two finite sets, we can test for their non-E-equivalence
by simply counting their number of maximal consistent subsets.

4. An Improvement to Belnap’s Strategy

One of the main motivations for Belnap to introduce CB is to provide a
standard way to isolate the effect of the inconsistencies in a data set. In
[18], Horty explicitly endorsed a similar strategy for handling inconsistent
instructions using modalised versions of Belnap’s replacement rules:

[�∗] �(. . . (B ∧ C) . . .)
�(. . . B . . .) �(. . . C . . .) [�#] �(. . . (B ∨ C) . . .)

�(. . . B . . .) �(. . . C . . .)

where ‘. . .’ does not contain any occurrence of ‘�’ and the even and odd
restrictions again apply to the respective rule.

To appreciate the significance of the [∗] amd [#] rules (and their
modalised counterparts), we quote a remark of Belnap:

Since different ways of articulating our beliefs [. . . ] give different
results under Rescher’s proposal and since we do not want this,
evidently we have to have some views about which articulations we
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most want to reflect [. . . ] Policy: try to reflect maximum articu-
lation. [. . . ] if we maximally articulate [. . . ] we may be able to
isolate the effect of its contradiction, [. . . ] [o]r, which seems just as
important, we may be able to block a consequence by freeing for
use some conjunct of a conjunction which is itself not consistently
available [. . . ]. [2, p. 545]

In light of the [∗] and [#] rules, maximum articulation here is cashed
out in terms of conjunction elimination. In certain cases this is just the
right remedy. Consider for instance:
Example 4.1. Let A = (p ∧ ¬p) ∧ (q ∨ r) and let Γ = {A, ¬r, ¬p}.

Applying the [∗] rule to A we get

p ¬p

p ∧ ¬p q ∨ r

(p ∧ ¬p) ∧ (q ∨ r)

Figure 2. Belnap tree for (p ∧ ¬p) ∧ (q ∨ r)

In Example 4.1, all conjunctions are eliminated to maximally articulate
the information encoded by A. The result is that the inconsistency with
respect to p would neither interfere with ¬r nor q ∨ r. We note how-
ever that an imprudent use of [∗] may result in duplication and thereby
increase the size of the tree (see Figure 3).

p q ∨ r

p ∧ (q ∨ r)
¬p q ∨ r

¬p ∧ (q ∨ r)
(p ∧ ¬p) ∧ (q ∨ r)

Figure 3. Belnap tree for (p ∧ ¬p) ∧ (q ∨ r)

However, our main concern here is not with efficiency. Our main concern
is that there are cases in which [∗] and [#] cannot eliminate conjunctions
without a detour in using the distributive properties of ∧ over ∨ and vice
versa. Consider for instance a slight variant of Example 4.1:
Example 4.2. Let B = ¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r)] and Γ′ =
{B, ¬r, ¬p}.
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Assuming that we have the usual double negation elimination rule,
contraction for ∨ and ∧, and commutative and associative rules for ∨
and ∧, we can now apply [#] to B in Example 4.2 to obtain the Belnap
tree for B (Figure 4).

p ¬p

¬(p ∨ ¬p)

¬p ∨ r p ∨ r

¬[(p ∨ ¬p) ∨ ¬¬r]

¬(p ∨ ¬p) ∨ ¬[(p ∨ ¬p) ∨ ¬r]

q ∨ r

¬¬q ∨ ¬¬r

p ∨ q ¬p ∨ q

¬¬q ∨ ¬(p ∨ ¬p)

¬¬q ∨ ¬[(p ∨ ¬p) ∨ ¬r]

¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r]

Figure 4. Belnap tree for ¬[(p ∨ ¬p) ∨ ¬q] ∨ ¬[(p ∨ ¬p) ∨ ¬r)]

This is not entirely satisfactory because in taking an unnecessary
detour, we have produced additional disjunctive information. Belnap’s
initial objection against the use of relevant implication and analytic im-
plication is precisely that closures under these implications are too liberal
in generating disjunctive information. The point is that disjunctive in-
formation can interact with inconsistencies in such a way that further
inconsistencies can be produced. In the presence of ¬r for instance, p∨ r
and ¬p form an inconsistent triad. Comparing this with Figure 3 how-
ever, ¬r remains innocent. We note further that the distributivity of ∧
over ∨ and ∨ over ∧ are built into Belnap’s replacement rules—we cannot
avoid the use of distributivity with these rules.

While our previous example demonstrates how distributivity is used
in the context of implicit conjunction, our next example shows that the
same is true of explicit conjunction:
Example 4.3. Let C = (p ∧ q) ∨ (p ∧ r) and Γ = {C, ¬r, ¬p}.

