9 research outputs found

    Author index

    Get PDF

    How Iterative are Iterative Algebras?

    Get PDF
    AbstractIterative algebras are defined by the property that every guarded system of recursive equations has a unique solution. We prove that they have a much stronger property: every system of recursive equations has a unique strict solution. And we characterize those systems that have a unique solution in every iterative algebra

    A Coalgebraic View of Infinite Trees and Iteration

    Get PDF
    AbstractThe algebra of infinite trees is, as proved by C. Elgot, completely iterative, i.e., all ideal recursive equations are uniquely solvable. This is proved here to be a general coalgebraic phenomenon: let H be an endofunctor such that for every object X a final coalgebra, TX, of H(_) + X exists. Then TX is an object-part of a monad which is completely iterative. Moreover, a similar contruction of a “completely iterative monoid” is possible in every monoidal category satisfying mild side conditions

    A Coalgebraic View of Infinite Trees and Iteration

    Get PDF
    AbstractThe algebra of infinite trees is, as proved by C. Elgot, completely iterative, i.e., all ideal recursive equations are uniquely solvable. This is proved here to be a general coalgebraic phenomenon: let H be an endofunctor such that for every object X a final coalgebra, TX, of H(_) + X exists. Then TX is an object-part of a monad which is completely iterative. Moreover, a similar contruction of a “completely iterative monoid” is possible in every monoidal category satisfying mild side conditions

    Precongruences and Parametrized Coinduction for Logics for Behavioral Equivalence

    Get PDF
    We present a new proof system for equality of terms which present elements of the final coalgebra of a finitary set functor. This is most important when the functor is finitary, and we improve on logical systems which have already been proposed in several papers. Our contributions here are (1) a new logical rule which makes for proofs which are somewhat easier to find, and (2) a soundness/completeness theorem which works for all finitary functors, in particular removing a weak pullback preservation requirement that had been used previously. Our work is based on properties of precongruence relations and also on a new parametrized coinduction principle

    Unguarded Recursion on Coinductive Resumptions

    Full text link
    We study a model of side-effecting processes obtained by starting from a monad modelling base effects and adjoining free operations using a cofree coalgebra construction; one thus arrives at what one may think of as types of non-wellfounded side-effecting trees, generalizing the infinite resumption monad. Correspondingly, the arising monad transformer has been termed the coinductive generalized resumption transformer. Monads of this kind have received some attention in the recent literature; in particular, it has been shown that they admit guarded iteration. Here, we show that they also admit unguarded iteration, i.e. form complete Elgot monads, provided that the underlying base effect supports unguarded iteration. Moreover, we provide a universal characterization of the coinductive resumption monad transformer in terms of coproducts of complete Elgot monads.Comment: 47 pages, extended version of http://www.sciencedirect.com/science/article/pii/S157106611500079

    Into C-¿ Onto --¿¿ Recursion and Corecursion Have the Same Equational Logic

    No full text
    Abstract This paper is concerned with the equational logic of corecursion, that is of definitions involving final coalgebra maps. The framework for our study is iteration theories (cf. e.g. Bloom andÉsik [?, ?]), recently re-introduced as models of the FLR 0 fragment of the Formal Language of Recursion [?, ?, ?]. We present a new class of iteration theories derived from final coalgebras. This allows us to reason with a number of types of fixed-point equations which heretofore seemed to require to metric or order-theoretic ideas. All of the work can be done using finality properties and equational reasoning. Having a semantics, we obtain the following completeness result: the equations involving fixed-point terms which are valid for final coalgebra interpretations are exactly those valid in a number of contexts pertaining to recursion. For example, they coincide with the equations valid for least-fixed point recursion on dcpo's. We also present a new version of the proof of the well-known completeness result for iteration theories (seeÉsik [?] and Hurkens et al [?]). Our work brings out a connection between coalgebraic reasoning and recursion
    corecore