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Jǐŕı Adámek1 ,3 Stefan Milius1

Institute of Theoretical Computer Science,
Technical University,

Braunschweig, Germany
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Abstract

Iterative algebras are defined by the property that every guarded system of recursive equations has a unique
solution. We prove that they have a much stronger property: every system of recursive equations has a
unique strict solution. And we characterize those systems that have a unique solution in every iterative
algebra.
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1 Introduction

The aim of the present paper is to show that iterative algebras, i.e. algebras with

unique solutions of all guarded systems of recursive equations, have solutions of

unguarded systems as well. In fact, we introduce a natural concept of a“strict”

solution (which is one that assigns to every ungrounded variable the result ⊥) and

prove that iterative algebras have unique strict solutions of all systems of recursive

equations.

The motivation for our paper is two-fold. Firstly, in the paper of Evelyn Nel-

son [15] which introduced iterative algebras as a means to study the iterative theories

of Calvin Elgot [10] (see also a very similar concept of Jerzy Tiuryn [16]) a complete
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characterization of all uniquely solvable systems is provided. We show in our paper

a categorical generalization of this: we introduce the concept of a a preguarded

system of equations, and prove that these are precisely the systems with a unique

solution in every iterative algebra. Secondly, our paper is the first step in a “recon-

ciliation” of iterative algebras and iteration algebras of Stephen Bloom and Zoltán

Ésik [8]. The latter are algebras where all systems of recursive equations have solu-

tions, and a choice of solutions subject to axioms is performed; the motivation stems

from continuous algebras on CPO’s, where recursive equations always have the least

solution. The “reconciliation” mentioned above has two steps: one, the subject of

the present paper, is to show that every iterative algebra has a “canonical” solution

of every system of recursive equations. The other step, which we attend to in the

paper [2] under preparation, is to show that these canonical solutions satisfy the

axioms of iteration algebras. Observe that for ungrounded variables which are those

where the given system of equations contains a cycle of length 1:

x ≈ x

or 2

x ≈ y

y ≈ x

or 3, etc., the least solution always assigns the value ⊥. And, on the other hand,

ungrounded variables obviously force us, when considering unique solutions in itera-

tive algebras, to restrict ourselves to systems that are (in a specified sense) guarded

because one cannot require that for example x ≈ x has a unique solution! Based on

ideas of [8] we work with algebras having a global constant ⊥, and then we define a

strict solution of a system of recursive equations as a solution assigning ⊥ to every

ungrounded variable. Our main result is:

iterative algebras have unique strict solutions

(of arbitrary recursive systems). This holds for H-algebras where H is a finitary

endofunctor of a suitable category (such as Set or SetI or Pos). Recall that free

H-algebras form a monad F so that every algebra A can be described as a monadic

algebra α̂ : FA �� A. Recursive systems of equations can be represented by

morphisms

e : X �� F (X + A) (1)

where X is a finitely presentable object (of variables). An equation morphism e is

called guarded if it is disjoint from the injection of variables

i0 ≡ X inl �� X + A
ηX+A �� F (X + A).
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A solution is a morphism e† : X �� A such that the

F (X + A) FA
F [e†,A]

��

X

F (X + A)

e

��

X Ae† �� A

FA

��

eα

commutes. By definition, an algebra A is iterative if and only if for every guarded

equation morphism there exists a unique solution. In order to formulate, in the

present generality, the idea of ungrounded variables, we compute the “first derived”

subobject i1 : X1
�� �� X as a pullback of the above embedding i0 : X �� F (X+A)

along e. In the category of sets X1 ⊆ X represents the variables that e maps to X.

And e1 is the restriction of e. Then we form the “second derived” subobject X2

(representing variables that e maps to X1) as a pullback of X1 along e1, etc:

X2 X1i2
��

X3

X2

e3

��

X3 X2
i3 �� X2

X1

e2

��
X1 X0 = X

i1
��

X2

X1

��

X2 X1
i2 �� X1

X0 = X

e1

��
X0 = X F (X + A)

i0
��

X1

X0 = X
��

X1 X
i1 �� X

F (X + A)

e

��

X3

X2

. . .
��

Each in is easily seen to be a coproduct injection, and thus Xn = Xn+1 + Xn+1

where īn+1 : Xn+1
�� �� Xn is the complementary coproduct injection of in+1 : Xn+1

�� �� Xn. In the category of sets X1 ⊆ X are the variables that e maps outside of

X, then X2 are the variables that need two steps to be mapped outside of X, etc.

Definition. An equation morphism with X = X1 + X2 + X3 + · · · is called pre-

guarded.

In order to prove our theorem above, we demonstrate that in an iterative algebra

(i) every pre-guarded equation morphism has a unique solution, and

(ii) every equation morphism e : X �� F (X+A) can be modified to a pre-guarded

equation morphism f : X �� F (X + A) such that solutions of f are precisely

the strict solutions of e.