Applying the [∗] rule to C we get the following Belnap tree:

p p ∨ r

p ∨ (p ∧ r)
p ∨ q q ∨ r

q ∨ (p ∧ r)
(p ∧ q) ∨ (p ∧ r)

Figure 5. Belnap tree for (p ∧ q) ∨ (p ∧ r)
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p q ∨ r

p ∧ (q ∨ r)
(p ∧ q) ∨ (p ∧ r)

Figure 6. Factoring for (p ∧ q) ∨ (p ∧ r)

The example here (Figure 5) is similar to the previous case: p ∨
r conspires with ¬p in Γ to prevent ¬r from being derived as an U -
consequence. Contrasting this with the case where we use a more direct
route to eliminate conjunction while keeping disjunctive information to
a minimal (Figure 6), we get a very different result. But what can we
say coherently about these examples? There are (at least) two possible
options:

1. Our examples do encode different information in each instance and
hence conjunctive containment merely makes explicit the difference.
This is reflected in the production of different disjunctive information
under conjunctive containment.

2. Our examples do not encode substantively different information in
each instance. The fact that their conjunctive closures differ shows
that conjunctive containment still over generates—in particular it over
generates by producing too much disjunctive information.

Our intuition in this matter may not run very deep. Indeed there
may not be any definitive reason to settle for one over the other. While
option (1) is certainly a coherent position (and we suspect this is the
option Belnap is likely to take), we would like to explore option (2) here
and flesh out an account where examples 4.1, 4.2, and 4.3 do not yield
different U -consequences while their maximal articulations are narrower
than conjunctive containment.

4.1. Logic Minimisation

We start with Example 4.3 first. We note that the set of leaves ∆′ =
{p, q ∨ r} in Figure 6 is consistent and classically equivalent to the set
of leaves ∆ = {p, p ∨ r, p ∨ q, q ∨ r} in Figure 5. However, they clearly
differ in the way in which they interact with the remaining members
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of Γ. ∆ would generate more inconsistent subsets when added to Γ than
would ∆′. Furthermore, we note that every member of ∆′ is a prime
implicate of C. We’ll briefly recap some of the standard definitions:

Definition 4.1. A literal is either a propositional atom or the negation
of a propositional atom. A disjunction of literals is said to be a clause.
A clause D is an implicate of A iff A |= D. An implicate D of A is prime
iff for all implicates D′ of A if D′ |= D then D |= D′. A set of prime
implicates {D1, . . . , Dn} of A is complete iff {D1, . . . , Dn} |= A. A set of
prime implicates {D1, . . . , Dn} is independent iff for no Di do we have
{D1 . . . , Di−1, Di+1 . . . Dn} |= Di

The notion of prime implicate was (indirectly) introduced by Quine
in [27, 28, 29].3 Quine was interested in simplifying truth functions and
he showed that notion of prime implicate plays a central role in simplify-
ing truth functions and thereby contributed directly to the minimisation
and design of digital circuits. The emphasis on minimisation stems from
the days when the production of logic gates was expensive and required
considerable physical space and power. With the advent of semiconduc-
tor processes and VSLI, it is of course no longer a central concern to
reduce the actual gate count for a system. Circuit design today is more
concerned with physical space allocation, reliability and the correctness
of a system. Interest in the use of prime implicates in circuit design has
decreased considerably as a result. But the notion of prime implicate
enjoys a renewed interest in recent years in light of works by de Kleer et
al in logic based diagnostic systems [9, 10, 11].

Returning to our example however, it is easy to see that ∆′ is a
complete and independent set of prime implicates of C. It is thus natural
to take ∆′ to be the maximal articulation of C in Example 4.3. Our choice
can be justified on the grounds that

• ∆′ is a more compact representation of C,

• ∆′ minimises redundancies and disjunctive information, and

• ∆′ minimises interference with ¬r.

3The author would like to thank Lloyd Humberstone for pointing out the confu-
sion between the prime implicate and prime implicant in WCP4 presentation. Quine
actually introduced the dual notion of prime implicant in [27, 28, 29].
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However, the standard notion of prime implicate would not be able
to handle Example 4.2 since Definition 4.1 uses a classical notion of con-
sequence and thus inconsistent formulae would have the same (complete
equivalence class) of prime implicates—namely the empty clause ∅.4 But
this is exactly what we are trying to avoid in the first place. However,
there is a straightforward way to amend the situation—we use a relevant
notion of prime implicate:

Definition 4.2. A clause D is a relevant implicate of A iff A |=FDE D.
A relevant implicate D of A is prime iff for all relevant implicates D′ of
A if D′ |=FDE D then D |=FDE D′. A set of relevant prime implicates
{D1, . . . , Dn} of A is complete iff D1 ∧ . . . ∧ Dn |=FDE A. A set of
relevant prime implicates {D1, . . . , Dn} is independent iff for no Di do
we have D1 ∧ . . . ∧Di−1 ∧Di+1 ∧ . . . ∧Dn |=FDE Di. We say that two
sets of formulae Γ and ∆ are FDE equivalent, written as Γ ≡FDE ∆, iff∧

Γ |=FDE
∧

∆ and
∧

∆ |=FDE
∧

Γ.

