58 research outputs found

    Transient Load-Speed Control in Multi-Cylinder Recompression HCCI Engines

    Full text link
    Strict proposed fuel economy and emissions standards for automotive internal combustion engines have motivated the study of advanced low-temperature combustion modes that promise higher combustion efficiencies with low engine-out emissions. This work presents modeling and control results for one such combustion mode -- recompression homogeneous charge compression ignition (HCCI) combustion. Regulating desired charge properties in recompression HCCI involves the retention of a large amount of the residual charge between engine cycles, thus introducing significant inter-cycle feedback in the system. This work considers a baseline controller from literature, and proposes two improved model-based control strategies. The controllers use exhaust valve timing and fuel injection timings to track combustion phasings during transitions in the HCCI region of the multi-cylinder engine load-speed operating map. Fast and stable control of these transitions is demonstrated, which maximizes the length of stay in the HCCI region, and hence the efficiency benefit of advanced combustion. The baseline controller, which is a feedback-feedforward controller adapted from literature, is tuned using a low-order, discrete-time, control-oriented model that describes the stable, high efficiency HCCI region. The first improved control strategy augments the baseline controller with a reference or fuel governor that modifies transient fuel mass commands during large load transitions, when the possibility of future actuator constraint violations exists. This approach is shown in experiments to improve the combustion phasing and load responses, as well as prevent engine misfires. Issues with high cyclic variability during late phasing and low load conditions, and their impact on transient performance, are discussed. These issues are physically explained through recompression heat release caused due to unburned and recycled fuel. The control-oriented model is augmented with recompression heat release to predict the onset of the oscillatory, high variability region. The second improved control strategy uses this physical understanding to improve combustion phasing tracking performance. Transitions tested on a multicylinder HCCI engine include load transitions at fixed engine speeds, engine speed ramps at fixed load, simultaneous load and speed transitions, and select FTP75 drive-cycle transitions with high load slew rates. This improved model-based control strategy is proposed as a solution for the HCCI transient control problem.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107072/1/sjade_1.pd

    Experimental and Computational Investigation of Spark Assisted Compression Ignition Combustion Under Boosted, Ultra EGR-Dilute Conditions

    Full text link
    Low temperature combustion (LTC) engines that employ high levels of dilution have received increased research interest due to the demonstrated thermal efficiency improvements compared to the conventional Spark-Ignited (SI) engines. However, control of combustion phasing and heat release rate still remains a challenge, which limits the operating range as well as the transient operation of LTC engines. The work presented in this dissertation uses experimental and computational methods to investigate Spark Assisted Compression Ignition (SACI) combustion under boosted, stoichiometric conditions with high levels of exhaust gas recirculation in a negative valve overlap engine. Highly controlled experimental studies were performed to understand the impact of intake boosting and fuel-to-charge equivalence ratio (φ') on SACI burn rates, while maintaining constant combustion phasing near the optimal timing for work extraction. Previously unexplored conditions were targeted at intake pressures ranging from 80 kPa to 150 kPa and φ' ranging from 0.45 to 0.75, where LTC engines promise high thermodynamic efficiencies. The use of intake boosting for load expansion and dilution extension achieved up to 10% gross thermal efficiency improvement, respectively, mainly due to reduced relative heat transfer losses and better mixture thermodynamic properties. For a given spark advance, higher pressure and/or higher φ' mixtures necessitated lower unburned gas temperatures (TU) to match autoignition timing. While the overall effect of intake boost was minor on the initial flame burn rates, end-gas autoignition rates were found to approximately scale with intake pressure. Higher φ' mixtures exhibited faster initial flame burn rates but also led to a significant increase in end-gas autoignition rates. As a result, the high load limits shifted to lower φ' at higher intake pressures, creating a larger gap between the SI and SACI operating limits. Reducing the mass fraction unburned at the onset of autoignition by advancing the spark timing and lowering TU was, to some extent, effective at alleviating the excessive peak pressure rise rates. Under relatively high φ' conditions, cyclic heat release analysis results showed that the variability in autoignition timing is determined early in the cycle before any measurable pressure-based heat release. Combustion phasing retard was shown to be very effective at limiting the maximum pressure rise rates until the stability limit, primarily due to slower end-gas autoignition rates. CFD modeling results showed good trendwise agreement with the experimental results, once autoignition timing and mass fraction burned at the onset of autoignition were matched. The pre-ignition reactivity stratification of the mixture at higher intake pressures was shown to be narrower, due to both lower thermal and compositional stratification, which explained the increase in end-gas burn rates observed experimentally. The boost pressure effect on SACI end-gas burn rates using intake manifold heating was trendwise similar to the results employing residual gas heating, albeit less pronounced. Pre-ignition thermal stratification was shown to be similar irrespective of charge preheating method, even though thermal stratification of the mixtures was very different early in the compression stroke. The effect of higher pressure on mean reactivity was offset by the lower mean temperature that was needed to match autoignition timing. Under the conditions investigated, the increase in the end-gas autoignition rates with intake boost was primarily due to the narrower thermal stratification, which was effected by reduced relative heat transfer losses late in the compression stroke.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147508/1/vtrianto_1.pd

