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Abstract
We consider the parity variants of basic problems studied in fine-grained complexity. We show that
finding the exact solution is just as hard as finding its parity (i.e. if the solution is even or odd)
for a large number of classical problems, including All-Pairs Shortest Paths (APSP), Diameter,
Radius, Median, Second Shortest Path, Maximum Consecutive Subsums, Min-Plus Convolution,
and 0/1-Knapsack.

A direct reduction from a problem to its parity version is often difficult to design. Instead, we
revisit the existing hardness reductions and tailor them in a problem-specific way to the parity
version. Nearly all reductions from APSP in the literature proceed via the (subcubic-equivalent but
simpler) Negative Weight Triangle (NWT) problem. Our new modified reductions also start from
NWT or a non-standard parity variant of it. We are not able to establish a subcubic-equivalence
with the more natural parity counting variant of NWT, where we ask if the number of negative
triangles is even or odd. Perhaps surprisingly, we justify this by designing a reduction from the
seemingly-harder Zero Weight Triangle problem, showing that parity is (conditionally) strictly harder
than decision for NWT.
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1 Introduction

The blossoming field of fine-grained complexity is concerned with understanding the time
complexity of basic computational problems in a precise way. The main approach is to
hypothesize the hardness of a few core problems and then reduce them to a large number of
other problems, establishing tight conditional lower bounds for them. A cornerstone finding
in this field is that there is a class of more than ten problems that are all subcubic equivalent
to the All-Pairs Shortest Paths (APSP) problem, in the sense that if any of them
can be solved in truly subcubic O(n3−ε) time (for some ε > 0) then all of them can. Most
of the problems in this “APSP-class” are related to distance computations in graphs such
as computing the radius of the graph or deciding if the graph contains a negative weight
triangle (NWT). In this work, we investigate the fine-grained complexity of the natural
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5:2 On the Fine-Grained Complexity of Parity Problems

parity versions of such problems: are they easier, harder, or do they have the same time
complexity? Depending on the problem, the natural parity version could have a different
type; let us consider the two main types that will appear in this paper and illustrate them
with examples.

Parity Computation: The Radius-Parity problem asks whether the radius of the
graph is even or odd. Similarly, the APSP-Parity problem asks to compute, for each
pair of nodes, whether the distance between them is even or odd. This type is often
natural for optimization problems.
Parity Counting: The NWT-Parity problem asks if the number of negative triangles
in the graph is even or odd, or equivalently, it asks to count the number of negative
triangles modulo 2. Similarly, SAT-Parity asks if the number of satisfying assignments
to a given formula is even or odd. This type is often natural for decision problems where
we are looking for a solution satisfying a certain property1.

The parity computation versions are clearly no harder than the original problem: If we
know the radius exactly we also know its parity (if it is even or odd). In fact, sometimes
knowing the parity can be much easier than computing the entire answer. For instance, while
computing the maximum number of nodes in a matching requires super-linear time, knowing
the parity is trivial (it is always 0). On the other hand, parity counting versions can make
the problem much harder. A famous example is 2-SAT: the decision version takes linear
time but the parity version is probably not in P [42]. Thus, in general, the natural parity
version could be easier or harder than the original problem.

Various questions related to parity arose naturally in different contexts in computer science
throughout the years. For instance, the SAT-Parity problem played a key role in the proof
of Toda’s theorem [40], which is one of the earliest and most fundamental results in the large
body of works on counting complexity [23]. There, parity counting problems are extensively
studied, being of intermediate complexity between the decision problems and the counting
problems (see e.g. [5, 8, 34,41–44]). The first type of problems are less studied in terms of
worst-case complexity but are morally related to hard-core predicates in cryptography [45]
where it is desirable that the parity (least significant bit) of a function is hard to guess. The
motivation for our work is twofold: (1) many of the parity versions are interesting on their
own and we would like to know their complexity, and (2) this investigation could lead to a
deeper understanding of the structure among the original (non-parity) versions.

1.1 Our Results

1.1.1 The APSP Class
Our first set of results concern the APSP equivalence class. We have gone through the
problems in this class from the works of [3, 20, 51] and tried to classify the complexity of
their parity versions. Our first theorem shows that, with the notable exception of Negative
Weight Triangle (NWT), all the parity versions are subcubic-equivalent to APSP and
therefore also to the original (non-parity) problems. These problems and their parity versions
are listed and defined in Table 1 together with our results for each of them and where they
appear in the paper.

1 The parity counting version could be viewed simply as the parity computation version of the counting
version of the problem, so the first type could be considered the “real” parity version. However, parity
counting is widely referred to as the parity version in the literature.
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Table 1 The APSP class: problem definitions, known results, and our results (in bold). We
denote subcubic equivalent as SE and as SER when it is under a randomized reduction. The first
seven problems output a single value and their parity version computes the parity of this value.
The next three problems output multiple values and their parity version computes the parity of
every value. The last two problems are the only parity counting problems, in which we distinguish
between the parity version (asking for the parity of the number of such triangles) and the vertex
parity version (asking for the parity of the number of vertices that belong to such triangles).

Problem Definition Complexity
Median minu

∑
v
d(u, v) SE to APSP [3],

Parity is SE to APSP (Sec. 2)
Wiener Index

∑
u

∑
v
d(u, v) SE to APSP [20],

Parity is SER to APSP (Sec. 3.2, 3.3)
Radius minu maxv d(u, v) SE to APSP [3],

Parity is SE to APSP (Sec. 8)
Sum of
Eccentricities

∑
u

maxv d(u, v) SE to APSP, (Sec. 7),
Parity is SER to APSP (Sec. 3.4)

Integer
Betweenness
Centrality

find the number of vertices pairs
with a shortest path passing
through a given vertex x

SE to APSP [3],
(1 + ε)-approx. is SER to Diameter [3]
Parity is SER to APSP (Sec. 3.5, 3.6)

Second
Shortest Path

given vertices s, t, find the length
of the second shortest s-to-t path

SE to APSP [51],
Parity is SE to APSP (Full version)

Maximum
Subarray

given a matrix, find the maximum
total value in a submatrix

SE to APSP [6,39],
Parity is SE to APSP (Full version)

APSP Compute all distances d(u, v) Parity is SE to APSP (Sec. 4)
Min-Plus
Matrix
Multiplication

given n× n matrices A and B,
compute the matrix C where
C[i, j] = mink{A[i, k] +B[k, j]}

SE to APSP (folklore),
Parity is SE to APSP (Sec. 4)

Replacement
Paths

for every edge e on a shortest
s-to-t path, find the length of the
shortest s-to-t path that avoids e

SE to APSP [51],
Parity is SE to APSP (Full version)

Negative
Weight
Triangle

determine if there is a triangle
of total negative weight

SE to APSP [51], (1 + ε)-approx. Counting
is SER to APSP [19].
Randomized reductions from APSP
and 3SUM to Parity and Counting
(Sec. 5.1, 5.2), Vertex Parity is SER
to APSP (Sec. 3.1)

Zero
Weight
Triangle

determine if there is a triangle of
total zero weight

Reduction from APSP and 3SUM [50],
Randomized reduction to Parity and
Vertex Parity (Sec. 3.1, 5.2)

I Theorem 1. The following problems are subcubic-equivalent:
All-Pairs Shortest Paths and its parity computation,
Min-Plus Matrix Multiplication and its parity computation,
Radius and its parity computation,
Median and its parity computation,
Wiener Index and its parity computation,
Replacement Paths and its parity computation,
Second Shortest Path and its parity computation,
Vertex in Negative Weight Triangle and its parity computation,
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5:4 On the Fine-Grained Complexity of Parity Problems

Integer Betweenness Centrality and its parity computation,
Maximum Subarray and its parity computation,
Sum of Eccentricities2 and its parity computation.