The dual notion of relevant prime implicant of a given formula A
can easily be defined: a relevant implicant of a formula A is a cube C
(conjunction of literals) which FDE-entails A. In addition, C is prime if
it is a minimal cube that FDE-entails A.

Since FDE is a paraconsistent logic, the empty clause is not a FDE-
consequence of any (non-empty) inconsistent formula, i.e. for no A do we
have A |=FDE ∅. Given that resolution is not a valid form of inference in
relevant logic in general, it is easy to see that the set of classical prime
implicates (PI ) and the set of relevant prime implicates (RPI ) may be
distinct for a given formula:

Example 4.4. A = (q ∨ r) ∧ ((p ∨ q) ∧ (¬p ∨ q))

4There have been other attempts in defining the content of propositional data. In
[13, 14], Gemes gives several definitions of the empirical content of propositional data.
However, none of his definition addressed the problem of inconsistent data and thus
provided no useful means to individuate the content of inconsistent data. In [39],
Tennant applies the Fregean Premise Principle for Content Identity to a relevant logic
and shows that even with a relevant logic all contradictions are, in a sense, content
equivalent. The author is inclined to take Tennant’s result to be a modus tollens
for rejecting either the Fregean Principle or the use of Tennant’s relevant logic for
specifying contents. In a separate paper, we’ll investigate the possibility of saving
the Fregean Principle using the proposal stated in this paper while maintaining that
contradictions are NOT content equivalent.
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RPI PI
q ∨ r

√
×

q ×
√

Figure 7. RPI and PI of A

Although not every RPI of a given A is a PI of A, it is easy to see that
every RPI of a given A is a classical implicate of A (since |=FDE ⊂ |=).

Since any two complete independent sets of relevant prime implicates
of a given formula must be FDE equivalent, we can treat them as unique
up to equivalence. We’ll use the notation RPI (A) to denote any such
complete independent set of relevant prime implicates of A. Similarly we
use PI (A) for the complete independent set of classical prime implicates
of A. We note that RPI (A) is a minimal set (ordered under ⊆) that
is both complete and independent. In classical logic, two formulae are
equivalent iff their prime implicates are equivalent. This is also true with
respect to FDE formulae:

Proposition 4.1. For any A and B, A |=FDE B and B |=FDE A iff
RPI (A) ≡FDE RPI (B).

Proof. (⇒): Suppose A and B are FDE equivalent. Let RPI (A) =
{D1, . . . , Dm} and RPI (B) = {E1, . . . , En}. By the transitivity of |=FDE
we have,

∧
i¬m Di |=FDE Ej for each j ¬ n. Hence

∧
i¬m Di |=FDE∧

j¬n Ej . Similarly we can show that
∧

j¬n Ej |=FDE
∧

i¬m Di.
(⇐): Suppose RPI (A) ≡FDE RPI (B). Then we have

A |=FDE
∧

i¬m

Di |=FDE
∧

j¬n

Ej |=FDE B

Similarly we have

B |=FDE
∧

j¬n

Ej |=FDE
∧

i¬m

Di |=FDE A

By the transitivity of these entailments, it follows that A and B are FDE
equivalent. a

An immediate corollary is that standard reduction rules for CNF
(DNF) conversion are RPI preserving:
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Corollary 4.1. The following equivalences hold:

1. RPI (¬¬A) ≡FDE RPI (A)
2. RPI (¬(A ∨B)) ≡FDE RPI (¬A ∧ ¬B)
3. RPI (¬(A ∧B)) ≡FDE RPI (¬A ∨ ¬B)
4. RPI (A ∨ (B ∧ C)) ≡FDE RPI ((A ∨B) ∧ (A ∨ C))

The minimality of an RPI ensures that a certain transitivity property
of RPI holds:

Proposition 4.2. For any formulae A, B and C, if C ∈ RPI (B) and
B ∈ RPI (A), then C ∈ RPI (A).