We work at the beginning with cia’s (completely iterative algebras), where the

restriction that the object X of variables be finitely presentable is lifted. This

makes the theory of pre-guardedness and strictness simpler. Iterative algebras are

then treated in the last section.

Related Work. For endofunctors of Set the unique existence of strict solutions

has been proved by Larry Moss [14] and Stephen Bloom et al. [6], [7]. Our purely

categorical proof is independent.

2 Extensive Categories, cia’s and Iterative Algebras

The aim of this section is to shortly recall the three concepts in the title as a prepa-

ration for the theory presented further. Given an endofunctor H of a category A
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with finite coproducts, an H-algebra consists of an object A of A and a morphism

α : HA �� A. A flat equation morphism in A is a morphism of the form

e : X �� HX + A (2)

and a solution of e is a morphism e† : X �� A such that the square

HX + A HA + A
He†+A

��

X

HX + A

e

��

X Ae† �� A

HA + A

��

[α,A]

commutes. The algebra A is called completely iterative (or, shortly cia), see [13],

if every flat equation morphism has a unique solution. Example: let TZ be the

terminal coalgebra of H(−)+Z. Then the coalgebra structure is invertible, whence

TZ is a coproduct of HTZ and Z

TZ = HTZ + Z (3)

with injections

τZ : HTZ �� TZ (“TZ is an H-algebra”)

ηZ : Z �� TZ (“embedding of variables”).

In fact, TZ is a free cia on Z with ηZ as the universal arrow. We denote by T

the monad of free cias for H. Its unit is η and the multiplication μ is given by the

unique homomorphism μZ : TTZ �� TZ extending identity on TZ.

2.1 Definition [1]. An endofunctor H is called iteratable if TZ, a terminal coal-

gebra of H(−) + Z, exists for every Z.

2.2 Example. Let Σ be a signature, i.e., a sequence of sets (Σn)n∈N. Σ-algebras

in Set are H-algebras for the polynomial functor

HΣZ = Σ0 + Σ1 × X + Σ2 × X2 + · · ·

HΣ is iteratable, and TΣZ can be described as the algebra of all Σ-trees on Z, i.e.,

trees with leaves labelled in Z +Σ0 and nodes with n > 0 successors labelled in Σn.

Recall that a free HΣ-algebra on a set Z is the algebra FΣZ of all finite Σ-trees

on Z. Thus, equations in the sense of the introduction, see (1), are a special case

of the following concept:

2.3 Definition. Let H be an iteratable endofunctor. An equation morphism in

a cia A is a morphism of the form

e : X �� T (X + A).
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It is called guarded if it factors through the right-hand injection of T (X + A) =

X + [A + HT (X + A)],

X T (X + A)e ��X

A + HT (X + A)
��������� T (X + A)

A + HT (X + A)

��

inr

2.4 Notation. If A is a cia, we denote by α̃ : TA �� A the unique homomorphism

with

α̃·ηA = id .

The proof of the following theorem is a straightforward adaptation of Theo-

rem 3.9 in [13].

2.5 Theorem. In a cia every guarded equation morphism e : X �� T (X +A) has

a unique solution, i.e., there exists a unique e† : X �� A such that the square

T (X + A) TA
T [e†,A]

��

X

T (X + A)

e

��

X Ae† �� A

TA

��

eα (4)

commutes.

2.6 Remark. Recall that a category A is called locally finitely presentable, see [12]

or [4], if it has colimits and a set Afp of finitely presentable objects (i.e., objects A

such that hom(A,−) preserves filtered colimits) such that every object is a filtered

colimit of objects in Afp. Examples: Set, SetI , Pos, Vec are finitely presentable

categories. A functor H : A �� A is called finitary if it preserves filtered colimits.

Every finitary functor has free algebras, and as proved by Michael Barr in [5],

this yields a monad F of free H-algebras. Analogously as for the cia’s we have

FZ = HFZ + Z, where the coproduct injections are the H-algebra structure and

the universal arrow.

2.7 Definition. Let H be a finitary endofunctor. A finitary equation mor-

phism is a morphism of the form

e : X �� F (X + A),

where X is finitely presentable. It is called guarded if it factors through the right-

hand coproduct injection of F (X + A) = X + [A + HF (X + A)].

2.8 Definition. An H-algebra is called iterative if every finitary flat equation

morphism, i.e., (2) with X finitely presentable, has a unique solution.

2.9 Remark. In every iterative algebra A every finitary, guarded equation mor-

phism e : X �� F (X + A) has a unique solution e† = α̂·F [e†, A]·e (where α̂ : FA
�� A is the unique homomorphism extending idA). See [3].