This adds more than ten natural problems to the APSP-equivalence class. For all problems
in Theorem 1, the reduction from the parity version to the original problem is straightforward
(since they are parity computation rather than parity counting problems), while the reduction
in the other direction is not. For instance, it is not at all clear how to establish the hardness of
Median-Parity by reducing from Median to it. Instead, we find it much more convenient
to start from NWT which is the canonical APSP-complete problem and the starting point
for nearly all APSP-hardness reductions.

Some of our results take the known reductions from NWT and modify them to establish
the hardness of the parity versions, e.g. for Median-Parity. Notably, reductions of this kind
are deterministic. For other parity problems such as Wiener-Index it is more convenient
to reduce from a parity version of NWT. However, (the most natural) NWT-Parity is a
parity counting problem which makes it seem harder than NWT and therefore inappropriate
as a starting point for reductions. Instead, we identify a different variant that we call NWT-
Vertex-Parity (asking if the number of vertices that belong to a negative triangle is even
or odd) which turns out to be subcubic-equivalent to NWT and a very useful intermediate
problem. Reductions of this kind seem to require randomization.

Finally, we investigate the intriguing NWT-Parity problem. This is the modulo 2
version of the NWT-counting problem (asking for the number of negative triangles) that
was recently studied by Dell and Lapinskas [19] in their work on the fine-grained complexity
of approximate counting. With standard subsampling techniques, one can show that NWT
reduces to NWT-Parity. But are they subcubic-equivalent? We show that such an
equivalence would imply breakthroughs in fine-grained complexity, therefore suggesting that
the parity version is strictly harder. Our next theorem shows that NWT-Parity can solve
a problem that is considered strictly harder than APSP: the problem of deciding whether a
graph has a Zero Weight Triangle (ZWT). As discussed below, if the same reduction
can be shown between the original (non-parity) problems it would be a major breakthrough.

I Theorem 2. There is a deterministic subcubic-reduction from the Zero Weight Triangle
Parity problem to the Negative Weight Triangle Parity problem.

The ZWT problem is considered one of the “hardest” n3-problems since a subcubic
algorithm for it would refute two of the main conjectures in fine-grained complexity: it would
give a subcubic algorithm for APSP and a subquadratic algorithm for 3SUM [35, 50, 51].
The 3SUM Conjecture states that we cannot decide in truly subquadratic O(n2−ε) time if
among a set of n numbers there are three that sum to zero. The class of problems that are
3SUM-hard contains dozens of problems mostly from computational geometry (see [24,28]
for a partial list), but also in other domains, e.g. [4,29,35]. One of the central open questions
in the field is whether the APSP class and the 3SUM class can be unified; in particular,
whether APSP is 3SUM-hard. One way to prove this is to reduce ZWT to APSP, and our
result shows that NWT-Parity to NWT suffices:

I Corollary 3. If the Negative Weight Triangle Parity problem is subcubic-equivalent to the
Negative Weight Triangle problem, then APSP is 3SUM-hard.

2 This natural problem was not considered before to our knowledge, but it is closely related to Median,
Radius, and the other distance computation problems.
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A more quantitative reason for supposing that ZWT is harder than NWT is that their
current upper bounds, while all mildly-subcubic, are significantly far apart. All the problems
in the APSP equivalence class can be solved in n3/2Ω(

√
log n) time [47], which is faster than

O(n3/ logc n) for all c > 0. For ZWT, on the other hand, nothing better than O(n3/ logc n)
is known for a small c ≤ 2, and even small improvements would lead to a faster mildly
subquadratic algorithm for 3SUM beating the current fastest O(n2(log log n)2/ log n) [26].
Dell and Lapinskas [19] achieve an n3/2Ω(

√
log n) upper bound for the approximate counting

version of NWT but not for exact counting. We show that even for the parity version such a
result has breakthrough consequences for 3SUM. For NWT, this (conditionally) separates
the counting and parity versions from the decision and approximate counting versions.

Table 2 The other (non-APSP) problems. We denote subcubic (subquadratic) equivalent as SE
(SQE) and as SER (SQER) when it is under a randomized reduction. As before, the parity version
of problems that output a single (multiple) value(s) computes the parity of this value (all these
values). The last problems is the only parity counting problem, in which the parity version asks for
the parity of the number of vertices that do not belong to any negative triangle.

Problem Definition Complexity
Diameter maxu maxv d(u, v) Parity is SE to Diameter (Sec. 8)
Maximum
Row Sum

maxu

∑
v
d(u, v) Reduction from Co-Negative Triangle

to Parity (Full version)
Reach
Centrality

compute the maximum distance
between a given vertex x and the
closest endpoint of any shortest
path passing through x

SE to Diameter [3], Parity is SE to
Diameter (Full version)

0/1-
Knapsack

given items (wi, vi) and a weight
t, find a subset I that maximizes∑

i∈I
vi subject to

∑
i∈I

wi ≤ t

SQER to Min-Plus Convolution, variants
are SQE to Min-Plus Convolution [17,30],
Parity is SQER to Min-Plus
Convolution, variants are SQE to
Min-Plus Convolution (Sec. 6)

Tree
Sparsity

given a node-weighted tree, find
the maximum weight of a subtree
of size k

SQE to Min-Plus Convolution [7, 17],
Parity is SQE to Min-Plus
Convolution (Full version)

Min-Plus
Convolution

given n-length vectors A and B,
compute the vector C where
C[k] = mini+j=k{A[i] +B[j]}

Reduction to APSP and 3SUM [13,17],
SQE to Parity (Sec. 4.2)

Maximum
Consecutive
Subsums

given an n-length vector A,
compute the vector B where
B[k] = maxi{

∑k−1
j=0 A[i+ j]}

SQE to Min-Plus Convolution [17,31],
Parity is SQE to Min-Plus
Convolution (Sec. 4.3)

Co-Negative
Triangle

find a vertex that does not
belong to any negative triangle

Reduction to Diameter [10],
Reduction to Maximum Row Sum
Parity (Full version)

1.1.2 Other Classes
In our second set of results we ask whether parity computation problems are as hard also
for problems that are outside the APSP class. We have gone through other fine-grained
complexity results from the works of [7, 17, 30, 31] and tried to establish the same results
for the parity versions. All problems we consider are defined in Table 2 together with our
results and where they appear in the paper. The general message is that, in all cases we
considered, the same hardness reductions (if modified carefully) can establish the hardness
of the (seemingly easier) parity version as well. We mention a few concrete examples.

ICALP 2020



5:6 On the Fine-Grained Complexity of Parity Problems

In the context of distance computations in graphs, the central open question is whether
the Diameter problem is subcubic equivalent to APSP. Meanwhile, Diameter has its own
(smaller) equivalence class which includes problems such as Reach Centrality [3]. We
prove that Diameter-Parity and Reach Centrality-Parity are subcubic equivalent to
Diameter.

Another interesting problem in fine-grained complexity whose importance is rapidly
increasing is the Min-Plus Convolution problem [17]. The naïve algorithm for this
problem runs in O(n2) time, and a truly subquadratic O(n2−ε) algorithm is conjectured to
be impossible. This problem is one of the easiest n2 problems since it can be reduced to both
APSP (i.e. a subcubic algorithm for APSP yields a subquadratic algorithm for Min-Plus
Convolution) and to 3SUM (an opposing situation to that of ZWT). This means that
all of the APSP and 3SUM lower bounds can be based on this conjecture, but also that
Min-Plus Convolution is unlikely to be equivalent to either of them (as it would imply a
unification of the classes). Recently, a few other problems have been shown to be harder,
e.g. [2], or subquadratic-equivalent to it, e.g. Maximum consecutive subsums [17, 31],
0/1-Knapsack [17,30], and a (1 + ε)-approximation for Subset Sum [14]. We prove that
these equivalences hold for the parity versions as well (except the latter problem for which
we did not find a natural parity version). Our reduction from the Maximum consecutive
subsums problem to its parity version in Section 4.3 is quite involved and it uses specific
properties of the addition operator. One can obtain such a reduction indirectly and more
easily via Min-Plus Convolution, however, we believe that our reduction gives more
insight into the problem and into the usage of the addition operator.