Proof. Given that B ∈ RPI (A), B must be a clause and thus B ∈
RPI (B) holds trivially. So if C ∈ RPI (B), B ≡FDE C follows immedi-
ately from Definition 4.2. Hence C ∈ RPI (A). a

Just as Belnap’s replacement rules can be used as a basis for defining
the closure operators CB and C+

B , RPI s too can be used as a basis for
defining certain Tarskian closure operators:

Definition 4.3. For any A and Γ, define

CRPI (A) = RPI (A) ∪ {A}
CRPI (Γ) = {B ∈ CRPI (A)| A ∈ Γ}
C+

RPI (Γ) =
⋃

∆⊆finCRPI (Γ)
{B | B ≡FDE

∧
∆}

Proposition 4.3. CRPI and C+
RPI are both Tarskian closure operators.

Moreover, C+
RPI is an E-equivalent (U -equivalent) extension of CRPI .

Proof. Reflexivity: trivial since A ∈ CRPI (A) for every A ∈ Γ.
Monotonicity: Assume Γ ⊆ ∆, then if B ∈ CRPI (Γ), there must exist
some A ∈ Γ such that B ∈ CRPI (A). But A ∈ ∆ holds, so B ∈ CRPI (∆)
as required.
Idempotence: CRPI (Γ) ⊆ CRPI (CRPI (Γ)) is implied by the monotonicity
of CRPI above. For CRPI (CRPI (Γ)) ⊆ CRPI (Γ), we note that Proposi-
tion 4.2 gives us the transitivity property of RPI :

D ∈ CRPI (CRPI (Γ)) =⇒ ∃A ∈ CRPI (Γ) : D ∈ CRPI (A)
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=⇒ ∃B ∈ Γ : A ∈ CRPI (B)
=⇒ D ∈ CRPI (B)
=⇒ D ∈ CRPI (Γ)

Reflexivity and monotonicity for C+
RPI are straightforward. For idempo-

tence, we verify that C+
RPI (C+

RPI (Γ)) ⊆ C+
RPI (Γ):

A ∈ C+
RPI (C+

RPI (Γ)) =⇒ ∃C1, . . . , Ci ∈ CRPI (C+
RPI (Γ)) :

A ≡FDE C1 ∧ . . . ∧ Ci

=⇒ ∃D1, . . . , Di ∈ C+
RPI (Γ) :

∀j ¬ i, Cj ∈ CRPI (Dj)
=⇒ ∀j ¬ i, ∃E1

j , . . . , Em
j ∈ CRPI (Γ) :

Dj ≡FDE E1
j ∧ . . . ∧ Em

j

=⇒ ∀j ¬ i, ∃F 1
j , . . . , F m

j ∈ Γ :
E1

j ∈ CRPI (F 1
j ), . . . , Em

j ∈ CRPI (F m
j )

=⇒ ∀j ¬ i, Cj ∈ CRPI (E1
j ∧ . . . ∧ Em

j )
=⇒ ∀j ¬ i, ∃k : Cj ≡FDE Ek

j

=⇒ ∀j ¬ i, ∃F k
j ∈ Γ : Cj ∈ CRPI (F k

j )
=⇒ C1, . . . , Ci ∈ CRPI (Γ)
=⇒ A ∈ C+

RPI (Γ)

To show that C+
RPI is an E-equivalent extension of CRPI , we need to

show that

1. CRPI and C+
RPI have the same E-consequences.

2. For any Γ, CRPI (Γ) ⊆ C+
RPI (Γ).

3. For any Γ, C+
RPI (CRPI (Γ)) = C+

RPI (Γ).

(2) is trivial. For (1) we note that any FDE equivalent formula are also
classically equivalent, so an argument similar to Lemma 3.2 suffices to
show that C+

RPI is an E-equivalent (U -equivalent) extension of CRPI .
Finally we verify that C+

RPI (CRPI (Γ)) = C+
RPI (Γ):

(⊇): Trivial since CRPI and C+
RPI are both Tarskian closure operators.

(⊆): We note that CRPI is idempotent.

A ∈ C+
RPI (CRPI (Γ)) =⇒ ∃B1, . . . , Bi ∈ CRPI (CRPI (Γ)) :
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A ≡FDE (B1 ∧ . . . ∧Bi)
=⇒ ∃B1, . . . , Bi ∈ CRPI (Γ) :

A ≡FDE (B1 ∧ . . . ∧Bi)
=⇒ A ∈ C+

RPI (Γ) a

We note that Definition 4.3 makes use of RPI (A) for each A in a
given set Γ, but

⋃
A∈Γ RPI (A) need not be an independent set of RPI s.

