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ABSTRACT

The state-of-the-art in text-to-speech (TTS) synthesis has recently
improved considerably due to novel neural waveform generation
methods, such as WaveNet. However, these methods suffer from
their slow sequential inference process, while their parallel ver-
sions are difficult to train and even more computationally expensive.
Meanwhile, generative adversarial networks (GANs) have achieved
impressive results in image generation and are making their way into
audio applications; parallel inference is among their lucrative prop-
erties. By adopting recent advances in GAN training techniques, this
investigation studies waveform generation for TTS in two domains
(speech signal and glottal excitation). Listening test results show
that while direct waveform generation with GAN is still far behind
WaveNet, a GAN-based glottal excitation model can achieve quality
and voice similarity on par with a WaveNet vocoder.

Index Terms— Neural vocoding, text-to-speech, GAN, glottal
excitation model

1. INTRODUCTION

Recent advances in deep learning have led to text-to-speech (TTS)
systems achieving near-human naturalness [1]. This is partially due
to neural sequence-to-sequence mapping methods that can learn to
align and map between input text and output acoustic feature se-
quences [2]. Another major progress in TTS is the introduction
of waveform generation methods, such as WaveNet [3], that have
been adopted to use as “neural vocoders” [4]. Generally, a neural
vocoder is a neural network that, given some input acoustic features,
outputs (speech) waveforms. This approach effectively decouples
the acoustic mapping and waveform generation models from each
other. Indeed, WaveNet-based neural vocoders have been success-
fully applied in TTS using either sequence-to-sequence techniques
[1] or more traditional statistical parametric speech synthesis (SPSS)
acoustic models [5]. Although WaveNets and other autoregressive
models produce impressive results, their inference process is inher-
ently slow, and requires heavy optimization for real time applica-
tions [6, 7]. Alternative approaches capable of parallel inference
have been proposed [8, 9], but these models are increasingly com-
plex and difficult to train.

Meanwhile, generative adversarial networks (GANs) have
achieved impressive results in image synthesis [10], and they are cur-
rently of increasing interest in speech applications. Recent advances
are powered in part by more appropriate architectures, including
residual connections [11] progressive upsampling [10, 12] and
multi-scale processing [13]. Similar mechanisms can be seen in the
WaveNet architecture (cf. exponentially growing dilations and resid-
ual connections). On the other hand, improved training techniques
(e.g. [14, 11]) have also resulted in better stability and convergence

properties for GANs. Nevertheless, while some speech-related
GAN applications apply direct waveform-to-waveform transfor-
mations [15, 16], most TTS applications have so far used GANs on
improving acoustic models instead of directly generating waveforms
[17, 18].

Another approach to facilitate neural waveform generation for
speech synthesis is the pitch-synchronous utilization of glottal wave-
forms (i.e. signals representing the true air flow excitation of speech
generated by the vocal folds). In this approach, glottal inverse fil-
tering [19] is applied to the speech signal in order to remove the
vocal tract resonances and to obtain a more elementary signal that
is easier to model. Early approaches used a point-wise least squares
loss in time-domain [20, 21], and while this captures the gross wave-
shape well, the produced output is essentially a conditional average
and lacks in stochastic high frequency contents (due to the averag-
ing). The missing stochastic component can be recreated using sig-
nal processing techniques for aperiodicity modification, resulting in
high quality synthetic speech [22, 23], but this involves making sig-
nal model assumptions that may not hold generally. Further efforts
have been made to model the stochastic part directly using GANs
[24] or WaveNet (“GlotNet”) [21]. However, the former approach
suffers from the unstable GAN training techniques available at the
time, and for the latter WaveNet inference limitations still apply. A
similar excitation modeling approach can be extended to generat-
ing residual excitation signals for waveform synthesis from MFCCs,
as MFCCs can be readily interpreted as spectral envelopes and can-
celled from the signal via inverse filtering [25].

This paper proposes a novel multi-scale GAN architecture for
pitch-synchronous waveform generation. The proposed generator
performs progressive upsampling of feature maps and outputs wave-
forms at multiple timescales, while the discriminator ensures that the
waveforms remain valid at each timescale. The model is trained us-
ing a Wasserstein GAN [14] with modified gradient penalties [11]
and an FFT-based auxiliary loss, leading to stable training behavior
for both direct speech waveform and glottal excitation signals. The
proposed model is evaluated as a neural vocoder for an SPSS system
and compared with the GlottDNN and WaveNet vocoders. The re-
sults show that the proposed “GlotGAN” can achieve similar perfor-
mance to the WaveNet vocoder, while the direct waveform “Wave-
GAN” still falls short in performance compared to the other meth-
ods. Computational benefits of the proposed model include parallel
inference (due to GAN) and explicit fundamental frequency control
(due to pitch-synchronous processing).