    Thermodynamic Modeling of HCCI Combustion with Recompression and Direct Injection.

    Full text link
    Homogeneous Charge Compression Ignition (HCCI) engines have the potential to reduce pollutant emissions while achieving diesel-like thermal efficiencies. The absence of direct control over the start and rate of auto-ignition and a narrow load range makes implementation of HCCI engines into production vehicles a challenging affair. Effective HCCI combustion control can be achieved by manipulating the amount of residual gases trapped from the previous cycle by means of variable valve actuation. In turn, the temperature at intake valve closing and hence auto-ignition phasing can be controlled. Intake charge boosting can be used to increase HCCI fueling rates and loads, while other technologies such as direct injection provide means for achieving cycle to cycle phasing control. Thermodynamic zero-dimensional (0D) models are a computationally inexpensive tool for defining systems and strategies suitable for the implementation of new HCCI engine technologies. These models need to account for the thermal and compositional stratification in HCCI that control combustion rates. However these models are confined to a narrow range of engine operation given that the fundamental factors governing the combustion process are currently not well understood. CFD has therefore been used to understand the effect of operating conditions and input variables on pre-ignition charge stratification and combustion, allowing the development and use of a more accurate ignition model, which is proposed and validated here. A new empirical burn profile model is fit with mass fraction burned profiles from a large HCCI engine data set. The combined ignition model and burn correlation are then exercised and are shown capable of capturing the trends of a diverse range of transient HCCI experiments. However, the small cycle to cycle variations in combustion phasing are not captured by the model, possibly due to recompression heat release effects associated with variable valve actuation. Multi-cycle CFD simulations are therefore performed to gain physical insight into recompression heat release phenomena and the effect of these phenomena on the next cycle. Based on the understanding derived from this CFD work, a simple model of recompression heat release has been implemented in the 0D HCCI modeling framework.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113499/1/sunand_1.pd

    Experimental Analysis and Control of Recompression Homogeneous Charge Compression Ignition Combustion at the High Cyclic Variability Limit.

