99 research outputs found

    Clustered Integer 3SUM via Additive Combinatorics

    Full text link
    We present a collection of new results on problems related to 3SUM, including: 1. The first truly subquadratic algorithm for      \ \ \ \ \ 1a. computing the (min,+) convolution for monotone increasing sequences with integer values bounded by O(n)O(n),      \ \ \ \ \ 1b. solving 3SUM for monotone sets in 2D with integer coordinates bounded by O(n)O(n), and      \ \ \ \ \ 1c. preprocessing a binary string for histogram indexing (also called jumbled indexing). The running time is: O(n(9+177)/12polylogn)=O(n1.859)O(n^{(9+\sqrt{177})/12}\,\textrm{polylog}\,n)=O(n^{1.859}) with randomization, or O(n1.864)O(n^{1.864}) deterministically. This greatly improves the previous n2/2Ω(logn)n^2/2^{\Omega(\sqrt{\log n})} time bound obtained from Williams' recent result on all-pairs shortest paths [STOC'14], and answers an open question raised by several researchers studying the histogram indexing problem. 2. The first algorithm for histogram indexing for any constant alphabet size that achieves truly subquadratic preprocessing time and truly sublinear query time. 3. A truly subquadratic algorithm for integer 3SUM in the case when the given set can be partitioned into n1δn^{1-\delta} clusters each covered by an interval of length nn, for any constant δ>0\delta>0. 4. An algorithm to preprocess any set of nn integers so that subsequently 3SUM on any given subset can be solved in O(n13/7polylogn)O(n^{13/7}\,\textrm{polylog}\,n) time. All these results are obtained by a surprising new technique, based on the Balog--Szemer\'edi--Gowers Theorem from additive combinatorics

    How Hard is it to Find (Honest) Witnesses?

    Get PDF
    In recent years much effort has been put into developing polynomial-time conditional lower bounds for algorithms and data structures in both static and dynamic settings. Along these lines we introduce a framework for proving conditional lower bounds based on the well-known 3SUM conjecture. Our framework creates a compact representation of an instance of the 3SUM problem using hashing and domain specific encoding. This compact representation admits false solutions to the original 3SUM problem instance which we reveal and eliminate until we find a true solution. In other words, from all witnesses (candidate solutions) we figure out if an honest one (a true solution) exists. This enumeration of witnesses is used to prove conditional lower bounds on reporting problems that generate all witnesses. In turn, these reporting problems are then reduced to various decision problems using special search data structures which are able to enumerate the witnesses while only using solutions to decision variants. Hence, 3SUM-hardness of the decision problems is deduced. We utilize this framework to show conditional lower bounds for several variants of convolutions, matrix multiplication and string problems. Our framework uses a strong connection between all of these problems and the ability to find witnesses. Specifically, we prove conditional lower bounds for computing partial outputs of convolutions and matrix multiplication for sparse inputs. These problems are inspired by the open question raised by Muthukrishnan 20 years ago. The lower bounds we show rule out the possibility (unless the 3SUM conjecture is false) that almost linear time solutions to sparse input-output convolutions or matrix multiplications exist. This is in contrast to standard convolutions and matrix multiplications that have, or assumed to have, almost linear solutions. Moreover, we improve upon the conditional lower bounds of Amir et al. for histogram indexing, a problem that has been of much interest recently. The conditional lower bounds we show apply for both reporting and decision variants. For the well-studied decision variant, we show a full tradeoff between preprocessing and query time for every alphabet size > 2. At an extreme, this implies that no solution to this problem exists with subquadratic preprocessing time and ~O(1) query time for every alphabet size > 2, unless the 3SUM conjecture is false. This is in contrast to a recent result by Chan and Lewenstein for a binary alphabet. While these specific applications are used to demonstrate the techniques of our framework, we believe that this novel framework is useful for many other problems as well