2. SPEECH SYNTHESIS SYSTEM

The focus of this paper is on neural vocoders, and we use a conven-
tional SPSS pipeline for the text-to-acoustic-features mapping. First,



text is converted to linguistic features using the Flite speech synthe-
sis front-end [26] and the Combilex lexicon [27]. Alignments be-
tween the linguistic and acoustic features are found using the HMM-
based speech synthesis system (HTS) [28] and we use a bidirectional
long short-term memory (BLSTM) recurrent neural network (RNN)
for the acoustic model. For system details, see [29].

This paper uses a common acoustic feature set of glottal vocoder
features [22] for all neural vocoders: 30 vocal tract filter line spec-
tral frequencies (LSFs), 10 glottal source spectral envelope LSFs, 5
harmonic-to-noise ratio (HNR) parameters, fundamental frequency
value on mel-scale (interpolated over unvoiced frames) and a binary
voicing flag.

2.1. Speech material

In the experiments, we use speech data from two speakers (one male,
one female), who both are professional British English voice talents.
The dataset for the male speaker “Nick” comprises 2 542 utterances,
totaling 1.8 hours, and the dataset for the female speaker “Jenny”
comprises 4 314 utterances, totaling 4.8 hours. For both speakers,
100-utterance test and validation sets were randomly selected from
the data, while the remaining utterances were used for training. The
material is used at a 16 kHz sample rate.

3. PROPOSED WAVEFORM GENERATION MODEL

3.1. Waveform representation

In this work, we further simplify the waveform representation from
[30] by removing the pitch-adaptive cosine windowing and merely
phase-lock the window midpoint to a glottal closure instant (GCI).
See Fig. 1 for illustration. We use REAPER for GCI and pitch es-
timation [31]. Similar phase-locked representations have been suc-
cessfully applied not only in our previous work ([30, 24, 25]), but
also in [23, 32]. Furthermore, using GCIs to center waveforms in a
window can be seen analogous to using facial landmarks to center
images, as done in the highly successful CelebA-HQ dataset [10].

The target waveform can be the glottal excitation or the speech
waveform directly. Our primary interest in this paper is the glottal
excitation, as it appears relatively simpler to model [21], but we also
include experiments on modeling the speech waveform directly. At
synthesis time, the generated waveforms are assembled using pitch-
synchronous overlap-add (PSOLA) [33], but in principle, the non-
tapered windowing enables using other concatenation techniques,
including waveform similarity overlap-add (WSOLA) [34]. When
modeling glottal excitation signals, the assembled excitation signal
is further filtered with the vocal tract filter to produce speech.

3.2. Model architecture

A general view of our GAN architecture is shown in Fig. 2. Pro-
gressive upsampling aims for the lower resolution layers to learn
the low frequency global structure, while the high resolution layers
can focus on the high frequency stochastic signal components. By
construction, the model allocates more capacity on the perceptually
more relevant low frequencies.

The generator G consists of gated convolutional residual blocks
with progressive feature map upsampling at each block. Fig. 3 shows
a schematic of the generator block. Upsampling is performed along
the sample dimension using linear interpolation to avoid checker-
board artefacts commonly arising from transposed convolution up-
sampling [35]. In total, the generator contains five blocks that per-
form progressive upsampling from 32 points to 512 points.

The discriminator D consists of similar gated convolution
blocks (without residual connections). Each block downsamples
the input by a factor of two, using strided convolutions, until input
width of one is reached. The first five discriminator blocks con-
catenate the generator output or real image and the conditioning to
the hidden activations at their respective timescale before applying
the convolution. Both the generator and the discriminator use 128-
channel 2D-convolutions with filter width three across frames and
seven across samples.

The conditioning modelC encodes the 200 Hz frame rate acous-
tic sequence with a non-causal WaveNet-like dilated convolution
structure (similar to [36]). The model consists of eight residual
blocks with the dilation pattern {1, 2, 4, 8} repeated twice. The di-
lation stack is attached via skip connections to a projection module
that outputs conditioning at each time-scale. The residual blocks use
64 channels and a filter width three.