    Full text link
    The automotive industry currently faces many challenges pertaining to strict emissions and fuel consumption constraints for a sustainable society. These regulations have motivated the investigation of low temperature combustion modes such as homogeneous charge compression ignition (HCCI) as a potential solution to meet these demands. HCCI combustion is characterized by high efficiency and low engine-out emissions. However, this advanced combustion mode is limited in the speed-load operating space due to high pressure rise rates for increased loads. Often higher loads are run at later combustion phasings to reduce pressure rise rates, however high cyclic variability (CV) can also be a limiting factor for late combustion phasings. This work presents advancements in the understanding of high variability dynamics in recompression HCCI as well as methods for control of CV and load transitions which typically encounter regions of high variability. Standard in-cylinder pressure based analysis methods are extended for use on high variability data. This includes a method of determining the trapped residual mass in real time. Determination of the residual mass is critical in recompression HCCI because of the combustion's sensitivity to the thermal energy contained within the residual charge. Trapping too much or little residuals can lead to ringing or misfires and CV, respectively. Various levels of CV are studied using large experimental data sets to ensure statistical relevance. The cycle resolved analysis of this data has allowed for the development of a predictive model of the variability associated with lean late phasing combustion. This model is used to develop control which can suppress cyclic variability at steady state. Knowledge about steady state control of CV and its oscillatory dynamics is further applied to the development of an adaptive controller. The adaptive controller uses a parameter estimation scheme in the feedforward component of a baseline midranging structure. The adaptive feedforward component enables the ability to correct for modeling errors and reduces parameterization effort. Experimental results demonstrate that the control is effective at navigating through large load transients while avoiding excess amounts of variability. Additionally, the actuators spend more time in a region of high authority when compared to non-adaptive control.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107231/1/larimore_1.pd

    Modeling and Model-Based Control Of Multi-Mode Combustion Engines for Closed-Loop SI/HCCI Mode Transitions with Cam Switching Strategies.

    Full text link
    Homogeneous charge compression ignition (HCCI) combustion has been investigated by many researchers as a way to improve gasoline engine fuel economy through highly dilute unthrottled operation while maintaining acceptable tailpipe emissions. A major concern for successful implementation of HCCI is that it's feasible operating region is limited to a subset of the full engine regime, which necessitates mode transitions between HCCI and traditional spark ignition (SI) combustion when the HCCI region is entered/exited. The goal of this dissertation is to develop a methodology for control-oriented modeling and model-based feedback control during such SI/HCCI mode transitions. The model-based feedback control approach is sought as an alternative to those in the SI/HCCI transition literature, which predominantly employ open-loop experimentally derived actuator sequences for generation of control input trajectories. A model-based feedback approach has advantages both for calibration simplicity and controller generality, in that open-loop sequences do not have to be tuned, and that use of nonlinear model-based calculations and online measurements allows the controller to inherently generalize across multiple operating points and compensate for case-by-case disturbances. In the dissertation, a low-order mean value modeling approach for multi-mode SI/HCCI combustion that is tractable for control design is described, and controllers for both the SI to HCCI (SI-HCCI) and HCCI to SI (HCCI-SI) transition are developed based on the modeling approach. The model is shown to fit a wide range of steady-state actuator sweep data containing conditions pertinent to SI/HCCI mode transitions, and is extended to capture transient SI-HCCI transition data through using an augmented residual gas temperature parameter. The mode transition controllers are experimentally shown to carry out SI-HCCI and HCCI-SI transitions in several operating conditions with minimal tuning, though the validation in the SI-HCCI direction is more extensive. The model-based control architecture is also equipped with an online parameter updating routine, to attenuate error in model-based calculations and improve robustness to engine aging and cylinder to cylinder variability. Experimental examples at multiple operating conditions illustrate the ability of the parameter update routine to improve controller performance by using transient data to tune the model parameters for enhanced accuracy during SI-HCCI mode transitions.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113351/1/pgoz_1.pd

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    Experimental Effects of Low Octane Primary Reference Fuels on Burn Rates and Phasing Limits in a Homogeneous Charge Compression Ignition Engine with Negative Valve Overlap.