2.10 Example [15]. For H = HΣ the subalgebra RΣZ ⊆ TΣZ of the Σ-tree algebra
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formed by all rational trees, i.e., trees which have up to isomorphism only finitely

many subtrees, is iterative. This is a free iterative Σ-algebra on Z.

2.11 Notation. We denote by R the monad of free iterative H-algebras. It exists

for every finitary functor H, and we have RZ = HRZ + Z, similarly as for free

algebras and free cias. See [3]. This allows us to define, in analogy to Definition 2.3,

rational equation morphisms as morphisms e : X �� R(X + A), X finitely pre-

sentable, and call them guarded provided that they factor through the right-hand

coproduct injection of R(X + A) = X + [A + HR(X + A)]. Every iterative alge-

bra has a unique solution e† of every rational, guarded equation morphism e : X
�� R(X + A), i.e., a unique morphism e† = α̃·R[e†, A]·e where α̃ : RA �� A is

the unique homomorphism extending idA.

2.12 Definition [9]. A category is called extensive if it has finite coproducts which

are

(a) disjoint, i.e., coproduct injections are monomorphisms and the intersection of

coproduct injections of A + B is always 0 (initial object), and

(b) universal, i.e., for every morphism f : C �� A1+A2 pullbacks of the coproduct

injections along f exist and turn C into the corresponding coproduct:

A1 A1 + A2inl
��

A′
1

A1

��

A′
1 C = A′

1 + A′
2

�� C = A′
1 + A′

2

A1 + A2

f

��
A1 + A2 A2

��
inr

C = A′
1 + A′

2

A1 + A2

��

C = A′
1 + A′

2 A′
2

�� A′
2

A2

��

2.13 Notation. We denote, for every coproduct injection i : A �� C, by ī : A
�� C the complementary coproduct injection, i.e., C = A + A with injections i

and ī.

2.14 Definition. A category is called ω-extensive if it has countable coproducts

which are (a) disjoint and (b) universal, i.e., for every morphism f : C ��
∐

n∈N
An

pullbacks of coproduct injections along f exist and turn C into the corresponding

coproduct.

2.15 Examples. (1) Set is ω-extensive. The category of finite sets is an example

of an extensive category that is not ω-extensive.

(2) Posets, graphs, and unary algebras form ω-extensive categories.

(3) Free completions under countable coproducts are always ω-extensive.

(4) If K is ω-extensive then so is each functor category [A ,K ], A small.

3 Pre-Guarded Equation Morphisms

3.1 Assumption. Throughout this section H denotes an iteratable endofunctor

of an ω-extensive category, see Definitions 2.1 and 2.14. Coproduct injections of

binary coproducts are called inl and inr.

3.2 Definition. Given an equation morphism e : X �� T (X + A) the derived
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subobjects Xn
�� �� X, n = 1, 2, 3, . . . are defined by the following pullbacks

X2 X1i2
��

X3

X2

e3

��

X3 X2
i3 �� X2

X1

e2

��
X1 X

i1
��

X2

X1

��

X2 X1
i2 �� X1

X

e1

��
X T (X + A)

i0=inl
��

X1

X
��

X1 X
i1 �� X

T (X + A)

e

��

X3

X2

. . .
��

where i0 is the left-hand coproduct injection of T (X + A) = X + [A + HT (X + A)],

see (3) above.

3.3 Remark. Since i0 is a coproduct injection, so is i1, and e1 is a domain-

codomain restriction of e. Analogously, since i1 is a coproduct injection, so is i2,

and e2 is a domain-codomain restriction of e1, etc. We denote by

īn : Xn
�� Xn−1 (n = 1, 2, 3, . . . )

the complementary coproduct injection, thus, Xn−1 = Xn + Xn for n = 1, 2, 3, . . .

We consider Xn as a subobject of X via

Xn
īn �� Xn−1

in−1 �� Xn−2
�� · · ·

i1 �� X. (5)

3.4 Definition. An equation morphism e : X �� T (X+A) is called pre-guarded

provided that X is a coproduct of the above subobjects Xn; shortly

X = X1 + X2 + X3 + · · · .

3.5 Example. If A = Set and H = HΣ, then e represents, for X = {x1, x2, x3, . . . },
equations

xi ≈ ti(x1, x2, x3, . . . , a1, a2, a3, . . . )

where the right-hand sides ti are (possibly infinite) Σ-trees on X +A. The variables

of X1 = e−1(X0) are precisely those xi where ti is a single variable in X. That is,

those xi where the corresponding equation has the form xi ≈ xi′ . We conclude that

X1 are precisely the unguarded variables. To put it positively, X1 consists of all

the guarded variables. Here we have e1 : X1
�� X, xi

� �� xi′ , and thus xi lies in

X2 = e−1
1 (X1) if and only if xi′ is unguarded. Consequently, for every xi ∈ X2 we

have equations xi ≈ xi′ and xi′ ≈ xi′′ . In other words, X2 consists of all variables

reaching a guarded variable in one step (of applying e). Analogously, xi ∈ X3 if

and only if we have equations xi ≈ xi′ , xi′ ≈ xi′′ and xi′′ ≈ xi′′′ or, equivalently,

X3 consists of all variables reaching a guarded variable in two steps, etc. To say

X = X1 + X2 + X3 + · · ·

means that every variable reaches a guarded variable in finitely many steps.