I Theorem 4. The following problems are subquadratic-equivalent:
Min-Plus Convolution and its parity computation,
Maximum Consecutive Subsums and its parity computation,
0/1-Knapsack and its parity computation,
Tree Sparsity and its parity computation.

1.2 Related Work
While parity counting problems are extensively studied in classical complexity theory, the
parity computation problems seem to have received less attention. In many cases, the
standard NP-hardness reduction from SAT gives instances in which the solution is always
either k or k − 1, which directly implies the NP-hardness of the parity version as well. Some
of the results in fine-grained complexity also have this property. For example, the quadratic
hardness result for Diameter in sparse graphs [36] shows that it is hard to distinguish
diameter 2 from 3 and immediately gives the same lower bound for parity. However, for
many other problems, such as the ones we consider, this is not the case and a careful
problem-specific treatment is required.

Theorem 2 and its corollaries conditionally separate NWT from its parity and counting
versions. Such separations are famously known in classical complexity, e.g. for 2-SAT [42].
In fine-grained complexity, a (conditional) separation for a variant of the Orthogonal Vec-
tors problem between near-linear time decision [48] and quadratic time exact counting [46]
was recently achieved. Notably, the approximate counting version is also in near-linear
time [19] and the parity version is open.

The parity counting version of the Strong Exponential Time Hypothesis was studied in a
seminal paper on the fine-grained complexity of NP-hard problems [16]. The central question
left open in that paper (and is still wide open, see [1]) is whether SAT can be reduced to
Set-Cover in a fine-grained way; interestingly, the authors have shown such a reduction for
the parity counting versions.
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Exact and approximate counting problems have received a lot of attention in parameterized
[15,22] and fine-grained complexity [18]. In a recent development, the k-Clique counting
problem was shown to have worst-case to average-case reductions [9, 25]. It is likely that our
result for NWT-Parity can be extended to Negative Weight k Clique Parity showing
that it is as hard as Zero Weight k Clique. The decision version of the latter problem
was used as the basis for public-key cryptography schemes [32].

Due to the large amount of works on APSP-hardness and equivalences we did not manage
to exhaustively enumerate all of them and investigate the complexity of the parity versions,
e.g. for problems on stochastic context-free grammars [38] or dynamic graphs [4, 37]. Still,
we expect that the ideas in this work can be extended to show the hardness of those parity
computation problems as well.

Besides parity computation and parity counting, there is a third natural type of parity
problems where we take a problem and replace one of the operations (e.g. summation) with
a parity. For example, the 3XOR problem is a variant of 3SUM where we are given a set of
n binary vectors of size O(log n) and are asked if there is a triple whose bit-wise XOR is all
zero. 3XOR is the subject of study of several papers [11, 12, 21] and it seems just as hard as
3SUM but a reduction in either direction has been elusive [27].

1.3 Preliminaries
In all graph problems we assume that the graphs have n nodes and O(n2) edges. In all
the weighted problems we consider, we assume the weights are integers in [−M, M ] (and
generally it is assumed that M = poly(n)).

Intuitively, a fine-grained reduction [49,51] from problem A with current upper bound
O(na) to problem B with current upper bound O(nb) is a Turing-reduction proving that if B
is solvable in time O(nb−ε), for some ε > 0, then A is solvable in time O(na−ε′), for some
ε′ > 0. More formally, an (a, b)-fine-grained reduction from A to B is a (possibly randomized)
algorithm solving A on instances of size n using t calls to an oracle for B on instances of sizes
n1, . . . , nt, such that for all ε > 0:

∑t
i=1(ni)b−ε ≤ na−ε′ for some ε′ > 0. In this paper, unless

otherwise stated, we assume that the reduction is randomized. A (3, 3)-fine-grained reduction
is called a subcubic-reduction and two problems are called subcubic-equivalent if there are
subcubic-reductions in both ways. Similarly, two problems are subquadratic-equivalent if
there are (2, 2)-fine-grained reductions between them in both ways.

2 APSP to Median Parity

In this section, we show a subcubic reduction from the Negative Weight Triangle
problem (hence also from APSP [51]) on a directed graph G with integral edge weights in
[−M, M ] to Median Parity. We first describe the reduction of [3] from Negative Weight
Triangle to Median and then modify it to become a reduction to Median Parity.

2.1 Negative Weight Triangle to Median [3]
The instance G′ to the Median problem (illustrated in Figure 1) is an undirected graph
constructed as follows. First, for any two (not necessarily different) vertices u, v if there is no
edge (u, v) in G then we add an edge (u, v) of weight w(u, v) = 4M to G (this will not form a
new negative triangle). Each vertex u of G has five copies in G′ denoted uA, uB , uB′ , uC , uC′ .
Let H be a sufficiently large number (say H = 100M). For any two (not necessarily different)
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5:8 On the Fine-Grained Complexity of Parity Problems

vertices u, v of G we add the following edges to G′: (uA, vB) of weight 3H +w(u, v), (uA, vB′)
of weight 3H −w(u, v), (uA, vC) of weight 6H −w(v, u)3, (uA, vC′) of weight 3H + w(v, u)3,
(uA, vA) of weight H, and (uB , vC) of weight 3H + w(u, v).

Figure 1 The graph G′ in the reduction from Negative Weight Triangle to Median.

I Lemma 5 ([3]). G does not contain a negative triangle iff the median of G′ is (16n− 1)H.

Proof. Consider first a vertex uX with X 6= A. We claim that the sum of distances∑
v∈V (G′) dG′(uX , v) is at least (19n − 5)H. To see this, first observe that the sum is

minimized when X = B. This is because shortest paths from vertices in B′ and C ′ go
through A, and because every C-to-A distance is larger than any B-to-A distance by at least
H. We therefore focus on X = B: The distance from uB to uB is zero and the distance from
uB to vB (for v 6= u) is at least 5H (since H is large enough, 3H+w(u, t)+3H+w(t, v) > 5H),
so the sum of distances from uB to all vertices of B is 5H(n−1). Similarly, for every vertex v of
G, the distances from uB to vA, vB′ , vC , vC′ are at least 2H, 5H, 2H, 5H respectively. Overall,
the sum of distances from uB is at least (5n−5)H + 2nH + 5nH + 2nH + 5nH = (19n−5)H.

Next consider a vertex uA. Let F (u, v) = min{0, mint∈V (G){w(v, u) + w(u, t) + w(t, v)}}.
Observe that F (u, v) = 0 if the edge (v, u) is not part of any negative triangle in G, and
F (u, v) < 0 otherwise. We claim that the sum of distances

∑
v∈V (G′) dG′(uA, v) is exactly

(16n−1)H+
∑

v∈V (G) F (u, v). To see this, consider the distances from uA. Distances to vA, vB ,
and vB′ are H (for v 6= u), 3H +w(u, v), and 3H−w(u, v) respectively. Over all such vertices
the sum of the distances is therefore (n− 1)H + 6nH = (7n− 1)H. The distance to vC′ is
3H +w(v, u) and the distance to vC is the minimum between 6H−w(v, u) (using a single edge)
and 3H+w(u, t)+3H+w(t, v) for some vertex t (using two edges, through some tB). Summing
those two distances together, we get 9H + w(v, u) + mint∈V (G){−w(v, u), w(u, t) + w(t, v)} =
9H + F (u, v). Overall, we get that

∑
v∈V (G′) dG′(uA, v) = (16n− 1)H +

∑
v∈V (G) F (u, v) as

claimed. This implies that the median vertex must come from A and that the median value
is (16n− 1)H iff every F (u, v) = 0 (i.e. G does not contain a negative triangle). J

2.2 Negative Weight Triangle to Median Parity
We now modify the above reduction so that it reduces to Median Parity instead of Median.
We assume n is odd (otherwise add an isolated vertex to G). Let Med be the value of the
median of G′. We multiply all the edge weights of G′ by 4n (notice that this multiplies the

3 Notice the different order of the vertices.
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median value Med by 4n). We do this in order to make sure that small changes in edge
weights would not change any shortest path, and also to make sure that subtracting n from
distance sums would not change the median vertex.