In particular redundant (i.e. disjunctively implied) information can be
spread across members of Γ. This motivates the following alternative
definition:

Definition 4.4. For any Γ and any clause C, we define C ∈ RPI ∗(Γ) iff

1. for some A ∈ Γ, C ∈ RPI (A) and
2. for any B ∈ Γ and clause D, if D ∈ RPI (B) and D |=FDE C, then

C |=FDE D

For any Γ,
C∗RPI (Γ) = RPI ∗(Γ) ∪ Γ

Membership for C∗RPI is clearly more stringent than CRPI—a clause
C is in RPI ∗(Γ) only if C is a relevant prime implicate of some member
of Γ and no other member of Γ entails a relevant prime implicate stronger
than C. This definition is similar to Definition 4.2 for the RPI ’s of an
individual formula. However, C∗RPI is not a closure operator in Tarski’s
sense. Although both reflexivity and idempotence remain intact, C∗RPI
does not have the usual monotonicity property.
Example 4.5. Γ = {p ∧ (q ∨ r)}, p ∈ C∗RPI (Γ) and q ∨ r ∈ C∗RPI (Γ). But
q ∨ r /∈ C∗RPI (Γ′) where Γ′ = {p ∧ (q ∨ r), q}.

The failure of monotonicity should not be regarded as a defect of
C∗RPI . Arguably, implicit information need not always increase mono-
tonically with respect to supersets; C∗RPI is a possible candidate for spec-
ifying the content of a given set of logical expressions. To illustrate the
difference between C∗RPI and CRPI consider the following example:
Example 4.6. Γ = {p, (r ∧ ¬r) ∧ (p ∨ q),¬p}

Since p ∈ C∗RPI (Γ) we have p∨q /∈ C∗RPI (Γ). However p∨q ∈ CRPI (Γ)
given that p∨ q ∈ RPI ((r∧¬r)∧ (p∨ q)). Note that in Example 4.6 q is
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an E-consequence of CRPI (Γ) but not an E-consequence of C∗RPI (Γ). In
general, C∗RPI does not yield the same E-consequence (U -consequence)
as CRPI .

Proposition 4.4. For any Γ,

1. C∗RPI (Γ) ⊆ CRPI (Γ)
2. CPRI (C∗RPI (Γ)) = CRPI (Γ)
3. C∗RPI (CRPI (Γ)) = CRPI (Γ)

Proof. For (1) it suffices to observe that RPI ∗(Γ) ⊆
⋃

A∈Γ RPI (A).
(2⊇): Since Γ ⊆ C∗RPI (Γ), we have CRPI (Γ) ⊆ CRPI (C∗RPI (Γ)) by the
monotonicity of CRPI .
(2⊆): From (1) we have C∗RPI (Γ) ⊆ CRPI (Γ) so by the monotonicity of
CRPI it follows that CRPI (C∗RPI (Γ)) ⊆ CRPI (CRPI (Γ)). By the idempo-
tence of CRPI we have CRPI (C∗RPI (Γ)) ⊆ CRPI (Γ).
(3): One direction follows from Definition 4.4 immediately. For the other
direction consider an arbitrary but fixed Γ0. From (1) above we have
C∗RPI (CRPI (Γ0)) ⊆ CRPI (CRPI (Γ0)). But from Proposition 4.3 CRPI is a
Tarskian closure operator and thus CRPI (CRPI (Γ0)) = CRPI (Γ0). Hence
C∗RPI (CRPI (Γ0)) ⊆ CRPI (Γ0). Since Γ0 was arbitrary we conclude that
for any Γ, C∗RPI (CRPI (Γ)) ⊆ CRPI (Γ). a

Returning to examples 4.1 and 4.2, Belnap’s replacement rules are
complete with respect to the given A and B in these examples, i.e.
CRPI (A) ⊂ CB(A) and CRPI (B) ⊂ CB(B), but the generated impli-
cates are not all prime. So Belnap’s replacement rules are unsound with
respect to relevant prime implicates. In the general case, Belnap’s re-
placement rules are not complete since they are insufficient to transform
formulae into clausal form. Clearly for clause reduction we need the ad-
ditional rule, ` ¬(B ∧ C) ↔ (¬B ∨ ¬C), to distribute negation over
conjunction. However C+

B is complete with respect to RPI ’s, i.e. for any
Γ, we have CRPI (Γ) ⊆ C+

B (Γ). We summarise the relationships of these
closure operators in Figure 8.

To illustrate consider Γ = {(p ∧ q) ∨ (p ∧ r),¬(p ∧ q) ∧ s}. Clearly,
p∨ r ∈ CB(Γ) but p∨ r is not an RPI , so p∨ r /∈ C+

RPI (Γ). Region (1) is
non-empty. Moreover ¬(p∧q) ∈ CB(Γ) but ¬p∨¬q ∈ C+

RPI (Γ), so region
(2) is non-empty. Example 4.6 shows that region (3) is non-empty and
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Figure 8. Relationships between Closure Operators

with minor modification it can show that region (4) is also non-empty.
To see that C+

RPI ⊆ C+
B , it suffices to note that

Proposition 4.5. For any clause D and formula A, if D ∈ RPI (A),
then E ≡FDE D for some E ∈ CB(A).