3.3. GAN training

Denote the full-resolution signal segment by xn, and a collec-
tion x containing the segment xn at all time resolutions by x =
{xi}i=0,...,n, i.e. xi is xn downsampled by a factor of 2i. Simi-
larly, the generator model G outputs a collection of synthetic data
points x̂ = G(z, c) at all timescales, given a Gaussian noise input z
and time-varying conditioning c (derived from the acoustic feature
input).

The goal of the generator is to produce x̂ that appears correct
at each timescale, while the discriminator provides useful learning
signals to match the real and generated data distributions (also at
each timescale). We use the Wasserstein GAN [14] loss

LW
D = −Ex∼pD [D(x, c)] + Ex̂∼pg [D(x̂, c)] (1)

for the discriminator and LW
G = −LW

D for the generator. To keep
the discriminator Lipschitz continuous, we use a one-sided gradient
penalty (also proposed in [14], see their Appendix C). We prevent the
penalty from activating for magnitudes below one to avoid cyclic,
non-convergent training dynamics described in [11]. The masked
gradient penalty is given by

LGP
D = Ex∼pD,x̂∼pg

[
(max{0, ‖∇x̃D(x̃, c)‖ − 1})2

]
, (2)

where x̃ = εx+ (1− ε)x̂ is sampled randomly along the line seg-
ment between x and x̂. Additionally, to encourage convergence, we
use the “R1” penalty [11] that penalizes large discriminator gradient
magnitudes for the real data samples

LR1
D = Ex∼pD

[
‖∇xD(x, c)‖2

]
(3)

Finally, we add an optional loss term based on the mean squared
error of FFT magnitudes. Similar auxiliary FFT-based losses have
been found helpful for waveform generation in e.g. [8, 25, 9]. We
only apply the FFT loss on the full-resolution signal:

LFFT
G = E

[
(|FFT(xn)| − |FFT(x̂n)|)2

]
(4)

Notably, the FFT-based loss only uses the spectral magnitude, so all
learning of phase information is due to the GAN loss. We found that
the spectral loss stabilizes the training both for speech waveforms
and glottal excitations, but is not strictly necessary for the latter.

The total training objective is to minimize LG,C = LW
G +

λ1LFFT
G by updating the generator and the conditioning model,

while minimizing LD = LW
D + λ2LGP

D + λ3LR1
D by updating

the discriminator. We use alternating gradient descent with Adam



Fig. 1: A waterfall plot showing consecutive frames of GCI-centered glottal excitation (left) and speech (right) waveforms.
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Fig. 2: GAN architecture overview. Generator (bottom) per-
forms progressive upsampling and outputs waveforms at multiple
timescales, while the discriminator (top) evaluates the waveforms at
all timescales. Both models have access to the same acoustic con-
ditioning, provided by a conditioning model C which collaborates
with the generator.

(LR=1e-4, β1=0.9, β2=0.999) and loss weights λ1=1, λ2=10, λ3=1.
Similarly to [10], we only apply one discriminator update per gen-
erator update and use an additional batch standard deviation feature
in the penultimate discriminator layer. The models were trained for
100k iterations, where a single iteration contains 150 consecutive
frames of speech, each associated with a 512 point full resolution
waveform.

4. EVALUATION

We conducted subjective listening tests to evaluate the synthetic
speech quality and voice similarity to a natural reference. Our main
interest is the comparison between the proposed method, applied to
glottal excitation signals (named “GlotGAN”), and two established
neural vocoder methods, GlottDNN and WaveNet. For the similarity
DMOS test, we included a direct waveform variant of the proposed
method (called here “WaveGAN”) and a classical SPSS vocoder,
STRAIGHT [37] (which uses its distinct feature set and acoustic
model). The latter two were excluded from the pair-wise quality
CCR test, as the number of system pairings would have grown to be
unpractical. Audio samples and code are available.1

1https://github.com/ljuvela/multiscale-GAN
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Fig. 3: Generator upsampling block. Input hidden features hi−1

are upsampled linearly before concatenating them with a latent noise
input zu and conditioning ci. Each block applies a gated convolution
to the concatenated features and outputs a signal xi at its respective
timescale

4.1. Reference methods

The GlottDNN and Wavenet vocoders are both conditioned on the
same acoustic feature set as the proposed model. GlottDNN uses
a DNN to predict glottal excitation pulse waveshapes in a two pe-
riod pitch synchronous format [30]. The excitation model outputs
conditional average pulse shapes, where the lack of high frequency
stochastic content is compensated by adding shaped noise as indi-
cated by the HNRs, and by applying a spectral envelope matching
filter [22]. We use the configuration from [29], where the excita-
tion model consists of a single BLSTM layer (size 128), followed
by three fully connected layers (size 512), finally outputting a 400
point pulse. Our WaveNet vocoder uses a model configuration from
[21] (30 residual blocks in three dilation groups, 64 residual chan-
nels, 128 post-net channels). However, the model is trained with
8-bit softmax cross-entropy on µ-law companded quantized speech,
and is trained on the same speaker dependent data as the proposed
GlotGAN model.