3.6 Remark. As demonstrated in Example 3.5, the intuition behind the subob-

jects X1,X2,X3, . . . is such that X1 consists of all guarded variables. If e is a

guarded equation morphism, then X = X1. If e is pre-guarded, we always have
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a passage Xn
�� X1, for all n ≥ 1, which to every variable assigns the guarded

variable eventually reached by applying e finitely many times. To formulate this

categorically, we need the following

3.7 Notation We form a pullback of en : Xn
�� Xn−1 along the complement īn

of in, see Remark 3.3; for i = in this gives us pullbacks

Xn Xn−1
īn

��

Xn+1

Xn

ēn+1

��

Xn+1 Xn
īn+1 �� Xn

Xn−1

en

��
Xn−1 Xn

��
in

Xn

Xn−1

��

Xn Xn+1
�� in+1

Xn+1

Xn

en+1 (n ≥ 1)
��

The canonical passage from Xn to X1 is the composite ē2· · · · ·ēn. This defines a

morphism

u = [id, ē2, ē2·ē3, . . . ] : X1 + X2 + X3 + · · · �� X1. (6)

3.8 Construction. Let A be a cia. For every pre-guarded equation morphism

e : X �� T (X + A), X =
∐

n≥1 Xn, we define, using (6), a guarded equation

morphism as follows

f ≡ X1
ī1 �� X e �� T (X + A)

T (u+A) �� T (X1 + A). (7)

Solutions of e and f are closely related:

3.9 Theorem. The equation morphism f is guarded and fulfils

(a) if e† a solution of e, then e†·̄i1 : X1
�� A is a solution of f , and

(b) if f † a solution of f , then f †·u : X �� A is a solution of e.

Proof. (1) We verify that f is guarded. Put

j0 = inl : X1
�� T (X1 + A) = X1 + A + HT (X1 + A)

and compute a pullback of f along j0:

X1 T (X1 + A)
j0=inl

��

X

X1

u

��

X T (X + A)
i0=inl �� T (X + A)

T (X1 + A)

T (u+A)=u+[A+HT (u+A)]
��

X T (X + A)��

X1

X

e1

��

X1 X
i1 �� X

T (X + A)

e

��

X1 X��

0

X1

��

0 X1
�� X1

X

ī1
��

(2) Proof of (b). Given a solution f † : X1
�� A of f , we prove that f †·u : X

�� A is a solution of e, i.e., f †·u = α̃·T [f †·u,A]·e : X �� A. This equation will
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be proved by considering the individual components of X =
∐

Xn, see (5). For

n = 1 we use the definition (7) of f and obtain the commutative diagram

T (X + A) T (X1 + A)
T (u+A)

��

X

T (X + A)

e

��

X X1
u �� X1

T (X1 + A)

f

��
T (X1 + A) TA

T [f†,A]
��

X1

T (X1 + A)
��

X1 A
f†

�� A

TA

��

eαX1

X
ī1

�����������
X1

X1���������

���������

For n = 2, the coproduct injection is i1 ·̄i2 : X2
�� X; thus we consider the diagram

T (X + A) T (X1 + A)
T (u+A)

��

X

T (X + A)

e

��

X X1
u �� X1

T (X1 + A)

f

��

X2

X1

ē2

�����������
X2X1

ī2��X1

X

i1

		����������
X1

X

e1

��

X2

X1

ē2

��
X1

X1
�����������������

�����������������
X1

X1

X1

X

ī1



��
��

��
��

�

X

T (X + A)

inl


��

��
��

��
�

X1

T (X1 + A)

inl
���

��
��

��
��

X X1u
��

T (X1 + A) TA
T [f†,A]

��

X1

T (X1 + A)
��

X1 A
f†

�� A

TA

��

eα
(∗)

All the inner parts except the one denoted by (∗) clearly commute. The part (∗)
commutes when composed with the passage to A, α̃·T [f †, A] : T (X1 + A) �� A,

i.e., this morphism merges the parallel pair f , inl : X1
�� T (X1 + A). In fact,

by the commutativity of the right-hand square in the above diagram it suffices to

observe that f † = α̃·T [f †, A]· inl:

T (X1 + A) TA
T [f†,A]