    Full text link
    Homogeneous charge compression ignition (HCCI) remains an active area of engine research, promising to deliver high thermal efficiency while producing low levels of nitrogen oxides (NOx) and particulate emissions. The pre-mixed auto-ignition nature of HCCI allows the use of a wide variety of fuels, including fuels with lower octane number (ON) than traditional gasoline spark-ignited engines. A method to achieve HCCI traps high levels of internal exhaust gas residuals (iEGR) which introduce thermal and compositional gradients. The contributions in this work compare fuel effects on burn rates and phasing limits of low ON primary reference fuels (PRFs) to gasoline, separating the effects of fuel from iEGR effects. Specifically, in this study, increased load limits were demonstrated for a low ON fuel, but changes in composition obfuscated fuel effects. A new experimental method was therefore developed which isolated composition effects across wide levels of iEGR. Using this method, gasoline at fixed combustion phasing was shown to exhibit sensitivity to increasing iEGR with burn rates decreasing by 15% compared to the lowest iEGR case. Examining the effect of iEGR on stability limits demonstrated iEGR increased cyclic variability due to cyclic feedback. Further experiments showed burn rates of the primary reference fuel PRF40 were 35% faster than gasoline at equal iEGR, but PRF40 showed no dependence on iEGR. PRF40 required a reduced IVC temperature compared to gasoline, which could reduce thermal gradients and increase burn rates. Increased phasing limits were consistently demonstrated for PRF60 compared to gasoline as iEGR was reduced. Both PRF40 and PRF60 demonstrated increasing levels of low temperature heat release (LTHR) as engine speed was reduced, and at 1000 rpm PRF60 showed no phasing dependence on iEGR. Compared to gasoline, observed differences in behavior for the low ON PRFs are attributed to enhanced non-Arrhenius ignition delay behavior which is understood to reduce sensitivity to thermal gradients (or iEGR) and cyclic variations in temperature. The results of this study are the first to isolate charge composition effects during HCCI operation, and the results provide important quantitative insight into the relative importance of thermal stratification and chemical effects of fuels and iEGR.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107064/1/lumoha_1.pd

    Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines

    Get PDF
    The goal of this study is to assess conventional and low temperature dual fuel combustion in light- and heavy-duty multi-cylinder compression ignition engines in terms of combustion characterization, performance, and emissions. First, a light-duty compression ignition engine is converted to a dual fuel engine and instrumented for in-cylinder pressure measurements. The primary fuels, methane and propane, are each introduced into the system by means of fumigation before the turbocharger, ensuring the airuel composition is well-mixed. Experiments are performed at 2.5, 5, 7.5, and 10 bar BMEP at an engine speed of 1800 RPM. Heat release analyses reveal that the ignition delay and subsequent combustion processes are dependent on the primary fuel type and concentration, pilot quantity, and loading condition. At low load, diesel-ignited propane yields longer ignition delay periods than diesel-ignited methane, while at high load the reactivity of propane is more pronounced, leading to shorter ignition delays. At high load (BMEP = 10 bar), the rapid heat release associated with diesel-ignited propane appears to occur even before pilot injection, possibly indicating auto-ignition of the propane-air mixture. Next, a modern, heavy-duty compression ignition engine is commissioned with an open architecture controller and instrumented for in-cylinder pressure measurements. Initial diesel-ignited propane dual fuel experiments (fumigated before the turbocharger) at 1500 RPM reveal that the maximum percent energy substitution (PES) of propane is limited to 86, 60, 33, and 25 percent at 5, 10, 15, and 20 bar BMEP, respectively. Fueling strategy, injection strategy, exhaust gas recirculation (EGR) rate, and intake boost pressure are varied in order to maximize the PES of propane at 10 bar BMEP, which increases from 60 PES to 80 PES of propane. Finally, diesel-ignited propane dual fuel low temperature combustion (LTC) is implemented using early injection timings (50 DBTDC) at 5 bar BMEP. A sweep of injection timings from 10 DBTDC to 50 DBTDC reveals the transition from conventional to low temperature dual fuel combustion, indicated by ultra-low NOx and smoke emissions. Optimization of the dual fuel LTC concept yields less than 0.02 g/kW-hr NOx and 0.06 FSN smoke at 93 PES of propane

    Detailed Characterization of Conventional and Low Temperature Dual Fuel Combustion in Compression Ignition Engines