We show how to find the median of G′ using O(log n) executions of Median Parity:
Given a set of vertices T ⊆ A (initialized to be A), pick an arbitrary subset S of T of half of
its size. Temporarily (i.e restore weights at the end of the iteration) subtract 1 from all the
S-to-B and S-to-C edges and add 1 to all the S-to-B′ edges. Now solve Median Parity on
G′. If the median value is odd, set T ← S. If the median value is even, set T ← T/S. We
continue recursively for O(log n) steps until T contains a single vertex. We then check if this
vertex participates in a negative triangle in G.

For the correctness of the above procedure, inductively assume that T contains the median
vertex of G′. Notice that the temporary changes to the edge weights do not change the
identity of shortest paths in G′, only their value. In particular, the sum of distances from
every vertex uA ∈ S decreases exactly by n, and for any vertex uA ∈ A\S the sum remains
the same. To see this, consider first a vertex uA ∈ S. The sum of its distances to any vB

and vB′ remains the same (one is larger by 1 and one is smaller by 1) and its distance to
vC is decreased by 1 (recall that the shortest path is either the direct edge (uA, vC) or two
edges (uA, tB), (tB , vC)). Therefore, the sum of distances from uA ∈ S to all vertices of G′

decreases by exactly n. As for vertices in uA ∈ A\S, we do not change weights of edges in
their shortest paths so their sum of distances is unchanged.

If the median is from S, then its sum of distances in G′ was originally Med. Since we
multiplied the edge weights by 4n and subtracted n from its sum, the median value is now
4n ·Med−n. This value is odd and indeed we set T ← S. If on the other hand the median is
not from S, then the sum of distances from any vertex of S was originally at least Med + 1,
and is therefore now at least 4n · (Med + 1)− n. This value is strictly bigger than the value
4n ·Med of the median. The value 4n ·Med is even and indeed we set T ← T/S.

3 Negative Triangle Vertex Parity

In this section, we show that Negative Triangle Vertex Parity (finding if the number
of vertices that belong to a negative triangle is odd or even) is subcubic equivalent to APSP
under randomized reductions. We then use Negative Triangle Vertex Parity in order
to establish a subcubic equivalence with the Parity versions of Wiener Index, Sum of
Eccentricities, and Integer Betweenness Centrality.

3.1 APSP to Negative Triangle Vertex Parity
We now show a probabilistic (one side error) reduction from Negative Weight Tri-
angle (NWT) to Negative Triangle Vertex Parity (NTVP). We assume without
loss of generality that the NWT instance G is undirected (otherwise, we turn G into an
undirected tripartite graph (by adding vertices v1, v2, v3 for every v in V (G) and edges
(u1, v2), (u2, v3), (u3, v1) for every (u, v) in E(G)) with the property that there is a negative
triangle in G iff there is a negative triangle in the tripartite graph). The NTVP instance G′ is
also undirected and is created as follows: Choose V1 ⊆ V (G) uniformly, and let V = V (G)\V1.
For every u1 ∈ V1 we add a vertex u2, and let the union of all u2 vertices be V2. For every
edge (u1, v1) in V1 × V1 we add the edge (u2, v2) and for every edge (u1, v) in V1 × V we add
the edge (u2, v). Notice that the graph induced by V ∪ V2 is G, and the same for V ∪ V1.

Since there are no edges between V1 and V2, every triangle is either in V ∪V1 or in V ∪V2.
Furthermore, for every vertex u1 ∈ V1, if u1 belongs to a negative triangle in G then both u1
and u2 belong to negative triangles in G′, thus contributing 2 (even) to the parity NTVP(G′)
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of the number of vertices that belong to a negative triangle in G′. Therefore, vertices in V1
do not affect the parity NTVP(G′). In other words, NTVP(G′) is the parity of vertices in
V with a negative triangle. If G contains a negative triangle, then the probability of odd
NTVP(G′) is exactly 1/2 (since each vertex with a negative triangle is chosen to be in V

with probability 1/2). If G does not contain a negative triangle, then the probability of
even NTVP(G′) is exactly 1. By repeating this process O(log n) times we can amplify the
probability of success to 1− 1/nc for any constant c.

We remark that the above reduction can also be used to reduce Zero Weight Triangle
to its vertex parity version.

3.2 Negative Triangle Vertex Parity to Wiener Index Parity (Directed)
We handle the directed case here and the undirected case in Section 3.3. Assume n is
even by adding a vertex with no negative triangles, if needed. The reduction graph G′ is
constructed as in [3, 51] (see Figure 2): Each vertex u of G has five copies in G′ denoted
uS , uA, uB , uC , uD. Let H be a sufficiently large even number (say H = 100M). For
every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G), add the edge (uX , vY ) with weight
2H + 2w(u, v). For every u 6= v ∈ V (G), add an edge (uA, vD) with weight 5H. For every
u ∈ V (G), we add the edge (uS , uA) with weight H + 1 and the edge (uS , uD) with weight
7H. Turn G′ into a clique by replacing any missing edge with an edge of weight 16H.

Figure 2 The graph G′ in the reduction from Negative Triangle Vertex Parity to Wiener Index
Parity. Edges of weight 16H are absent.

We now show that the Negative Triangle Vertex Parity of G (NTVP(G)) is equal to the
Wiener Index Parity of G′ (WIP(G′)). Since H is an even number, the only edges in G′ that
have an odd length are the (uS , uA) edges of length H + 1. Therefore, the parity WIP(G′) is
determined by the S to A ∪B ∪ C ∪D distances.

First observe that the sum of distances from S to A ∪B ∪ C is even. This is because for
any vertex uS in S the following shortest paths consist of a single edge of weight H + 1: the
uS-to-vA (for v = u) path, the uS-to-vB (for v = u or v 6= u) paths, and the uS-to-vC (for
v = u or v 6= u) paths. Thus, the total number of odd edges in the sum of distances from S

to A ∪B ∪ C is n(2n + 1), which is even since n is even.
It remains to consider the distances from S to D. For u 6= v, dG′(uS , vD) = 6H + 1, and

the sum of such distances is n(n− 1)(6H + 1) (even). We are left with the sum of distances
dG′(uS , uD). If u belongs to a negative triangle in G and k is the minimal weight of such
cycle then dG′(uS , uD) = 7H + 2k + 1 (odd). If u does not belong to any negative triangle
then dG′(uS , uD) = 7H (even). Therefore the sum of distances is odd iff there is an odd
number of vertices belonging to a negative triangle.

3.3 Negative Triangle Vertex Parity to Wiener Index Parity
(Undirected)

In undirected graphs, to avoid a trivial Wiener Index Parity of 0, the Wiener Index is defined
as the sum of d(u, v) over every unordered (rather than ordered) pair {u, v}.
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We assume that every triangle has odd length by multiplying every edge-weight by 4 and
adding 1 (this preserves the sign of negative and non-negative triangles). We construct a
graph G′ similarly to [3, 51] and to Section 3.2 but the approach differs in the analysis of
correctness: Each vertex u of G has four copies in G′ denoted uA, uB , uC , uD. Let H = 100M

(sufficiently large even number). For every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G),
add the edge (uX , vY ) of weight 2H + w(u, v). For every u 6= v ∈ V (G), add an edge (uA, vD)
of weight 5H. For every u = v ∈ V (G), add an edge (uA, uD) of weight 6H.

Let m be the number of edges in G and let W be the sum of edge weights in G. We claim
that WIP(G′) − W is odd iff NTVP(G) is odd: The sum of A-to-B distances is W + 2H ·m.
This sum has the same parity as W , which we cancel out by subtracting W from WIP(G′).
Notice that the sum of B-to-C (A-to-C) distances and the sum of C-to-D (B-to-D) distances
are equal thus by adding both sums the parity of WIP(G′) does not change. Similarly, the
sum of the X-to-X distances for every X ∈ {A, B, C, D} is the same and WIP(G′) is not
changed. We are left with the A-to-D distances. The sum of uA-to-vD distances for u 6= v is
5H · n(n− 1) (even). If u is not in a negative triangle, then d(uA, uD) = 6H (even) by using
the direct edge (uA, uD). If u is in a negative triangle, the uA-to-uD distance is 6H plus the
weight of the minimum weight triangle of u (odd). Therefore WIP(G′) − W is odd iff there
is an odd number of vertices with a negative triangle.