��

X1

T (X1 + A)

inl

��

X1 A
f†

�� A

TA

ηA

��
TA Aeα

��

A

A

��
��

��
��

��
��

�

��
��

��
��

��
��

�

The cases n = 3, 4, . . . are analogous to the case n = 2.
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(3) Proof of (a). Let e† : X �� A be a solution of e. We are to prove that the

outward square of the following diagram

X1

T (X1 + A)

f

��

X1 X
ī1 �� X

T (X + A)

e

��
T (X + A)

T (X + A)

T (X + A)

T (X1 + A)

T (u+A)

��																							

T (X1 + A)

T (X + A)

T (̄i1+A)



















T (X1 + A) TA

T [e† ·̄i1,A]
��

X Ae† ��

TA

A

eα

��

T (X + A)

TA

T [e†,A]

����
���

���
���

����
���

���
���

T (X + A)

TA

T [e†,A]
��������������������(∗)

commutes. All the inner parts except that denoted by (∗) commute. For (∗) it is

sufficient to prove that T [e†, A] merges id and T (̄i1 + A)·T (u + A). Therefore, the

proof of (a) will be finished by proving

e† = e† ·̄i1·u : X �� A. (8)

We consider the individual components Xn of X = X1 + X2 + X3 + · · · , see (5):

For n = 1 use u·̄i1 = id to obtain e†·̄i1 = (e† ·̄i1·u)·̄i1.

For n = 2 we are to prove the equation e†·i1 ·̄i2 = (e† ·̄i1·u)·i1 ·̄i2. Consider the

diagram

X2

X1

ī2

��
X1

X

i1

��
X X1u

�� X1 X
ī1

�� X A
e†

��

X2 X1
ī2 ��X2

X1

ē2

��






























 X1

X

e1

��
































J. Adámek et al. / Electronic Notes in Theoretical Computer Science 164 (2006) 157–175166



from which the right-hand side of the desired equation is expressed as e†·e1 ·̄i2. It

remains to verify e†·i1 = e†·e1 which follows from the next diagram

X1 X
i1 ��X1

X

e1

��

T (X + A) TA
T [e†,A]

��

X

T (X + A)

e

��

X Ae† �� A

TA

��

eα

X

T (X + A)

i0

���������������������
X

X + A

inl

���������������
X A

e†
��

X + A

T (X + A)

η

��

X + A

A

[e†,A]

�����������������������������

A

TA

η

����������������������

A

A

��
��

��
��

��
��

��
��

��
��

��
��

��
�

��
��

��
��

��
��

��
��

��
��

��
��

��
�

Cases n = 3, 4, . . . are analogous. �

3.10 Corollary. In every cia all pre-guarded equation morphisms have unique so-

lutions.

In fact, the morphism u is an epimorphism, due to u·̄i1 = id, thus the unique

existence of e† follows from the unique existence of f † via (a) and (b) above.

3.11 Remark. How about the converse: if e : X �� T (X + A) has unique solu-

tions in all cia’s, is e pre-guarded? The answer is affirmative whenever T satisfies

mild side conditions: see Proposition 4.11 below.

4 Strict Solutions

4.1 Assumption. Throughout this section A denotes a category which

(a) is ω-extensive

(b) has a terminal object, 1, and

(c) has the property that given pairwise disjoint subobjects An
�� �� B (n ∈ N)

each of which is a coproduct injection, then the induced morphism
∐

n∈N
An

�� �� B as also a coproduct injection.

Moreover, H denotes an iteratable functor for which a morphism

⊥ : 1 �� H0

has been chosen.

4.2 Notation. For every equation morphism an intersection of the derived subob-

jects Xn
�� �� X (see Definition 3.2) is denoted by

i∞ : X∞
�� X.

4.3 Remark. For every equation morphism e : X �� T (X + A) we see that
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(a) an intersection X∞ of all derived subobjects exists, and

(b) X = X∞ +
∐

n≥1 Xn (with i∞ and (5) as injections).

In fact, using Assumption 4.1(c), where An = Xn+1, we see that for y : Y =∐
n≥1 Xn

�� X with components (5) there is a complement ȳ : Y �� X. It

is easy to verify that this is the desired intersection.

4.4 Notation. ⊥ is a global constant of H, i.e., every H-algebra HA α �� A

obtains the corresponding global element

⊥A ≡ 1 ⊥ �� H0 H! �� HA α �� A.

All homomorphisms h : A �� B preserve this global constant: h·⊥A = ⊥B. In

fact, consider the commutative diagram below:

1 H0⊥ �� H0 HAH! ��H0

HB

H!

