4 research outputs found

    Pemodelan dan Verifikasi Formal Pengaruh Mobility pattern Terhadap Handoff Latency pada Jaringan WiMAX

    Get PDF
               In order to decrease handoff latency and increase the successful of HHO conventional scheme, a development of handover scheme is done in standard protocol WiMAX IEEE 802.16e by adding mobility pattern. The superiority of handover scheme with mobility pattern can reduce handoff latency up to 50%, mean while the weakness of this scheme is a wrong act in determining target base station are often happen. Simulation can not showing the cause of that error. So, we do formal verification in to hard handover model with mobility pattern.            In this research, behaviour system is modeled with continuous-time Markov chain (CTMC). The model is foccused to aproximating the influence of mobility pattern in to handoff latency from WiMAX hard handover mechanism. In order to set up a series markov chain models handover system can follow steps, such as: represents the state space, give a number in all transitions, generate the rate transition matrix (infinitesimal generator).            Probabilistic model checking in the research are using quantitative properties and qualitative properties. Formal verification concerning properties has relation with handover in WiMAX network showing that 70% from mobile station which doing scanning with mobility pattern are success doing handover. 24% of them doing scanning conventional as a result of wrongness in act determining target base station, so handoff latency which is pictured will bigger than a system that is only use conventional scanning method

    Pemodelan dan Verifikasi Formal Pengaruh Mobility pattern Terhadap Handoff Latency pada Jaringan WiMAX

    Get PDF
    In order to decrease handoff latency and increase the successful of HHO conventional scheme, a development of handover scheme is done in standard protocol WiMAX IEEE 802.16e by adding mobility pattern. The superiority of handover scheme with mobility pattern can reduce handoff latency up to 50%, mean while the weakness of this scheme is a wrong act in determining target base station are often happen. Simulation can not showing the cause of that error. So, we do formal verification in to hard handover model with mobility pattern.             In this research, behaviour system is modeled with continuous-time Markov chain (CTMC). The model is foccused to aproximating the influence of mobility pattern in to handoff latency from WiMAX hard handover mechanism. In order to set up a series markov chain models handover system can follow steps, such as: represents the state space, give a number in all transitions, generate the rate transition matrix (infinitesimal generator).             Probabilistic model checking in the research are using quantitative properties and qualitative properties. Formal verification concerning properties has relation with handover in WiMAX network showing that 70% from mobile station which doing scanning with mobility pattern are success doing handover. 24% of them doing scanning conventional as a result of wrongness in act determining target base station, so handoff latency which is pictured will bigger than a system that is only use conventional scanning method

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process
    corecore