    Get PDF
    The goal of this study is to assess conventional and low temperature dual fuel combustion in light- and heavy-duty multi-cylinder compression ignition engines in terms of combustion characterization, performance, and emissions. First, a light-duty compression ignition engine is converted to a dual fuel engine and instrumented for in-cylinder pressure measurements. The primary fuels, methane and propane, are each introduced into the system by means of fumigation before the turbocharger, ensuring the airuel composition is well-mixed. Experiments are performed at 2.5, 5, 7.5, and 10 bar BMEP at an engine speed of 1800 RPM. Heat release analyses reveal that the ignition delay and subsequent combustion processes are dependent on the primary fuel type and concentration, pilot quantity, and loading condition. At low load, diesel-ignited propane yields longer ignition delay periods than diesel-ignited methane, while at high load the reactivity of propane is more pronounced, leading to shorter ignition delays. At high load (BMEP = 10 bar), the rapid heat release associated with diesel-ignited propane appears to occur even before pilot injection, possibly indicating auto-ignition of the propane-air mixture. Next, a modern, heavy-duty compression ignition engine is commissioned with an open architecture controller and instrumented for in-cylinder pressure measurements. Initial diesel-ignited propane dual fuel experiments (fumigated before the turbocharger) at 1500 RPM reveal that the maximum percent energy substitution (PES) of propane is limited to 86, 60, 33, and 25 percent at 5, 10, 15, and 20 bar BMEP, respectively. Fueling strategy, injection strategy, exhaust gas recirculation (EGR) rate, and intake boost pressure are varied in order to maximize the PES of propane at 10 bar BMEP, which increases from 60 PES to 80 PES of propane. Finally, diesel-ignited propane dual fuel low temperature combustion (LTC) is implemented using early injection timings (50 DBTDC) at 5 bar BMEP. A sweep of injection timings from 10 DBTDC to 50 DBTDC reveals the transition from conventional to low temperature dual fuel combustion, indicated by ultra-low NOx and smoke emissions. Optimization of the dual fuel LTC concept yields less than 0.02 g/kW-hr NOx and 0.06 FSN smoke at 93 PES of propane

    EXPERIMENTAL SETUP AND CONTROLLER DESIGN FOR AN HCCI ENGINE

    Get PDF
    Homogeneous charged compression ignition (HCCI) is a promising combustion mode for internal combustion (IC) engines. HCCI engines have very low NOx and soot emission and low fuel consumption compared to traditional engines. The aim of this thesis is divided into two main parts: (1) engine instrumentation with a step towards converting a gasoline turbocharged direct injection (GTDI) engine to an HCCI engine; and (2) developing controller for adjusting the crank angle at 50% mass fuel burn (CA50), exhaust gas temperature Texh, and indicated mean effective pressure (IMEP) of a single cylinder Ricardo HCCI engine. The base GTDI engine is modified by adding an air heater, inter-cooler, and exhaust gas recirculation (EGR) in the intake and exhaust loops. dSPACE control units are programmed for adding monitoring sensors and implementing actuators in the engine. Control logics for actuating electronic throttle control (ETC) valve, EGR valve, and port fuel injector (PFI) are developed using the rapid control prototyping (RCP) feature of dSPACE. A control logic for crank/cam synchronization to determine engine crank angle with respect to firing top dead center (TDC) is implemented and validated using in-cylinder pressure sensor data. A control oriented model (COM) is developed for estimating engine parameters including CA50, Texh, and IMEP for a single cylinder Ricardo engine. The COM is validated using experimental data for steady state and transient engine operating conditions. A novel three-input three-output controller is developed and tested on a detailed physical HCCI engine plant model. Two type of controller design approaches are used for designing HCCI controllers: (1) empirical, and (2) model-based. A discrete sub-optimal sliding mode controller (DSSMC) is designed as a model-based controller to control CA50 and Texh, and a PI controller is designed to control IMEP. The results show that the designed controllers can successfully track the reference trajectories and can reject the external disturbances within the given operating region
    • …
    corecore