48 research outputs found

    Reducing mismatch in training of DNN-based glottal excitation models in a statistical parametric text-to-speech system

    Get PDF
    Neural network-based models that generate glottal excitation waveforms from acoustic features have been found to give improved quality in statistical parametric speech synthesis. Until now, however, these models have been trained separately from the acoustic model. This creates mismatch between training and synthesis, as the synthesized acoustic features used for the excitation model input differ from the original inputs, with which the model was trained on. Furthermore, due to the errors in predicting the vocal tract filter, the original excitation waveforms do not provide perfect reconstruction of the speech waveform even if predicted without error. To address these issues and to make the excitation model more robust against errors in acoustic modeling, this paper proposes two modifications to the excitation model training scheme. First, the excitation model is trained in a connected manner, with inputs generated by the acoustic model. Second, the target glottal waveforms are re-estimated by performing glottal inverse filtering with the predicted vocal tract filters. The results show that both of these modifications improve performance measured in MSE and MFCC distortion, and slightly improve the subjective quality of the synthetic speech.Peer reviewe

    Waveform Generation for Text-to-speech Synthesis Using Pitch-synchronous Multi-scale Generative Adversarial Networks

    Get PDF
    The state-of-the-art in text-to-speech synthesis has recently improved considerably due to novel neural waveform generation methods, such as WaveNet. However, these methods suffer from their slow sequential inference process, while their parallel versions are difficult to train and even more expensive computationally. Meanwhile, generative adversarial networks (GANs) have achieved impressive results in image generation and are making their way into audio applications; parallel inference is among their lucrative properties. By adopting recent advances in GAN training techniques, this investigation studies waveform generation for TTS in two domains (speech signal and glottal excitation). Listening test results show that while direct waveform generation with GAN is still far behind WaveNet, a GAN-based glottal excitation model can achieve quality and voice similarity on par with a WaveNet vocoder.Comment: Submitted to ICASSP 201

    Statistical parametric speech synthesis based on sinusoidal models

    Get PDF
    This study focuses on improving the quality of statistical speech synthesis based on sinusoidal models. Vocoders play a crucial role during the parametrisation and reconstruction process, so we first lead an experimental comparison of a broad range of the leading vocoder types. Although our study shows that for analysis / synthesis, sinusoidal models with complex amplitudes can generate high quality of speech compared with source-filter ones, component sinusoids are correlated with each other, and the number of parameters is also high and varies in each frame, which constrains its application for statistical speech synthesis. Therefore, we first propose a perceptually based dynamic sinusoidal model (PDM) to decrease and fix the number of components typically used in the standard sinusoidal model. Then, in order to apply the proposed vocoder with an HMM-based speech synthesis system (HTS), two strategies for modelling sinusoidal parameters have been compared. In the first method (DIR parameterisation), features extracted from the fixed- and low-dimensional PDM are statistically modelled directly. In the second method (INT parameterisation), we convert both static amplitude and dynamic slope from all the harmonics of a signal, which we term the Harmonic Dynamic Model (HDM), to intermediate parameters (regularised cepstral coefficients (RDC)) for modelling. Our results show that HDM with intermediate parameters can generate comparable quality to STRAIGHT. As correlations between features in the dynamic model cannot be modelled satisfactorily by a typical HMM-based system with diagonal covariance, we have applied and tested a deep neural network (DNN) for modelling features from these two methods. To fully exploit DNN capabilities, we investigate ways to combine INT and DIR at the level of both DNN modelling and waveform generation. For DNN training, we propose to use multi-task learning to model cepstra (from INT) and log amplitudes (from DIR) as primary and secondary tasks. We conclude from our results that sinusoidal models are indeed highly suited for statistical parametric synthesis. The proposed method outperforms the state-of-the-art STRAIGHT-based equivalent when used in conjunction with DNNs. To further improve the voice quality, phase features generated from the proposed vocoder also need to be parameterised and integrated into statistical modelling. Here, an alternative statistical model referred to as the complex-valued neural network (CVNN), which treats complex coefficients as a whole, is proposed to model complex amplitude explicitly. A complex-valued back-propagation algorithm using a logarithmic minimisation criterion which includes both amplitude and phase errors is used as a learning rule. Three parameterisation methods are studied for mapping text to acoustic features: RDC / real-valued log amplitude, complex-valued amplitude with minimum phase and complex-valued amplitude with mixed phase. Our results show the potential of using CVNNs for modelling both real and complex-valued acoustic features. Overall, this thesis has established competitive alternative vocoders for speech parametrisation and reconstruction. The utilisation of proposed vocoders on various acoustic models (HMM / DNN / CVNN) clearly demonstrates that it is compelling to apply them for the parametric statistical speech synthesis

