17 research outputs found

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135885/1/srtan_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137141/1/srtan_1.pd

    Simulation of Spiral Slot Antennas on Composite Platforms

    Get PDF
    The project goals, plan and accomplishments up to this point are summarized in the viewgraphs. Among the various accomplishments, the most important have been: the development of the prismatic finite element code for doubly curved platforms and its validation with many different antenna configurations; the design and fabrication of a new slot spiral antennas suitable for automobile cellular, GPS and PCs communications; the investigation and development of various mesh truncation schemes, including the perfectly matched absorber and various fast integral equation methods; and the introduction of a frequency domain extrapolation technique (AWE) for predicting broadband responses using only a few samples of the response. This report contains several individual reports most of which have been submitted for publication to referred journals. For a report on the frequency extrapolation technique, the reader is referred to the UM Radiation Laboratory report A total of 14 papers have been published or accepted for publication with the full or partial support of this grant. Several more papers are in preparation

    Numerical methods for electromagnetic wave propagation and scattering in complex media

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Vita.Includes bibliographical references (p. 227-242).Numerical methods are developed to study various applications in electromagnetic wave propagation and scattering. Analytical methods are used where possible to enhance the efficiency, accuracy, and applicability of the numerical methods. Electromagnetic induction (EMI) sensing is a popular technique to detect and discriminate buried unexploded ordnance (UXO). Time domain EMI sensing uses a transient primary magnetic field to induce currents within the UXO. These currents induce a secondary field that is measured and used to determine characteristics of the UXO. It is shown that the EMI response is difficult to calculate in early time when the skin depth is small. A new numerical method is developed to obtain an accurate and fast solution of the early time EMI response. The method is combined with the finite element method to provide the entire time domain response. The results are compared with analytical solutions and experimental data, and excellent agreement is obtained. A fast Method of Moments is presented to calculate electromagnetic wave scattering from layered one dimensional rough surfaces. To facilitate the solution, the Forward Backward method with Spectral Acceleration is applied. As an example, a dielectric layer on a perfect electric conductor surface is studied. First, the numerical results are compared with the analytical solution for layered flat surfaces to partly validate the formulation. Second, the accuracy, efficiency, and convergence of the method are studied for various rough surfaces and layer permittivities. The Finite Difference Time Domain (FDTD) method is used to study metamaterials exhibiting both negative permittivity and permeability in certain frequency bands.(cont.) The structure under study is the well-known periodic arrangement of rods and split-ring resonators, previously used in experimental setups. For the first time, the numerical results of this work show that fields propagating inside the metamaterial with a forward power direction exhibit a backward phase velocity and negative index of refraction. A new metamaterial design is presented that is less lossy than previous designs. The effects of numerical dispersion in the FDTD method are investigated for layered, anisotropic media. The numerical dispersion relation is derived for diagonally anisotropic media. The analysis is applied to minimize the numerical dispersion error of Huygens' plane wave sources in layered, uniaxial media. For usual discretization sizes, a typical reduction of the scattered field error on the order of 30 dB is demonstrated. The new FDTD method is then used to study the Angular Correlation Function (ACF) of the scattered fields from continuous random media with and without a target object present. The ACF is shown to be as much as 10 dB greater when a target object is present for situations where the target is undetectable by examination of the radar cross section only.by Christopher D. Moss.Ph.D

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited

    Modelling of plasmonic systems:advanced numerical methods and applications

    Get PDF
    Metallic nanostructures interact in complex ways with light, forming the subject of plasmonics and bringing novel physical phenomena and practical applications. The fundamental and practical importance of plasmonics necessitates the development of a multitude of simulation techniques. Surface integral equation (SIE) is a numerical method which is particularly suited for simulating many plasmonic systems. In this thesis, we develop SIE-based numerical methods for plasmonics and use them to study plasmonic systems of interest. Electric and magnetic surface currents are the basic quantities calculated in SIE, and it is appealing to directly compute various physical quantities directly using them. We develop a formalism to compute optical forces and torques, polarisation charges and multipole moments using the surface currents for better accuracy and efficiency. Numerical simulation is all about finding the right balance between accuracy and computational cost. SIE allows to choose this tradeoff in computing the integrals for the simulation matrix. We study the effect of the integration routine on the accuracy of the matrix and propose an optimised recipe for evaluating the integrals. Although this recipe incurs an overhead, we show how it becomes necessary in computing some physical quantities and simulating some systems, and how it allows simulations using a coarser discretisation. One drawback of SIE is that it can only simulate domains for which the response of each domain can be expressed in terms of the Green's function for the domain. Only homogeneous and periodic domains could be dealt with till now, limiting its applicability. We extend SIE to simulate nanostructures embedded in the layers of a stratified medium to partly overcome this restriction, paving the way for further improvements. SIE has the ability to model complex and realistic geometries. We exploit this feature to study the effect of fabrication-induced rounding on nanorods and gap antennae. We show how rounding results in blue shift of resonances, migration of charges from corners to edges to faces, and reduced coupling between nanostructures. The surface current-based formalism to calculate optical forces and torques permits their computation for particles in close proximity. We use this to study the internal forces in compound plasmonic systems, and show the presence of strong internal forces between their components. We also demonstrate surprising features such as force and torque reversal, and circular polarisation-dependent behaviour in achiral systems. We then numerically investigate the possibility of using optical torques to orient and rotate plasmonic nanostructures, relying on surface plasmon resonance, retardation effects and circular polarisation. Polarisation charges contain useful information about the behaviour of plasmonic systems, but there are difficulties in understanding and visualising them. We discuss the complex nature of polarisation charges and suggest various techniques to visualise them in complicated systems in a manner which is easy to understand without loss of information. Finally, we utilise the ability of SIE to compute accurate near fields to study the Raman enhancement in multi-walled carbon nanotubes on coating with metal, and the analogous quenching of Raman signal from silicon substrates

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore