49 research outputs found

    Spatial Reasoning for the Semantic Web -Use Cases and Technological Challenges

    Get PDF
    The goal of semantic web research is to turn the World-Wide Web into a Web of Data that can be processed automatically to a much larger extend than possible with traditional web technology. Important features of the solution currently being developed is the ability to link data from from different sources and to provide formal definitions of the intended meaning of the terminology used in different sources as a basis for deriving implicit information and for conflict detection. Both requires the ability to reason about the definition of terms. With the development of OWL as the standard language for representing terminological knowledge, reasoning in description logics has been determined as the major technique for performing this reasoning So far little attention has been paid to the problem of representing and reasoning about space and time on the semantic web. In particular, existing semantic web languages are not well suited for representing these aspects as they require to operate over metric spaces that behave fundamentally different from the abstract interpretation domains description logics are based on. Nevertheless, there is a strong need to integrate reasoning about space and time into existing semantic web technologies especially because more and more data available on the web has a references to space and time. Images taken by digital cameras are a good example of such data as they come with a time stamp and geographic coordinates. In this paper, we concentrate on spatial aspects and discuss different use case for reasoning about spatial aspects on the (semantic) web and possible technological solutions for these use cases. Based on these discussions we conclude that the actual open problem is not existing technologies for terminological or spatial reasoning, but the lack of an established mechanism for combining the two. The Case for Spatial Queries One of the most central functionality that should be supported by semantic web technology is query answering over web data. The primary language for this purpose i

    Open world reasoning in semantics-aware access control: A preliminary study

    Get PDF
    We address the relationships between theoretical foundations of Description Logics and practical applications of security-oriented Semantic Web techniques. We first describe the advantages of semantics-aware Access Control and review the state of the art; we also introduce the basics of Description Logics and the novel semantics they share. Then we translate the principle underlying the Little House Problem of DL into a real-world use case: by applying Open World Reasoning to the Knowledge Base modelling a Virtual Organization, we derive information not achievable with traditional Access Control methodologies. With this example, we also show that a general problem such as ontology mapping can take advantage of the enhanced semantics underlying OWL Lite and OWL DL to handle under-specified concepts

    e-Science and biological pathway semantics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science.</p> <p>Results</p> <p>We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs.</p> <p>Conclusion</p> <p>Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science.</p

    Modelling dialogues in agent societies

    Full text link
    Besides the simpler ability to interact, open multi-agent systems must include mechanisms for their agents to reach agreements by taking into account their social context. Argumentation provides multi-agent systems with a framework that assures a rational communication, which allows agents to reach agreements when conflicts of opinion arise. In this paper, we present the dialogue protocol that agents of a case-based argumentation framework can use to interact when they engage in argumentation dialogues. The syntax and semantics of the argumentation protocol are formalised and discussed. To illustrate our proposal, we have applied the protocol in the context of a water market. By using our dialogue protocol, agents represent water users that are able to explore different water allocations and justify their views about what is the best water distribution in a certain environment.This work is supported by the Spanish government Grants CONSOLIDER INGENIO 2010 CSD2007-00022, MINECO/FEDER TIN2012-36586-C03-01, and MICINN TIN2011-27652-C03-01.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2014). Modelling dialogues in agent societies. Engineering Applications of Artificial Intelligence. 34:208-226. https://doi.org/10.1016/j.engappai.2014.06.003S2082263
    corecore