    Simpler Reductions from Exact Triangle

    Full text link
    In this paper, we provide simpler reductions from Exact Triangle to two important problems in fine-grained complexity: Exact Triangle with Few Zero-Weight 44-Cycles and All-Edges Sparse Triangle. Exact Triangle instances with few zero-weight 44-cycles was considered by Jin and Xu [STOC 2023], who used it as an intermediate problem to show 33SUM hardness of All-Edges Sparse Triangle with few 44-cycles (independently obtained by Abboud, Bringmann and Fischer [STOC 2023]), which is further used to show 33SUM hardness of a variety of problems, including 44-Cycle Enumeration, Offline Approximate Distance Oracle, Dynamic Approximate Shortest Paths and All-Nodes Shortest Cycles. We provide a simple reduction from Exact Triangle to Exact Triangle with few zero-weight 44-cycles. Our new reduction not only simplifies Jin and Xu's previous reduction, but also strengthens the conditional lower bounds from being under the 33SUM hypothesis to the even more believable Exact Triangle hypothesis. As a result, all conditional lower bounds shown by Jin and Xu [STOC 2023] and by Abboud, Bringmann and Fischer [STOC 2023] using All-Edges Sparse Triangle with few 44-cycles as an intermediate problem now also hold under the Exact Triangle hypothesis. We also provide two alternative proofs of the conditional lower bound of the All-Edges Sparse Triangle problem under the Exact Triangle hypothesis, which was originally proved by Vassilevska Williams and Xu [FOCS 2020]. Both of our new reductions are simpler, and one of them is also deterministic -- all previous reductions from Exact Triangle or 3SUM to All-Edges Sparse Triangle (including P\u{a}tra\c{s}cu's seminal work [STOC 2010]) were randomized.Comment: To appear in SOSA 202

    On Multidimensional and Monotone k-SUM

    Get PDF
    The well-known k-SUM conjecture is that integer k-SUM requires time Omega(n^{ceil{k/2}-o(1)}). Recent work has studied multidimensional k-SUM in F_p^d, where the best known algorithm takes time tilde O(n^{ceil{k/2}}). Bhattacharyya et al. [ICS 2011] proved a min(2^{Omega(d)},n^{Omega(k)}) lower bound for k-SUM in F_p^d under the Exponential Time Hypothesis. We give a more refined lower bound under the standard k-SUM conjecture: for sufficiently large p, k-SUM in F_p^d requires time Omega(n^{k/2-o(1)}) if k is even, and Omega(n^{ceil{k/2}-2k(log k)/(log p)-o(1)}) if k is odd. For a special case of the multidimensional problem, bounded monotone d-dimensional 3SUM, Chan and Lewenstein [STOC 2015] gave a surprising tilde O(n^{2-2/(d+13)}) algorithm using additive combinatorics. We show this algorithm is essentially optimal. To be more precise, bounded monotone d-dimensional 3SUM requires time Omega(n^{2-frac{4}{d}-o(1)}) under the standard 3SUM conjecture, and time Omega(n^{2-frac{2}{d}-o(1)}) under the so-called strong 3SUM conjecture. Thus, even though one might hope to further exploit the structural advantage of monotonicity, no substantial improvements beyond those obtained by Chan and Lewenstein are possible for bounded monotone d-dimensional 3SUM

    On Problems Equivalent to (min,+)-Convolution

    Get PDF
    In the recent years, significant progress has been made in explaining apparent hardness of improving over naive solutions for many fundamental polynomially solvable problems. This came in the form of conditional lower bounds -- reductions from a problem assumed to be hard. These include 3SUM, All-Pairs Shortest Paths, SAT and Orthogonal Vectors, and others. In the (min,+)-convolution problem, the goal is to compute a sequence c, where c[k] = min_i a[i]+b[k-i], given sequences a and b. This can easily be done in O(n^2) time, but no O(n^{2-eps}) algorithm is known for eps > 0. In this paper we undertake a systematic study of the (min,+)-convolution problem as a hardness assumption. As the first step, we establish equivalence of this problem to a group of other problems, including variants of the classic knapsack problem and problems related to subadditive sequences. The (min,+)-convolution has been used as a building block in algorithms for many problems, notably problems in stringology. It has also already appeared as an ad hoc hardness assumption. We investigate some of these connections and provide new reductions and other results

    On the Fine-Grained Complexity of Parity Problems

    Get PDF
    We consider the parity variants of basic problems studied in fine-grained complexity. We show that finding the exact solution is just as hard as finding its parity (i.e. if the solution is even or odd) for a large number of classical problems, including All-Pairs Shortest Paths (APSP), Diameter, Radius, Median, Second Shortest Path, Maximum Consecutive Subsums, Min-Plus Convolution, and 0/1-Knapsack. A direct reduction from a problem to its parity version is often difficult to design. Instead, we revisit the existing hardness reductions and tailor them in a problem-specific way to the parity version. Nearly all reductions from APSP in the literature proceed via the (subcubic-equivalent but simpler) Negative Weight Triangle (NWT) problem. Our new modified reductions also start from NWT or a non-standard parity variant of it. We are not able to establish a subcubic-equivalence with the more natural parity counting variant of NWT, where we ask if the number of negative triangles is even or odd. Perhaps surprisingly, we justify this by designing a reduction from the seemingly-harder Zero Weight Triangle problem, showing that parity is (conditionally) strictly harder than decision for NWT
    corecore