3.4 Negative Triangle Vertex Parity to Sum of Eccentricities Parity
The reduction is obtained by tweaking the reduction of Section 3.3. We add to G′ an
additional vertex y. For every u ∈ V (G), we add the edge (y, uD) of weight 7H and the
edges (y, uA), (y, uB) and (y, uC) each of weight 5H.

Notice that these changes to G′ do not affect the distances between vertices of V (G′)\{y}
since every path that goes through y has weight of at least 10H. Recall that H is an even
number. The eccentricity of a vertex u is defined as maxv d(u, v). The eccentricity of vertices
in B∪C is 5H (even), since their distance to y is 5H and their distance to any other vertex is
bounded by 4H + 2M (i.e. smaller than 5H). The eccentricity of vertices in D is 7H (even),
since their distance to y is 7H and their distance to any other vertex is bounded by 6H

(maximized by a vertex in A). The eccentricity of y is 7H (even). Finally, the eccentricity
of a vertex uA in A is d(uA, uD), since the uA-to-uD distance is at least 6H − 3M and any
other distance is bounded by 5H (maximized by y and some vD). This means that, as shown
in Section 3.3, the parity of

∑
u d(uA, uD) equals NTVP(G).

3.5 Negative Triangle Vertex Parity to Integer Betweenness Centrality
Parity

The reduction is deterministic and uses a similar graph G′ to the one used in the reduction
of [3] from Negative Weight Triangle to Betweenness Centrality: Each vertex u of
G has four copies in G′ denoted uA, uB , uC , uD. Let H = 100M (sufficiently large number).
For every (X, Y ) ∈ {(A, B), (B, C), (C, D)} and u, v ∈ V (G), add the edge (uX , vY ) with
weight 2H + w(u, v). Add a single vertex x and for every vertex v ∈ V (G), add the edges
(uA, x), (x, vD) with weight 3H. Add two sets of vertices Z, O each of size dlog ne. Let
zi ∈ Z, oi ∈ O be the i’th vertex of the sets. If the i’th bit in u’s binary representation is 0,
add an edge (uA, zi) with weight 2H and an edge (oi, uD) with weight 3H. Otherwise, add
an edge (uA, oi) with weight 2H and an edge (zi, uD) with weight 3H. This dependency on
the binary representation assures that every uA and vD are connected with a path (of weight
5H) through O or through Z except for the case where u = v. See Figure 3.
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5:12 On the Fine-Grained Complexity of Parity Problems

Figure 3 A representation of G′ in the reduction from Negative Weight Triangle to Integer
Betweenness Centrality Parity.

Consider the Integer Betweenness Centrality Parity of the vertex x in G′. Assume n is
even (otherwise add a vertex to G with no negative triangle). Notice that the only pairs
with a shortest path through x can be of the form (uA, uD) (pairs (uA, vD) with v 6= u have
shorter paths of weight 5H through Z or O). Furthermore, there is a shortest uA-to-uD path
through x iff u is not in a negative triangle. This is because the distance between uA and
uD is the minimum between 6H (going through x) and 6H + w(u, v) + w(v, t) + w(t, u) for
some v, t ∈ V (G). Therefore, the number of pairs (uA, uD) with shortest paths through x

is n minus the number of vertices in a negative triangle, hence the parity of the number of
paths going through x in G′ is the same as the parity of the number of vertices in G with a
negative triangle.

3.6 APSP to Integer Betweenness Centrality Parity
We provide a probabilistic (one sided error) reduction from Negative Weight Triangle
that does not go through Negative Triangle Vertex Parity. We continue from where
we stopped in Section 3.5. Recall that the number of pairs that have a shortest path through
x is n minus the number of vertices in a negative triangle. If there is an odd number of pairs
then we return that a negative triangle exists. Otherwise, there is an even number of vertices
with a negative triangle. We then choose a set S ⊆ V (G) uniformly, and limit A, D to the
vertices in S (B, C remain the same). If the number of paths going through x is odd we
report that there is a negative triangle, otherwise we report that there is none. If a negative
triangle exists, S has an odd number of vertices with a negative triangle with probability
1/2, and we detect an odd number of pairs. Otherwise, S always has 0 (even) vertices with a
negative triangle, and we succeed with probability 1. We can repeat the process O(log n)
times and amplify the probability of success to 1− 1/nc for any constant c.

4 APSP to Min-Plus Matrix Multiplication Parity

4.1 Min-Plus Multiplication to Min-Plus Multiplication Parity
Given two n × n matrices A and B we wish to compute C = A ⊗ B where C[i, j] =
mink{A[i, k] + B[k, j]}. First assume that for every i, j the value C[i, j] is obtained by a
unique index k. Let K be the n× n matrix such that K[i, j] is the unique index k of C[i, j].
We show how to compute K by using Min-Plus Matrix Multiplication Parity.

Define Â = 2A, and for any t ∈ [log n] define kt as the t’th bit of k and B̂t to be the
matrix such that B̂t[k, j] = 2B[k, j] + kt. We compute the parity of Ĉt = Â⊗ B̂t for every
t ∈ [log n]. We claim that the parity of Ĉt[i, j] is the t’th bit of K[i, j]. This is because
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Ĉt[i, j] = mink{2A[i, k] + 2B[k, j] + kt}. The parity of this value is 0 if the unique index k

that minimizes A[i, k] + B[k, j] has kt = 0 and is 1 otherwise. Therefore, from this parity we
can recover the t’th bit of K[i, j].

To remove the assumption on the uniqueness of k, we define matrices A′ and B′ as
A′[i, k] = (n + 1) ·A[i, k] + k and B′[k, j] = (n + 1) ·B[k, j]. Observe that A′ and B′ have the
uniqueness of k property. This is because if A′[i, k1] + B′[k1, j] = A′[i, k2] + B′[k2, j] for some
k1, k2 then (n + 1) · (A[i, k1] + B[k1, j]) + k1 = (n + 1) · (A[i, k2] + B[k2, j]) + k2 and, since
k1 and k2 are smaller than n + 1, it follows that k1 = k2. Furthermore, in order to compute
A⊗B it suffices to compute C ′ = A′⊗B′. Because if A′[i, k1]+B′[k1, j] ≤ A′[i, k2]+B′[k2, j]
then (since k1 and k2 are smaller than n + 1) A[i, k1] + B[k1, j] ≤ A[i, k2] + B[k2, j].

As a corollary, we get that APSP is subcubic equivalent to APSP Parity (i.e. the problem
of deciding the parity of every pairwise distance in the graph): Let M be a bound on the
absolute values in A and B. Create a graph consisting of vertices ai, bi, ci for every i ∈ [n]
and the edges (ai, bj), (bi, cj) with weights A[i, j] + 3M and B[i, j] + 3M respectively for
every i, j. The distance d(ai, cj) = 6M + mink{A[i, k] + B[k, j]} and therefore has the same
parity as (A⊗B)[i, j]. Notice that the reduction can be modified (with a folklore trick) to
show that even computing A ⊗ A Parity is hard. Let D be the n × n matrix with every

element equals to 3M . Let E be the 2n× 2n matrix
[

A B

D D

]
. Then E ⊗E equals

[
X Y

Z W

]
where Y = A⊗B since Y [i, j] = min{(A⊗B)[i, j], (B ⊗D)[i, j]} = (A⊗B)[i, j].