Proof. We note that using arguments similar to proofs of Lemma 3.1
and Proposition 3.1, we can show that any A is FDE-equivalent to the
conjunction of the leaves of the Belnap’s tree T A, i.e. le(T A) ≡FDE
RPI (A). Moreover, each leaf of a Belnap’s tree is conjunction free in the
sense that each leaf is FDE-equivalent to a clause. Hence if D ∈ RPI (A),
there must be a leaf E of T A such that D ≡FDE E. a

We should point out that in adopting the use of either CRPI or C+
RPI

for capturing the informational content of a formula, there is no guaran-
tee that conjunction elimination is a sound strategy for generating RPI s.
In general RPI (A) ∪ RPI (B) 6= RPI (A ∧B).
Example 4.7. A = p ∧ (p ∨ q)

In Example 4.7, it is clear that RPI (p∧(p∨q)) ⊂ RPI (p)∪RPI (p∨q).
The containment here is proper. However, we do have the containment
RPI (A ∧B) ⊆ RPI (A) ∪ RPI (B) in the general case.

Lemma 4.1. For any clause C and any formula A and B, if A |=FDE C,
then A ∧B |=FDE C.
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Proof. We use the ambi-valuation of Dunn [12] to prove our claim.
Assume that A |=FDE C. Then we have the implication 1 ∈ v(A) ⇒
1 ∈ v(C) for any standard 4-valued valuation v of FDE . Consider an
arbitrary v′ such that 1 ∈ v′(A ∧B). Then it follows that 1 ∈ v′(A) and
1 ∈ v′(B). So on v′ in particular, 1 ∈ v′(C). Since v′ was arbitrary, we
have A ∧B |=FDE D as required. a

Proposition 4.6. For any A and B, RPI (A∧B) ⊆ RPI (A)∪RPI (B).

Proof. Assume that for an arbitrary clause D we have D ∈ RPI (A∧B)
but D /∈ RPI (A) ∪ RPI (B). Then we have A ∧ B |=FDE D but D /∈
RPI (A) and D /∈ RPI (B). Then there are 4 cases to consider:

(Case 1) A 6|=FDE D and B |=FDE D but D is not prime for B: it follows
that there exists a D0 ∈ RPI (B) such that B |=FDE D0 and D0 |=FDE D
but D 6|=FDE D0. By Lemma 4.1, we have A ∧ B |=FDE D0. But given
that D ∈ RPI (A ∧ B) and D0 |=FDE D, D |=FDE D0 holds. This is a
contradiction.

(Case 2) B 6|=FDE D and A |=FDE D but D is not prime for A: the proof
is similar to case 1 with B replaced with A throughout.

(Case 3) Both A |=FDE D and B |=FDE D, but D is prime for neither A
nor B: the argument in case (1) suffices to show that case 3 is impossible.

(Case 4) A 6|=FDE D and B 6|=FDE D: we make use of the equivalence
between FDE and tautological entailment as described in Anderson and
Belnap ([1]). Since A 6|=FDE D and B 6|=FDE D, for any arbitrary but
fixed DNF = CA

1 ∨ . . . ∨ CA
m of A and DNF = CB

1 ∨ . . . ∨ CB
n of B,

there exist some i ¬ m, and some j ¬ n such that CA
i 6|=FDE D and

CB
j 6|=FDE D. Denote the set of literals occurring in CA

i as lit(CA
i ). We

have lit(CA
i ) ∩ lit(D) = ∅ and lit(CB

j ) ∩ lit(D) = ∅. Hence (lit(CA
i ) ∪

lit(CB
j )) ∩ lit(D) = ∅. Now consider the formula

E =
∨

1¬k¬m, 1¬l¬n

(CA
k ∧ CB

l )

Clearly, E is a DNF of A∧B. Since lit(CA
i ∧CB

j ) = (lit(CA
i )∪lit(CB

j )),
we note that lit(CA

i ∧CB
j )∩ lit(D) = ∅. We define a 4-valued assignment
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v on the set of propositional atoms as follows:

0 ∈ v(p) and 1 /∈ v(p) if ¬p ∈ lit(CA
i ∧ CB

j ) and
p /∈ lit(CA

i ∧ CB
j )

1 ∈ v(p) and 0 /∈ v(p) if p ∈ lit(CA
i ∧ CB

j ) and
¬p /∈ lit(CA

i ∧ CB
j )

1 ∈ v(p) and 0 ∈ v(p) if p ∈ lit(CA
i ∧ CB

j ) and
¬p ∈ lit(CA

i ∧ CB
j )