���
��

��
��

��
��

��
HA

HB
��

HB B
β

��

HA

HB

Hh

��

HA Aα �� A

B

h

��

In particular for any object Y we have a global element of TY which we denote

by ⊥ for short:

⊥ ≡ 1 �� H0 H! �� HTY
τY �� TY

4.5 Definition. Let A be a cia and e : X �� T (X + A) an equation morphism

with a solution e† : X �� A. We call e† strict if its restriction to X∞ is ⊥A:

X A
e†

��

X∞

X

i∞

��

X∞ 1! �� 1

A

⊥A

��

4.6 Construction. Let A be a cia. For every equation morphism

e : X �� T (X + A)

we define a pre-guarded equation morphism

f : X �� T (X + A)

by changing the left-hand component of e : X∞ +
∐

Xn
�� T (X + A) to ⊥:

f · inl ≡ X∞
! �� 1 ⊥ �� T (X + A)

f · inr = e· inr :
∐

Xn
�� T (X + A)
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where inl and inr are the coproduct injections of X = X∞ +
∐

Xn.

4.7 Theorem. The equation morphism f is pre-guarded and fulfils

(a) every strict solution of e is a solution of f , and

(b) every solution of f is a strict solution of e.

Proof. (1) f is pre-guarded. Let Z0 =
∐

Xn and denote by j0 = inr: Z0
�� X

the coproduct injection. Let jk : Zk
�� Zk−1, k ≥ 1, denote the derived subobjects

of f . We will prove that

Zk = Xk+1 + Xk+2 + · · · , and jk = inr: Zk
�� Xk + Zk,

and that the corresponding morphism opposite fk−1 is

fk = ēk+1 + ēk+2 + · · · : Zk
�� Zk−1 (k ≥ 1).

This proves obviously that f is pre-guarded since
⋂

k∈N
Zk = 0.

Case k = 1: To find a pullback of f = [⊥!, e·j0] along i0 : X �� T (X + A),

we just compute a pullback of e·j0 along i0: in fact the component ⊥! contributes

nothing to the pullback because it factors through ī0, the complement of i0, and

A is extensive. Here is the pullback of e·j0 along i0:

X T (X + A)
i0

��

X∞ + X2 + X3 + · · · = X1

X

e1

��

X∞ + X2 + X3 + · · · = X1 X = X∞ + X1 + X2 + X3 + · · ·
i1=inr �� X = X∞ + X1 + X2 + X3 + · · ·

T (X + A)

e

��

X1 X��

X2 + X3 + · · · = Z1

X1

inr

��

X2 + X3 + · · · = Z1 X1 + X2 + X3 + · · ·inr �� X1 + X2 + X3 + · · ·

X

j0=inr

��

Consequently, we have Z1 = X2 +X3 + · · · with j1 = inr : Z1
�� X = X∞ +X1 +

Z1, and the corresponding morphism f1 : Z1
�� X is

f1 ≡ Z1
inr �� X∞ + Z1

e1 �� X.
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Case k = 2: We compute a pullback of f1 = e1· inr along j1:

∐
n≥2

Xn = Z1 X
j1

��

∐
n≥2

Pn

∐
n≥2

Xn = Z1

��

∐
n≥2

Pn X1
�� X1

X

e1

��

∐
n≥2

Pn X1
��

?

∐
n≥2

Pn

��

? Z1
�� Z1

X1

inr

��

by computing first a pullback Pn of e1 along the n-th component Xn
�� X, n ≥ 2,

of j1, see (5)

Xn Xn−1
īn

��

Pn = Xn+1

Xn

ēn+1

��

Pn = Xn+1 Xn
īn+1 �� Xn

Xn−1

en

��

Xn · · ·
in ��

Xn−1 · · ·
in−1

��

· · · X2
i3 ��

· · · X1i2
�� X1 X

i1
��

X2

X1

e2

��

X2 X1
i2 �� X1

X

e1

��

The connecting maps are ēn : Pn
�� Xn and i2· · · · ·in ·̄in+1 : Pn

�� X1. Thus,

due to extensivity, a pullback of e1 along j1 is
∐

n≥2 Xn+1 = Z2 with the connecting

maps
∐

n≥2 ēn+1 : Z2
�� Z1 and inr: Z2

�� X1 = X∞ + X2 + Z2. The pullback

of f1 = e1· inr along j1 is thus

X3 + X4 + X5 + · · · = Z2 X1 = X∞ + X2 + X3 + X4 + · · ·��

X3 + X4 + X5 + · · · = Z2

X3 + X4 + X5 + · · · = Z2

X3 + X4 + X5 + · · · = Z2 Z1 = X2 + X3 + X4 + · · ·inr �� Z1 = X2 + X3 + X4 + · · ·

X1 = X∞ + X2 + X3 + X4 + · · ·

inr

��

Z1 X
j1

��

Z2

Z1

‘
n≥2

ēn+1

��

Z2 X1
inr �� X1

X

e1

��

We obtain Z2 = X3 + X4 + X5 + · · · , j2 = inr, and f2 =
∐

n≥2 ēn+1.