4.2 Min-Plus Convolution to Min-Plus Convolution Parity
Given vectors A and B each of length n, we wish to compute their convolution C where
C[i] = mini=j+k{A[j] + B[k]}. The approach is the same as in Section 4.1. We assume
each value C[i] is obtained by a unique index k, otherwise we multiply A and B by n + 1
and add to each B[k] the value k (as in Section 4.1). Let K be the vector such that K[i]
is the unique index k of C[i]. Define Â = 2A, and for any t ∈ [log n] define kt is the t’th
bit of k and B̂t to be the vector such that B̂t[k] = 2B[k] + kt. Let Ĉt[i] be the convolution
of Â and B̂t. Then the t’th bit of K[i] is the same as the parity of Ĉt[i]. This is because
Ĉt[i] = mini=j+k{2A[j] + 2B[k] + kt}.

4.3 Maximum Consecutive Subsums to Maximum Consecutive
Subsums Parity

Given a vector X of length n, the maximum consecutive subsums problem asks to compute
maxi

∑k
j=1 X[i + j] for every k ∈ [n]. To achieve this, we first compute (in linear time) the

vector A where A[k] =
∑k

j=1 X[j]. The problem then reduces to computing Diff(A) where
Diff(A)[k] = maxi{A[k + i] − A[i]}. In fact, since X[k] = A[k] − A[k − 1], there is also a
reduction in the opposite direction and so the two problems are equivalent (and their parity
versions are equivalent). In this section, we show that given the parity of Diff(A) (i.e. the
parity of every element in Diff(A)) we can compute Diff(A) itself.

Given a vector A, we wish to compute Diff(A). We assume that for every k, the
value Diff(A)[k] = maxi{A[k + i] − A[i]} is obtained by a unique index i. Otherwise, we
multiply every A[k] by (n2 + 1) and add k2 (similarly to Section 4.1). Let I be the vector
of such unique indices, and let J be the vector where J [k] = I[k] + k. By definition,
Diff(A)[k] = A[J [k]]−A[I[k]]. We define At to be the vector such that At[k] = 4 ·A[k] + kt

(where kt is the t’th bit of k). Notice that At[j]−At[i] = 4 · (A[j]−A[i]) + (jt − it) where
(jt − it) ∈ {−1, 0, 1}. Thus, for every k, Diff(A)[k] is maximized when j = J [k] and i = I[k]
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(regardless of the values of jt and it). This is because for every i 6= I[k] and j = k + i it holds
that 4·(A[j]−A[i])+(jt−it) ≤ 4·(A[J [k]]−A[I[k]]−1)+1 < 4·(A[J [k]]−A[I[k]])+(J [k]t−I[k]t).
Observe that that the parity of At[j]−At[i] is jt⊕ it, where ⊕ is the bitwise XOR operation.

For every t ∈ [log n] we compute the parity of Diff(At). The computed parity of Diff(At)[k]
is J [k]t ⊕ I[k]t. Given J [k]1 ⊕ I[k]1, . . . , J [k]log n ⊕ I[k]log n, we want to compute J [k] and
I[k]. Recall that J [k] = k + I[k]. Let c1, . . . , clog n be the carry bits in the binary addition
of I[k] and k. We know that I[k]t ⊕ kt ⊕ ct = J [k]t so by substituting J [k]t ⊕ I[k]t we
compute every ct = J [k]t⊕ I[k]t⊕kt. Given ct, ct+1, kt, and J [k]t⊕ I[k]t we wish to compute
J [k]t and I[k]t. However, this can only be done when J [k]t ⊕ I[k]t = 1. In this case
I[k]t = ¬J [k]t = ct+1. This is because kt⊕ ct = J [k]t⊕ I[k]t = 1 so kt + ct = 1 and therefore
ct+1 = 1 iff I[k]t + kt + ct ≥ 2 iff I[k]t = 1. We are left with the bits where J [k]t = I[k]t.
Let At,p be the vector such that At,p[k] = 4 ·A[k] + (kt → kp) (compared to At, we replace
kt with kt implies kp). For every (t, p) ∈ [log n]2 we compute the parity of Diff(At,p). The
parity of Diff(At,p)[k] is (J [k]t → J [k]p) ⊕ (I[k]t → I[k]p) and is denoted as bt,p. Given
that J [k]t and I[k]t have not been computed yet, we know that J [k]t = I[k]t, hence for
every p it holds that bt,p = (I[k]t → J [k]p) ⊕ (I[k]t → I[k]p). Notice that J [k] > I[k]
therefore there must be an index p′ where I[k]p′ 6= J [k]p′ (which we previously found) thus
bt,p′ = (I[k]t → ¬I[k]p′)⊕ (I[k]t → I[k]p′). Observe that I[k]t = 0 iff bt,p′ = 0. Overall, we
find I[k] for every k using O(log2 n) Diff parity computations and Õ(n) reduction time.

5 Zero Weight Triangle Counting to Negative Triangle Counting

In this section we show a simple but surprising reduction from counting zero weight triangles
to counting negative triangles. We show a deterministic reduction from Zero Weight
Triangle to Negative Triangle Counting and a randomized reduction from Zero
Weight Triangle to Negative Triangle Parity.

5.1 Zero Weight Triangle Counting (Parity) to Negative Triangle
Counting (Parity)

We want to count the number of triangles with weight zero in G. Let ∆ be the number of
triangles in G. We can compute ∆ in matrix-multiplication O(nω) time4. Let ∆0, ∆+, ∆−
be the number of zero, positive, and negative weight triangles in G′ respectively. Given a
subcubic algorithm for Negative Triangle Counting, we can compute ∆−. By negating
weights in G we can compute ∆+ as well. We then compute ∆0 = ∆−∆+ −∆−. This simple
reduction also reduces Zero Weight Triangle Parity to Negative Triangle Parity.

5.2 Zero Weight Triangle to Zero Weight Triangle Parity

Given a graph G, we want to find whether there is a zero weight triangle. We create a
graph G′ as follows: For every vertex u ∈ V (G), we create three copies uA, uB , uC in G′,
and for every edge (u, v) ∈ E(G) we add the edges (uA, vB),(uB , vC), (uC , vA) to G′ (with
the same weight as (u, v)). Notice that there is a zero weight triangle in G iff there is a zero
weight triangle in G′. We now create a graph G′′ by removing from G′ each edge (uB , vC)
with probability 1

2 , and removing from G′ each vertex uA with probability 1
2 . We report that

a zero weight triangle exists in G iff there is an odd number of zero weight triangles in G′′.
We now show that this reduction works with probability at least 1

4 .

4 We can also compute ∆ with Negative Triangle Counting by changing every weight in G to −1.
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If there is no zero weight triangle in G′, we succeed with probability 1. If there is a zero
weight triangle in G′, then let uA be a vertex of G′ that participates in some zero weight
triangle. Since we removed each edge (vB , tC) with probability 1

2 then, with probability 1
2 ,

the vertex uA participates in an odd number of zero weight triangles in G′′. Let ∆0
vA

be the
number of zero weight triangles in G′′ that vA participates in. The total number of zero
weight triangles in G′′ is

∑
v∈V (G) ∆0

vA
=
∑

v∈V (G)\{u}∆0
vA

+ ∆0
uA

. If ∆0
uA

is odd then, with
probability 1

2 , our decision whether to remove uA leads to an odd number of zero weight
triangles in G′′. Overall, the probability of success is therefore at least 1

4 .

6 Min-Plus Convolution to Knapsack Parity

In the knapsack problem, given a set of n items (wi, vi) and a target weight t, we wish to
pick a multiset of items I that maximizes

∑
i∈I vi subject to

∑
i∈I wi ≤ t. When I is required

to be a set (and not a multiset) the problem is called 0/1-knapsack. In the Indexed
Knapsack problem, we have wi = i and t = n. Finally, the Coin Change problem [30,33]
is the same as Indexed Knapsack but with the additional restriction

∑
i∈I i = n.

The Knapsack and the 0/1-knapsack problems are equivalent to Min-plus Convolution
under randomized reductions [17]. The Indexed Knapsack and the Coin Change problem
are equivalent to Min-plus Convolution under deterministic reductions [30]. In this section,
we show that the parity versions of all the above problems are equivalent to Min-plus
Convolution.