1 /∈ v(p) and 0 /∈ v(p) otherwise

Clearly 1 ∈ v(CA
i ∧ CB

j ) and hence 1 ∈ v(E) but by the disjointness
of lit(CA

i ∧ CB
j ) and lit(D), 1 /∈ v(D). Hence A ∧ B 6|=FDE D. But this

contradicts the initial assumption that D ∈ RPI (A ∧B). a

4.2. Algorithmic Considerations

Proposition 4.6 shows that in terms of using replacement rules in the style
of [∗] or [#] for eliminating conjunctions, the RPI s of a child node need
not be the RPI s of the root node. So although Corollary 4.1 shows that
the standard reduction method for CNF conversion is indeed complete
for generating RPI s, there is no guarantee that the clauses obtained are
indeed independent. Checking for clause subsumption seems unavoidable
and indeed critical when redundant information is presented. However
when combined with a clause subsumption check, the standard CNF
conversion algorithm can provide a sound and complete algorithm for
generating RPI s.

Algorithm 4.1 RPI Generation
Require: input A ∈ Φ
Ensure: output S = RPI (A)
1: convert A into CNF(A) using the standard reduction method
2: for each C ∈ CNF(A), S := S ∪ {C} if C is relevant prime, else

S := S.
3: return S
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Algorithm 4.1 is a naive method for generating RPI s. It first gen-
erates a set of relevant implicates of A and then prunes the set by
removing all non-prime implicates. Clearly we have CNF(A) ≡FDE
RPI (A) given Corollary 4.1. So completeness is ensured in step (1)
provided that step (2) does not remove implicates that are also prime
(and clearly it doesn’t). Although the clause subsumption check may
be deployed earlier while CNF(A) is generated, in the worst case the
size of CNF(A) can be exponentially related to the size of A, e.g. if
A = (p1∧p2)∨ . . .∨ (p2n−1∧p2n), there are 2n clauses in the correspond-
ing CNF . Our problem is inherently difficult computationally.

4.2.1. P RI via Classical P I Generation

In what follows, we’ll present an alternative algorithm for generating
RPI (A) based on ideas from Ramesh et al [32, 30, 31] and Arieli and
Denecker [3, 4]. The main idea here is to avoid the expensive CNF
conversion by using negated normal form (NNF) instead. Once a formula
A is converted into NNF(A), we’ll make use of Arieli and Denecker’s
splitting transform to convert NNF(A) into a positive (i.e. negation free)
formula ̂NNF(A).5 The conversion will preserve our problem in the sense
that for any clause D, D ∈ RPI (A) iff D̂ ∈ PI ( ̂NNF(A)). So in effect
our problem is transformed into the classical problem of prime implicate
generation for a positive NNF formula. The algorithm of Ramesh et
al [30, 31] can thus be invoked to generate the required PI ’s via the
use of the corresponding semantic graph.6 We recall some of the main
definitions from Arieli and Denecker [3, 4].

Definition 4.5. 1. A formula A is in negated normal form (NNF) iff
no complex subformula of A is in the scope of a negation, i.e. only
atomic formulae are within the scope of a negation operator.

2. Let NNF(A) denotes the negated normal form of A. Then the split-
ting transform of NNF(A), denoted by ̂NNF(A), is the formula ob-
tained by uniformly substituting every unnegated atom pi occurring

5We note that Besnard and Schaub [8] employed the same transform for defining
signed systems of paraconsistent reasoning.

6We do not have space here to explicate the algorithm or the underlying concept
of a semantic graph here. The reader can refer to Ramesh et al [30, 31] for full details.
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in NNF(A) with a new (signed) atom p+
i and every negated atom ¬pi

in NNF(A) with a new (signed) atom p−i [3, 4]. If B = Â for some
A, then we define the inverse of splitting transform B as the formula
obtained by uniformly substituting every signed atom p+

i with literal
pi and every signed atom p−i with literal ¬pi, i.e. Â = A

3. Let v be an arbitrary 4-valued assignment and NNF(A) an arbitrary
NNF formula.7 Then v̂ is the 2-valued (classical) assignment defined
as follows:

• For all p+
i and p−i occurring in ̂NNF(A), v̂(p+

i ) = 1 iff 1 ∈ v(pi) and
v̂(p−i ) = 1 iff 0 ∈ v(pi).

We note that both the splitting transform and v̂ are well defined and
do not depend on A. The following are consequences of Definition 4.5:

Proposition 4.7.
1. Let v be an arbitrary 4-valued assignment and NNF(A) be an arbi-

trary NNF formula. Let v̂ be a 2-valued assignment as defined in
(3) of Definition 4.5. Then 1 ∈ v(NNF(A)) iff v̂( ̂NNF(A)) = 1 (cf.
Lemma 3.1 of [3]).