Case k ≥ 3: Here we use the obvious pullbacks

· · · Z3 Z2
��

· · · Z4

· · · Z3

‘
n≥4

ēn+1

��

· · · Z4 Z3
�� Z3

Z2

‘
n≥3

ēn+1

��
Z2 Z1inr

��

Z3

Z2

��

Z3 Z2
inr �� Z2

Z1

‘
n≥2

ēn+1

��
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(2) Proof of (b). If f † is a solution of f , then f † is strict:

T (X + A) TA
T [f†,A]

��

X

T (X + A)

f

��

X A
f†

�� A

TA

eα

��

⋂
Xn

X

i∞

���
��

��
��

��
��

�

⋂
Xn

1

!

��
1

T (X + A)

⊥

���
��

��
��

��
��

��
1

H0

⊥

��
H0

HT (X + A)

H!

��
HT (X + A)

T (X + A)

τ

��������������
HT (X + A) HTA

HT [f†,A]
�� HTA

TA

τ

		�������������
HTA

HA

H eα

��HA

A

α

		�������������

We see that the passage from H0 to HA is H! (because α̃·T [f †, A]·! = ! : 0 �� A),

thus f †·i∞ = α·H!·⊥·! = ⊥A·! as required.

And f † is a solution of e, i.e., the equation

α̃·T [f †, A]·e = f † : X∞ +
∐

Xn
�� A (9)

holds (see (4) in the introduction): for the right-hand component j0 :
∐

Xn
�� X

this follows from e·j0 = f ·j0. For the left-hand one form a limit of the pullbacks

defining in and en:

· · · X1 X0
i1 ��

· · · X2

· · · X1

e2

��

· · · X2 X1
i2 �� X1

X0

e1

��
X0 T (X + A)

i0
��

X1

X0

��

X1 X0i1
�� X0

T (X + A)

e

��

X∞ X0

i∞

��

X∞ X0

i∞



X∞

X∞
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to conclude e·i∞ = i0·i∞. Thus, the diagram

X∞

X

i∞

��

X∞

X

i∞

���
��

��
��

��
��

�X∞ X
i∞ �� X A

f†
��

X

X + A

inl

���
��

��
��

��
��

��
X

A
f†

���������������������������

X + A

A

[f†,A]

�������������

A

A
�����������������

�����������������

X

T (X + A)

e

��

X

T (X + A)

i0

����
��
��
��
��
��
��
��
��
��
��

X + A

T (X + A)

η

���������������������

T (X + A) TA
T [f†,A]

��

A

TA

η

���
��

��
��

��
��

��
��

TA

A

eα

��

commutes, proving the left-hand component of (9).

(3) Proof of (a). If e† is a strict solution of e, then we are to prove that the

equation α̃·T [e†, A]·f = e† holds (cf. (4)): for the right-hand component with do-

main
∐

Xn this follows from the fact that f ·j0 = e·j0. For the left-hand component

use the fact that both e† and f yield ⊥ (in A and T (X + A), respectively) and that

α̃·T [e†, A] preserves ⊥, being a homomorphism (see Notation 4.4). �

4.8 Corollary. In every cia every equation morphism has a unique strict solution.

4.9 Remark. We will now turn our attention to the question of whether an equa-

tion having a unique solution in every cia must be pre-guarded. In the case of

A = Set, the answer is affirmative whenever H1 has at least two elements. In

general categories we need the following

4.10 Definition. We say that the free cia monad T is nontrivial if it preserves

monomorphisms and has at least two global constants,

card A (1, T0) ≥ 2.

4.11 Proposition. Suppose that morphisms from non-initial objects to 1 are epi-

morphisms. If the free cia monad is nontrivial, then every equation morphism e : X
�� T (X + A) with a unique solution in TA is pre-guarded.

Remark. We consider e as an equation in TA via X e �� T (X + A)
T (X+η) ��

T (X + TA).

Proof. Suppose that e is not pre-guarded. For every global element b : 1 �� T0

we can find a solution e
†
b : X �� TA such that

e
†
b·i∞ ≡ X∞

�� 1 b �� T0 T ! �� TA.
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The proof is precisely the proof of Theorem 4.7 where α : HA �� A is the replaced

by τA : HTA �� TA (with τ̃A = μA) and ⊥ is replaced by b. We will prove

that e has more than one solution by showing that e
†
b determines b; for that we

just observe that T ! : T0 �� TA is a monomorphism. In fact, ! : 0 �� A is

a monomorphism since in every extensive category initial objects are strict, and

T preserves monomorphisms. �

4.12 Example. Suppose that our base category is A = Set.

(1) Whenever H1 has more than one element then H has a nontrivial free cia

monad. In fact, T preserves monomorphisms: see Proposition 6.1 in [3]. And to

prove card T0 ≥ 2, we decompose H = H ′ + H ′′ with H ′1 	= ∅ and H ′′1 	= ∅. This

can be done by chosing any a ∈ H1 and defining H ′X and H ′′X as the inverse

images of {a} and H1 − {a}, respectively, under H! = HX �� H1. Consider

coalgebras

A ≡ 1 const a �� H ′1 �
� �� H1 and B ≡ 1 const b �� H ′′1 �

� �� H1

(a ∈ H ′1, b ∈ H ′′1). It is clear that the unique homomorphism A �� T0 is disjoint

with the unique homomorphism B �� T0. Therefore, card T0 ≥ 2.