    Speech Modeling and Robust Estimation for Diagnosis of Parkinson’s Disease

    Get PDF

    Overcoming the limitations of statistical parametric speech synthesis

    Get PDF
    At the time of beginning this thesis, statistical parametric speech synthesis (SPSS) using hidden Markov models (HMMs) was the dominant synthesis paradigm within the research community. SPSS systems are effective at generalising across the linguistic contexts present in training data to account for inevitable unseen linguistic contexts at synthesis-time, making these systems flexible and their performance stable. However HMM synthesis suffers from a ‘ceiling effect’ in the naturalness achieved, meaning that, despite great progress, the speech output is rarely confused for natural speech. There are many hypotheses for the causes of reduced synthesis quality, and subsequent required improvements, for HMM speech synthesis in literature. However, until this thesis, these hypothesised causes were rarely tested. This thesis makes two types of contributions to the field of speech synthesis; each of these appears in a separate part of the thesis. Part I introduces a methodology for testing hypothesised causes of limited quality within HMM speech synthesis systems. This investigation aims to identify what causes these systems to fall short of natural speech. Part II uses the findings from Part I of the thesis to make informed improvements to speech synthesis. The usual approach taken to improve synthesis systems is to attribute reduced synthesis quality to a hypothesised cause. A new system is then constructed with the aim of removing that hypothesised cause. However this is typically done without prior testing to verify the hypothesised cause of reduced quality. As such, even if improvements in synthesis quality are observed, there is no knowledge of whether a real underlying issue has been fixed or if a more minor issue has been fixed. In contrast, I perform a wide range of perceptual tests in Part I of the thesis to discover what the real underlying causes of reduced quality in HMM synthesis are and the level to which they contribute. Using the knowledge gained in Part I of the thesis, Part II then looks to make improvements to synthesis quality. Two well-motivated improvements to standard HMM synthesis are investigated. The first of these improvements follows on from averaging across differing linguistic contexts being identified as a major contributing factor to reduced synthesis quality. This is a practice typically performed during decision tree regression in HMM synthesis. Therefore a system which removes averaging across differing linguistic contexts and instead performs averaging only across matching linguistic contexts (called rich-context synthesis) is investigated. The second of the motivated improvements follows the finding that the parametrisation (i.e., vocoding) of speech, standard practice in SPSS, introduces a noticeable drop in quality before any modelling is even performed. Therefore the hybrid synthesis paradigm is investigated. These systems aim to remove the effect of vocoding by using SPSS to inform the selection of units in a unit selection system. Both of the motivated improvements applied in Part II are found to make significant gains in synthesis quality, demonstrating the benefit of performing the style of perceptual testing conducted in the thesis

    In search of the optimal acoustic features for statistical parametric speech synthesis

    Get PDF
    In the Statistical Parametric Speech Synthesis (SPSS) paradigm, speech is generally represented as acoustic features and the waveform is generated by a vocoder. A comprehensive summary of state-of-the-art vocoding techniques is presented, highlighting their characteristics, advantages, and drawbacks, primarily when used in SPSS. We conclude that state-of-the-art vocoding methods are suboptimal and are a cause of significant loss of quality, even though numerous vocoders have been proposed in the last decade. In fact, it seems that the most complicated methods perform worse than simpler ones based on more robust analysis/synthesis algorithms. Typical methods, based on the source-filter or sinusoidal models, rely on excessive simplifying assumptions. They perform what we call an "extreme decomposition" of speech (e.g., source+filter or sinusoids+ noise), which we believe to be a major drawback. Problems include: difficulties in the estimation of components; modelling of complex non-linear mechanisms; a lack of ground truth. In addition, the statistical dependence that exists between stochastic and deterministic components of speech is not modelled. We start by improving just the waveform generation stage of SPSS, using standard acoustic features. We propose a new method of waveform generation tailored for SPSS, based on neither source-filter separation nor sinusoidal modelling. The proposed waveform generator avoids unnecessary assumptions and decompositions as far as possible, and uses only the fundamental frequency and spectral envelope as acoustic features. A very small speech database is used as a source of base speech signals which are subsequently \reshaped" to match the specifications output by the acoustic model in the SPSS framework. All of this is done without any decomposition, such as source+filter or harmonics+noise. A comprehensive description of the waveform generation process is presented, along with implementation issues. Two SPSS voices, a female and a male, were built to test the proposed method by using a standard TTS toolkit, Merlin. In a subjective evaluation, listeners preferred the proposed waveform generator over a state-of-the-art vocoder, STRAIGHT. Even though the proposed \waveform reshaping" generator generates higher speech quality than STRAIGHT, the improvement is not large enough. Consequently, we propose a new acoustic representation, whose implementation involves feature extraction and waveform generation, i.e., a complete vocoder. The new representation encodes the complex spectrum derived from the Fourier Transform in a way explicitly designed for SPSS, rather than for speech coding or copy-synthesis. The feature set comprises four feature streams describing magnitude spectrum, phase spectrum, and fundamental frequency; all of these are represented by real numbers. It avoids heuristics or unstable methods for phase unwrapping. The new feature extraction does not attempt to decompose the speech structure and thus the "phasiness" and "buzziness" found in a typical vocoder, such as STRAIGHT, is dramatically reduced. Our method works at a lower frame rate than a typical vocoder. To demonstrate the proposed method, two DNN-based voices, a male and a female, were built using the Merlin toolkit. Subjective comparisons were performed with a state-of-the-art baseline. The proposed vocoder substantially outperformed the baseline for both voices and under all configurations tested. Furthermore, several enhancements were made over the original design, which are beneficial for either sound quality or compatibility with other tools. In addition to its use in SPSS, the proposed vocoder is also demonstrated being used for join smoothing in unit selection-based systems, and can be used for voice conversion or automatic speech recognition
    corecore