39,433 research outputs found

    Recurrent kernel machines : computing with infinite echo state networks

    Get PDF
    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks

    Distributed Tree Kernels

    Get PDF
    In this paper, we propose the distributed tree kernels (DTK) as a novel method to reduce time and space complexity of tree kernels. Using a linear complexity algorithm to compute vectors for trees, we embed feature spaces of tree fragments in low-dimensional spaces where the kernel computation is directly done with dot product. We show that DTKs are faster, correlate with tree kernels, and obtain a statistically similar performance in two natural language processing tasks.Comment: ICML201

    Probabilistic Polynomials and Hamming Nearest Neighbors

    Full text link
    We show how to compute any symmetric Boolean function on nn variables over any field (as well as the integers) with a probabilistic polynomial of degree O(nlog(1/ϵ))O(\sqrt{n \log(1/\epsilon)}) and error at most ϵ\epsilon. The degree dependence on nn and ϵ\epsilon is optimal, matching a lower bound of Razborov (1987) and Smolensky (1987) for the MAJORITY function. The proof is constructive: a low-degree polynomial can be efficiently sampled from the distribution. This polynomial construction is combined with other algebraic ideas to give the first subquadratic time algorithm for computing a (worst-case) batch of Hamming distances in superlogarithmic dimensions, exactly. To illustrate, let c(n):NNc(n) : \mathbb{N} \rightarrow \mathbb{N}. Suppose we are given a database DD of nn vectors in {0,1}c(n)logn\{0,1\}^{c(n) \log n} and a collection of nn query vectors QQ in the same dimension. For all uQu \in Q, we wish to compute a vDv \in D with minimum Hamming distance from uu. We solve this problem in n21/O(c(n)log2c(n))n^{2-1/O(c(n) \log^2 c(n))} randomized time. Hence, the problem is in "truly subquadratic" time for O(logn)O(\log n) dimensions, and in subquadratic time for d=o((log2n)/(loglogn)2)d = o((\log^2 n)/(\log \log n)^2). We apply the algorithm to computing pairs with maximum inner product, closest pair in 1\ell_1 for vectors with bounded integer entries, and pairs with maximum Jaccard coefficients.Comment: 16 pages. To appear in 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2015

    Unscented Orientation Estimation Based on the Bingham Distribution

    Full text link
    Orientation estimation for 3D objects is a common problem that is usually tackled with traditional nonlinear filtering techniques such as the extended Kalman filter (EKF) or the unscented Kalman filter (UKF). Most of these techniques assume Gaussian distributions to account for system noise and uncertain measurements. This distributional assumption does not consider the periodic nature of pose and orientation uncertainty. We propose a filter that considers the periodicity of the orientation estimation problem in its distributional assumption. This is achieved by making use of the Bingham distribution, which is defined on the hypersphere and thus inherently more suitable to periodic problems. Furthermore, handling of non-trivial system functions is done using deterministic sampling in an efficient way. A deterministic sampling scheme reminiscent of the UKF is proposed for the nonlinear manifold of orientations. It is the first deterministic sampling scheme that truly reflects the nonlinear manifold of the orientation

    Butterfly Factorization

    Full text link
    The paper introduces the butterfly factorization as a data-sparse approximation for the matrices that satisfy a complementary low-rank property. The factorization can be constructed efficiently if either fast algorithms for applying the matrix and its adjoint are available or the entries of the matrix can be sampled individually. For an N×NN \times N matrix, the resulting factorization is a product of O(logN)O(\log N) sparse matrices, each with O(N)O(N) non-zero entries. Hence, it can be applied rapidly in O(NlogN)O(N\log N) operations. Numerical results are provided to demonstrate the effectiveness of the butterfly factorization and its construction algorithms

    Communication-Computation Efficient Gradient Coding

    Full text link
    This paper develops coding techniques to reduce the running time of distributed learning tasks. It characterizes the fundamental tradeoff to compute gradients (and more generally vector summations) in terms of three parameters: computation load, straggler tolerance and communication cost. It further gives an explicit coding scheme that achieves the optimal tradeoff based on recursive polynomial constructions, coding both across data subsets and vector components. As a result, the proposed scheme allows to minimize the running time for gradient computations. Implementations are made on Amazon EC2 clusters using Python with mpi4py package. Results show that the proposed scheme maintains the same generalization error while reducing the running time by 32%32\% compared to uncoded schemes and 23%23\% compared to prior coded schemes focusing only on stragglers (Tandon et al., ICML 2017)
    corecore