(2) Conversely, whenever for every equation morphism e the implication

e has unique solution =⇒ e is pre-guarded

holds, then H1 must have more than one element. In fact, card H1 = 1 implies that

T0, a terminal H-coalgebra, has a unique element. Then the equation x ≈ x has a

unique solution in T0.

5 Iterative Algebras

5.1 Assumption. In this section A is a locally finitely presentable, ω-extensive

category such that every finitely presentable object is a finite coproduct of inde-

composable, finitely presentable objects. And H is a finitary endofunctor for which

a morphism

⊥ : 1 �� H0

has been chosen.

5.2 Definition. For a rational equation morphism e : X �� R(X+A), (see 2.11),

we define derived subobjects Xn
�� �� X precisely as in Definition 3.2, just re-

placing T by R everywhere.

5.3 Remark. We thus have pullbacks

X2 X1i2
��

X3

X2

e3

��

X3 X2
i3 �� X2

X1

e2

��
X1 X

i1
��

X2

X1

��

X2 X1
i2 �� X1

X

e1

��
X R(X + A)

i0=inr
��

X1

X
��

X1 X
i1 �� X

R(X + A)

e

��

X3

X2

. . .

��
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We also use the remaining notation īn : Xn
�� Xn−1 and ēn : Xn

�� Xn−1 as in

Section 3.

5.4 Lemma. Every rational equation morphism e has a least derived subobject, i.e.,

there exists n with Xn = Xn−1 (more precisely: such that in is an isomorphism).

Proof. Let e : X �� R(X +A) be a rational equation morphism. By assumption,

X is a coproduct of k indecomposable objects, X = Y1 + · · · + Yk. For every

coproduct injection z : Z �� X we obtain the corresponding morphisms zi : Zi

�� Yi with Z = Z1 + · · · + Zk and z = z1 + · · · + zk. Since each zi is a coproduct

injection of Yi, either Zi = 0 or Zi = Yi. Consequently, there are (in case Yi � 0

for every i) precisely 2k subjects of X which are coproduct injections. Since the

subobjects Xn
�� �� X, n ∈ N, are pairwise disjoint, it follows that there exists an

m ∈ N such that Xm
∼= 0. Thus Xm

∼= Xm+1 + Xm+1
∼= Xm+1. �

5.5 Definition. A rational equation morphism e is called pre-guarded provided

that it has a trivial derived subobject, i.e., Xn
∼= 0 for some n.

Remark. This is equivalent to X∞ = 0 (due to Lemma 5.4). Thus, e is pre-guarded

iff X =
∐

Xn, compare Definition 3.4.

5.6 Theorem. In every iterative algebra all pre-guarded rational equation mor-

phisms have unique solutions.

Proof. This is completely analogous to the proof in Section 3, see Theorem 3.9

and Corollary 3.10. Given the pre-guarded rational equation morphism e : X ��

R(X + A), we have Xn = 0, i.e., X = X1 + · · · + Xn and we define a guarded

equation morphism

f ≡ X1
ī1 �� X e �� R(X + A)

R(u+A) �� R(X1 + A)

where u : X �� X1 has components idX1
, e1, e1·e2, . . . , e1·e2· · · · ·en. Observe that

since u is a split epimorphism and X is finitely presentable, so is X1. Thus, f is

a rational equation morphism. Since f is guarded, it has a unique solution f † : X
�� A, see Remark 4.6. The rest is as in Section 3. �

5.7 Definition. Let e : X �� R(X + A) be a rational equation morphism in an

iterative algebra A. A solution e† : X �� A of e is called strict if its restriction

to some derived subobject is ⊥A, i.e., there exists n for which the square

X A
e†

��

Xn

X

in

��

Xn 1! �� 1

A

⊥A

��

commutes.

5.8 Theorem. In every iterative algebra every finitary equation morphism has a

unique strict solution.
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Proof. This is completely analogous to Section 4, see Theorem 4.7 and Corol-

lary 4.8: choose n such that Xn = Xn+1, see Lemma 5.4, then the role of X∞ in

Section 4 is now played by Xn. �
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[1] P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite Trees and Completely Iterative Theories: A
Coalgebraic View, Theoret. Comput. Sci. 300 (2003), 1–45.
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