6.1 Super-Additivity Testing to Knapsack [17]
Given a vector A[0], . . . , A[n− 1], the Super-Additivity testing problem asks whether
A[i] + A[j] ≤ A[i + j] for every i, j. The problem is subquadratic equivalent to Min-plus
Convolution under deterministic reductions [17]. We now give a brief description of the
reduction in [17] from Super-Additivity testing to Knapsack.

First, it is shown in [17] that we can assume without loss of generality that 0 = A[0] <

A[1] < · · · < A[n − 1] = M . Let D = Mn + 1, the instance of Knapsack consists of two
types of items: Type-A items are (i, A[i]) and Type-B items are (2n− 1− i, D − A[i]). It
remains to show that, when setting t = 2n − 1, the optimal sum of values

∑
i∈I vi equals

D iff A is super-additive. Since D >
∑

i A[i], the optimal solution must take at least one
Type-B item, and it cannot take more than one because the weight would exceeds t. If A is
not super-additive, then for some i, j it holds that A[i] + A[j] > A[i + j] and therefore the
three items {(i, A[i]), (j, A[j]), (2n− 1− i− j, D−A[i + j])} constitute a valid solution whose
value is larger than D. If A is super-additive, then every two Type-A items (i, A[i]), (j, A[j])
can be replaced by (i + j, A[i + j]) without changing the total weight. Thus, for any i, the
solution {(i, A[i]), (2n− 1− i, D −A[i])} is optimal and its value is exactly D.

6.2 Super-Additivity Testing to Knapsack Parity
We now modify the above the reduction to obtain a reduction to Knapsack Parity. We
first remove the item (0, A[0]) (since A[0] = 0 it does not contribute any value). We then
replace every Type-A item (i, A[i]) by (i, 2A[i]), every Type-B item (2n− 1− i, D − A[i])
(with i 6= 1) by (2n − 1 − i, 2(D − A[i])), and the Type-B item (2n − 1 − 1, D − A[1]) by
(2n− 1− 1, 2(D −A[1]) + 1). We show that A is super-additive iff the value of the optimal
solution is odd.

Once again, every optimal solution must consist of exactly one Type-B item since if
there are no Type-B items then the value does not exceed 2D as 2D >

∑
i 2A[i], and with

more than one Type-B items the weight exceeds t = 2n − 1. If A is not super-additive,
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then there are i, j such that k = i + j ≥ 2 and A[i] + A[j] > A[k] therefore the items
{(i, 2A[i]), (j, 2A[j]), (2n − 1 − i − j, 2D − 2A[k])} constitute a valid solution whose value
is larger than 2D + 1. Notice that k ≥ 2 since if k = 0 then the total value is 2D (thus
not optimal), and if k = 1 then we include the item (2n− 1− 1, 2(D −A[1]) + 1) and since
t = 2n− 1 we can only add the item (1, 2A[1]) leading to a non-optimal solution with value
2D + 1. Therefore, the optimal solution does not use the item (2n− 1− 1, 2(D −A[1]) + 1)
and hence it has an even value. On the other hand, if A is super-additive, then the solution
{(1, 2A[1]), (2n − 1 − 1, 2(D − A[1]) + 1)} is optimal and has value exactly 2D + 1 (odd).
This is because among the solutions that include a Type-B item (2n− 1− i− j, 2D − 2A[k])
with k 6= 1, once again by super-additivity, {(k, 2A[k]), (2n − 1 − k, 2D − 2A[k])} has the
maximal value of 2D (i.e. smaller than 2D + 1).

6.3 Super-Additivity Testing to 0/1-knapsack Parity
We now show how to modify the above reductions to be reductions to 0/1-knapsack and
0/1-knapsack Parity. In the above reductions, when A is super-additive the optimal
solution does not use any item more than once, and its total value V is either D or 2D + 1.
When A is not super-additive, there is a solution with a higher value than V . There is
only one case where this solution may use the same item more than once. This happens
when A is not super-additive in the following way: A[i] + A[j] ≤ A[i + j] for every i 6= j

but A[i] + A[j] > A[i + j] for some i = j. Therefore, in O(n) time we can check for every i

whether 2A[i] ≤ A[2i] and only if the answer is yes we apply the reduction.
Note that the above reductions also apply to the Indexed Knapsack Parity problem.

This is because the target weight t equals the total number of items 2n−1, and each item has
a unique weight in [2n− 1]. The reductions also apply to Coin Change Parity: When A

is super-additive, the optimal solution for Coin Change (which is also an optimal solution
for Knapsack) has weight 2n− 1 (equal to the number of items) and an odd value (2D + 1).
When A is not super-additive, the optimal solution for Coin Change (which is possibly not
an optimal solution for Knapsack) has weight 2n− 1 (equal to the number of items) and
an even value (larger than 2D + 1).

7 APSP to Sum of Eccentricities

In this section, we show a subcubic reduction from Radius (hence also from APSP) on a
graph G to Sum of Eccentricities on a graph G′. Let R be the radius of G. In order
to compute R it suffices to find whether R ≥ k for any given k ∈ [Mn] (since then we can
binary search for R). The constructed graph G′ is similar to the one in the reduction of [3]
from Diameter to Positive Betweeness centrality: We create G′ by multiplying the
edge weights of G by 2 and then adding a vertex x and the edges (x, u) and (u, x) each of
weight k for every u ∈ V (G).

I Lemma 6. R ≥ k iff the sum of eccentricities of G′ is
∑

u maxv dG′(u, v) = 2kn + k.

Proof. This is the same as claiming that R ≥ k iff
∑

u6=x maxv dG′(u, v) = 2kn. If R ≥ k,
then every vertex u 6= x can use x to get to its furthest vertex with a path of length 2k ≤ 2R.
Observe that any other path would be of length at least 2R (because we have multiplied all
edge weights by 2). Therefore,

∑
u6=x maxv dG′(u, v) = 2kn. If on the other hand R < k, then

the distance in G′ from the radius vertex of G to any other vertex is at most max{2R, k} < 2k

so this vertex adds less than 2k to the sum. All the other vertices add at most 2k to the
sum, and thus

∑
u6=x maxv dG′(u, v) 6= 2kn. J
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8 Radius to Radius Parity and Diameter to Diameter Parity

In this section, we show that computing the Radius R (resp. Diameter D) of a graph G

subcubicaly reduces to computing the parity of R (resp. D). As usual, to compute R, D it
suffices to find whether R, D ≥ k′ for k′ ∈ [Mn]. Let k′ = (k + 1)/2 for some odd k ≥ 1. We
create a reduction graph G′ similarly to [3] and to Section 7: We multiply the edge weights
of G by 2 and add a vertex x with (v, x),(x, v) edges of weight k for every v ∈ V (G).

Consider first the radius of G′. If the radius vertex of G′ is x then its value is k. Otherwise,
its value is either max{2R, k} (by using the edge to x and the same path as in G to all
other vertices) or 2k (by using a path through x). Therefore, the radius of G′ has value
min{k, 2R}. If 2R ≥ k + 1 (i.e R ≥ k′), the radius is k (odd). Otherwise 2R < k + 1 (i.e
R < k′) and the radius is 2R (even). Next consider the diameter of G′. If x is an endpoint
of the diameter of G′ then the diameter value is k. Otherwise, the diameter value is either
2D (by taking the same path as in G) or 2k (by using a path through x). Therefore the
diameter of G′ has value max{k, min{2D, 2k}}. If 2D ≤ k (i.e. D < k′), then the diameter
is k (odd). Otherwise 2D ≥ k + 1 (i.e. D ≥ k′), and the diameter is either 2D or 2k (even in
both cases).