2. For any A and B, A |=FDE B iff ̂NNF(A) |= ̂NNF(B) (cf. Theorem 3.1
of [3]).

3. For any clause D, D ∈ RPI (A) iff D̂ ∈ PI ( ̂NNF(A)).
4. The problem of relevant prime implicate generation is polynomially

reducible to classical prime implicate generation.

Proof. We note that (2) is a simple corollary of (1). For (1), we use an
induction on the structure of NNF(A). There are two base cases with
either NNF(A) = pi or NNF(A) = ¬pi. In the former case we have
1 ∈ v(pi)⇔ v̂(p+

i ) = 1 given by the definition of v̂. In the later case we
have 1 ∈ v(¬pi)⇔ 0 ∈ v(pi)⇔ v̂(p−i ) = 1.

For the induction case we have either NNF(A) = B∧C or NNF(A) =
B∨C. We note that both B and C must be in NNF form and hence the
induction hypothesis applies. Thus we have 1 ∈ v(B) ⇔ v̂(B̂) = 1 and

7The underlying 4-value assignment is based on the same ambi-valuation of Dunn
[12] as deployed in the proof of Lemma 4.1. We note in passing that this is not the
only semantics available for FDE .
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1 ∈ v(C) ⇔ v̂(Ĉ) = 1. So 1 ∈ v(B ∧ C) ⇔ [1 ∈ v(B) and1 ∈ v(C)] ⇔
[v̂(B̂) = 1 and v̂(Ĉ) = 1]⇔ v̂(B̂ ∧ C) = 1. The case for B ∨C is similar.
(3 ⇒): Since NNF(A) ≡FDE A it suffices for us to consider an arbi-
trary D ∈ RPI (NNF(A)). Then by (2) above we have ̂NNF(A) |= D̂.
This shows that D̂ is an implicate of ̂NNF(A). Toward a contradic-
tion, suppose D̂ is not prime. Then there exists a clause C such that
̂NNF(A) |= C and C |= D̂ but D̂ 6|= C. But ̂NNF(A) is negation free

and thus neither C nor D̂ are the empty clause, nor are they tautologies.
Hence there must be a C ′ such that NNF(A) |=FDE C ′ where Ĉ ′ = C.
But then we have C ′ |=FDE D but D 6|=FDE C ′. This contradicts the
primeness of D. Hence D̂ ∈ PI ( ̂NNF(A)) as required.
(3⇐): Suppose that D /∈ RPI (NNF(A)). Then either NNF(A) 6|=FDE D

or D is not prime. In the former case, ̂NNF(A) 6|= D̂ follows immediately
from (2). So suppose D is a relevant implicate of NNF(A) but is not
prime. Then there exists a C such that NNF(A) |=FDE C and C |=FDE D
but D 6|=FDE C. By (3⇒) and (2) above it follows that Ĉ is a prime
implicate of ̂NNF(A) but D̂ 6|= Ĉ. Hence D̂ /∈ PI ( ̂NNF(A)) as required.
(4): We note that both NNF conversion and the splitting transform are
linearly related to the input formula. Hence by (3) above, the claim
follows. a

We note that (4) of Proposition 4.7 in fact answers a question raised
by J. Marcos in WCP4—the complexity of deciding whether a given
clause is a relevant prime implicate of a given formula is no harder than
deciding whether a given clause is just a prime implicate of a given
formula. Both decision problems are BH2-complete (see Marquis [24],
Proposition 100).8

5. Conclusion

In this paper we have seen that reasoning with inconsistent information
can be divided into two distinct stages. In the first stage inconsistent in-
formation encoded in a full language can be rewritten in such a way as to

8This result is not to be confused with the result of Umans [40], Theorem 5, which is
the problem of finding the shortest implicant. Umans shows that the shortest implicant
problem is Σp

2-complete.
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facilitate the isolation of the inconsistent part of the information. In the
second stage various deduction strategies based on either classical or non-
classical logics can then be applied to the rewrite. We note that Belnap’s
strategy of dividing reasoning into a preprocessing stage and a deduction
stage is akin to a recent approach to knowledge compilation. The key to
preprocessing data is to ensure that any operation on data must be con-
tent preserving. However, we find Belnap’s suggestion of using conjunc-
tive containment wanting. In particular, inconsistent information tends
to interact badly with disjunctive and redundant information. Although
conjunctive containment generally reduces disjunctive consequences, it
is however insufficient. Our remedy is to use a relevant notion of prime
implicates as the basis to both preserve information and minimise the
potentially harmful disjunctive content of inconsistent information.
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