4.2. Listening test

Listening tests were conducted on the Figure Eight2 crowd-sourcing
platform. Each test case was evaluated by 50 listeners, and listener
quality was maintained by artificial low-quality anchor cases and
post-screening of zero-variance listener responses. 15 test set ut-
terances were randomly selected for the listening experiments.

2https://www.figure-eight.com/

https://github.com/ljuvela/multiscale-GAN
https://www.figure-eight.com/


Voice similarity between synthetic speech and a natural refer-
ence was evaluated in a DMOS-like test. The listeners were asked
to rate the voice similarity of a test sample to a natural reference
(with the same linguistic contents) using a 5-level absolute cate-
gory rating scale, ranging from “Bad”(1) to “Excellent”(5). Figure 4
shows system mean ratings with 95% confidence intervals and nor-
malized histograms for the rating categories. The Mann-Whitney
U-tests indicate that differences between systems are statistically
significant (at a Bonferroni corrected 95% confidence level), ex-
cept GlotGAN–GlottDNN for “Jenny” and all pairings of WaveNet–
GlotGAN–GlottDNN for “Nick”.

A category comparison rating (CCR) [38] test was performed to
evaluate the synthetic speech quality. The listeners were presented
with a pair of test samples and asked to rate the comparative qual-
ity from -3 (“Much worse”) to 3 (“Much better”). The CCR scores
are obtained by re-ordering and pooling together all ratings the sys-
tem received. Figure 5 shows the mean scores with 95% confidence
intervals. U-tests (following a similar procedure to above) indicate
that all differences are statistically significant.
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Fig. 4: Voice similarity ratings for “Jenny” (left) and “Nick” (right).
The plot shows mean ratings with 95% confidence intervals, along
with stacked rating distribution histograms.
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Fig. 5: Combined score differences obtained from the quality com-
parison CCR test for “Jenny” (left) and “Nick” (right). Error bars
are t-statistic based 95% confidence intervals for the mean.

5. DISCUSSION

A characteristic issue we have identified with frame-based GAN
audio generation is related to local GAN mode collapse (i.e. lack
of variety). In this case, the Generator network fails to reproduce
the correct stochastic properties of the data, and instead outputs
a “mode” waveshape that appears appropriate when examined in
isolation, but causes audible artefacts when combined with adjacent
frames. Perceptually, this repeated “frozen noise” can result in buzzy
robotic artefacts and ringing, reminiscent of pure impulse train ex-
cited vocoders. This issue is especially prominent in unvoiced
sounds, and for the listening experiments we resorted to synthesiz-
ing the unvoiced parts using pure white noise excitation filtered with
the predicted vocal tract envelope. This effect is also somewhat au-
dible in the voiced parts of GlotGAN for “Jenny”, which contributes
to GlotGAN under-performing the reference methods. As for direct
waveform synthesis, the quality is further degraded, although the
synthetic speech remains intelligible.

Another potential cause to these artefacts is overfitting and the
mismatch between natural and synthetic acoustic features at training
and test time, respectively. Furthermore, the acoustic model per-
formance varies between different speakers [22], as reflected in the
larger gap between natural and synthetic voices for “Jenny” com-
pared with “Nick”. In contrast, the difference in neural vocoder per-
formance in less prominent with the same speech material, when
using natural acoustic features in a copy-synthesis setup [25].

6. CONCLUSION

This paper presented a multi-scale GAN architecture for generating
glottal excitation (GlotGAN) and speech waveforms (WaveGAN)
pitch-synchronously. The proposed model is evaluated as a neural
vocoder for a statistical parametric speech synthesis system and lis-
tening test results show that GlotGAN can achieve similar perfor-
mance to a WaveNet vocoder. Future work includes upgrading the
TTS system acoustic mapping to use sequence-to-sequence models
[1] and applying joint generative acoustic model and neural vocoder
training [18]. Progressive upsampling should also naturally extend
to higher sample rates, while still allowing fast parallel inference.
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