References
1 Amir Abboud. Fine-grained reductions and quantum speedups for dynamic programming. In

46th ICALP, pages 8:1–8:13, 2019.
2 Amir Abboud, Vincent Cohen-Addad, and Philip N Klein. New hardness results for planar

graph problems in p and an algorithm for sparsest cut. In 52nd STOC, 2020. To appear.
3 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences

between graph centrality problems, APSP and diameter. In 26th SODA, pages 1681–1697,
2015.

4 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th FOCS, pages 434–443. IEEE, 2014.

5 Vikraman Arvind and Piyush P Kurur. Graph isomorphism is in spp. In 43rd FOCS, pages
743–750, 2002.

6 Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum
weight rectangles. In 43rd ICALP, pages 81:1–81:13, 2016.

7 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. Better approximations for tree sparsity in
nearly-linear time. In 28th SODA, pages 2215–2229, 2017.

8 Richard Beigel, Harry Buhrman, and Lance Fortnow. Np might not be as easy as detecting
unique solutions. In 30th STOC, pages 203–208, 1998.

9 Enric Boix-Adserà, Matthew Brennan, and Guy Bresler. The average-case complexity of
counting cliques in erdős-rényi hypergraphs. In 60th FOCS, pages 1256–1280, 2019.

10 Mahdi Boroujeni, Sina Dehghani, Soheil Ehsani, Mohammad Taghi Hajiaghayi, and Saeed
Seddighin. Subcubic equivalences between graph centrality measures and complementary
problems. CoRR, abs/1905.08127, 2019. arXiv:1905.08127.

11 Charles Bouillaguet and Claire Delaplace. Faster algorithms for the sparse random 3XOR
problem. Preprint, 2019. URL: https://hal.archives-ouvertes.fr/hal-02306917.

12 Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting and improving
algorithms for the 3xor problem. IACR Transactions on Symmetric Cryptology, pages 254–276,
2018.

13 David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John
Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. Necklaces, convolutions,
and X+Y. Algorithmica, 69(2):294–314, 2014.

ICALP 2020

http://arxiv.org/abs/1905.08127
https://hal.archives-ouvertes.fr/hal-02306917


5:18 On the Fine-Grained Complexity of Parity Problems

14 Karl Bringmann. Approximating subset sum is equivalent to min-plus-convolution. CoRR,
abs/1912.12529, 2019. arXiv:1912.12529.

15 Radu Curticapean. Counting problems in parameterized complexity. In 13th IPEC 2018.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

16 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.

17 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min,+)-convolution. ACM Trans. Algorithms, 15(1):14:1–14:25, 2019.

18 Holger Dell. Fine-grained complexity classification of counting problems. https://simons.
berkeley.edu/talks/holger-dell-2016-03-28, 2016.

19 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to decision.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 281–288, 2018.

20 Erik D. Demaine, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained I/O complexity via reductions: New lower bounds, faster algorithms,
and a time hierarchy. In 9th ITCS, pages 34:1–34:23, 2018.

21 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A subquadratic algorithm for 3XOR.
CoRR, abs/1804.11086, 2018. arXiv:1804.11086.

22 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, 2004.

23 Lance Fortnow. Counting complexity. Complexity theory retrospective II, pages 81–107, 1997.
24 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational

geometry. Comput. Geom., 5:165–185, 1995.
25 Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-case

reductions and direct interactive proof systems. In 59th FOCS, pages 77–88, 2018.
26 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,

65(4):22:1–22:25, 2018.
27 Zahra Jafargholi and Emanuele Viola. 3xor,3sum, triangles. Algorithmica, 74(1):326–343,

2016.
28 James King. A survey of 3SUM-hard problems. Preprint, 2019. URL: http://www.ccs.neu.

edu/home/viola/classes/papers/King04Survey3sum.pdf.
29 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.

In 27th SODA, pages 1272–1287. SIAM, 2016.
30 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity

of one-dimensional dynamic programming. In 44th ICALP, pages 21:1–21:15, 2017.
31 Eduardo Sany Laber, Wilfredo Bardales Roncalla, and Ferdinando Cicalese. On lower bounds

for the maximum consecutive subsums problem and the (min,+)-convolution. In 11th ISIT,
pages 1807–1811, 2014.

32 Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptography in
the fine-grained setting. In 39th CRYPTO, pages 605–635, 2019.

33 Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic triangles,
intermediate matrix products, and convolutions. In 11th ITCS, pages 53:1–53:18, 2020.

34 Christos H Papadimitriou and Stathis K Zachos. Two remarks on the power of counting. In
Theoretical Computer Science, volume 145, pages 269–276, 1983.

35 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In 42nd STOC,
pages 603–610, 2010.

36 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In 45th STOC, pages 515–524, 2013.

37 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In 12th ESA, pages
580–591, 2004.

http://arxiv.org/abs/1912.12529
https://simons.berkeley.edu/talks/holger-dell-2016-03-28
https://simons.berkeley.edu/talks/holger-dell-2016-03-28
http://arxiv.org/abs/1804.11086
http://www.ccs.neu.edu/home/viola/classes/papers/King04Survey3sum.pdf
http://www.ccs.neu.edu/home/viola/classes/papers/King04Survey3sum.pdf


A. Abboud, S. Feller, and O. Weimann 5:19

38 Barna Saha. Language edit distance and maximum likelihood parsing of stochastic grammars:
Faster algorithms and connection to fundamental graph problems. In 6th FOCS, pages 118–135,
2015.

39 Tadao Takaoka. Efficient algorithms for the maximum subarray problem by distance matrix
multiplication. Electr. Notes Theor. Comput. Sci., 61:191–200, 2002.

40 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

41 Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science,
8(2):189–201, 1979.

42 Leslie G Valiant. Accidental algorthims. In 47th FOCS, pages 509–517, 2006.
43 Leslie G Valiant. Some observations on holographic algorithms. computational complexity,

27(3):351–374, 2018.
44 Leslie G Valiant and Vijay V Vazirani. Np is as easy as detecting unique solutions. In 17th

STOC, pages 458–463, 1985.
45 Maria Isabel González Vasco and Mats Näslund. A survey of hard core functions. Cryptography

and Computational Number Theory, 20:227–255, 2001.
46 Ryan Williams. Counting solutions to polynomial systems via reductions. In 1st SOSA, pages

6:1–6:15, 2018.
47 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,

47(5):1965–1985, 2018.
48 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In 25th

SODA, pages 1867–1877, 2014.
49 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.

In ICM, 2018. Invited talk.
50 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted

subgraphs. In 41st STOC, pages 455–464, 2009.
51 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix,

and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.

ICALP 2020


	Introduction
	Our Results
	The APSP Class
	Other Classes

	Related Work
	Preliminaries

	APSP to Median Parity
	Negative Weight Triangle to Median [Abboud et al., 2015]
	Negative Weight Triangle to Median Parity

	Negative Triangle Vertex Parity
	APSP to Negative Triangle Vertex Parity
	Negative Triangle Vertex Parity to Wiener Index Parity (Directed)
	Negative Triangle Vertex Parity to Wiener Index Parity (Undirected)
	Negative Triangle Vertex Parity to Sum of Eccentricities Parity
	Negative Triangle Vertex Parity to Integer Betweenness Centrality Parity
	APSP to Integer Betweenness Centrality Parity

	APSP to Min-Plus Matrix Multiplication Parity
	Min-Plus Multiplication to Min-Plus Multiplication Parity
	Min-Plus Convolution to Min-Plus Convolution Parity
	Maximum Consecutive Subsums to Maximum Consecutive Subsums Parity

	Zero Weight Triangle Counting to Negative Triangle Counting
	Zero Weight Triangle Counting (Parity) to Negative Triangle Counting (Parity)
	Zero Weight Triangle to Zero Weight Triangle Parity 

	Min-Plus Convolution to Knapsack Parity
	Super-Additivity Testing to Knapsack [Cygan et al., 2019]
	Super-Additivity Testing to Knapsack Parity
	Super-Additivity Testing to 0/1-knapsack Parity

	APSP to Sum of Eccentricities
	Radius to Radius Parity and Diameter to Diameter Parity 

