23 research outputs found

    Modeling The Intensity Function Of Point Process Via Recurrent Neural Networks

    Full text link
    Event sequence, asynchronously generated with random timestamp, is ubiquitous among applications. The precise and arbitrary timestamp can carry important clues about the underlying dynamics, and has lent the event data fundamentally different from the time-series whereby series is indexed with fixed and equal time interval. One expressive mathematical tool for modeling event is point process. The intensity functions of many point processes involve two components: the background and the effect by the history. Due to its inherent spontaneousness, the background can be treated as a time series while the other need to handle the history events. In this paper, we model the background by a Recurrent Neural Network (RNN) with its units aligned with time series indexes while the history effect is modeled by another RNN whose units are aligned with asynchronous events to capture the long-range dynamics. The whole model with event type and timestamp prediction output layers can be trained end-to-end. Our approach takes an RNN perspective to point process, and models its background and history effect. For utility, our method allows a black-box treatment for modeling the intensity which is often a pre-defined parametric form in point processes. Meanwhile end-to-end training opens the venue for reusing existing rich techniques in deep network for point process modeling. We apply our model to the predictive maintenance problem using a log dataset by more than 1000 ATMs from a global bank headquartered in North America.Comment: Accepted at Thirty-First AAAI Conference on Artificial Intelligence (AAAI17

    Anticipating Daily Intention using On-Wrist Motion Triggered Sensing

    Full text link
    Anticipating human intention by observing one's actions has many applications. For instance, picking up a cellphone, then a charger (actions) implies that one wants to charge the cellphone (intention). By anticipating the intention, an intelligent system can guide the user to the closest power outlet. We propose an on-wrist motion triggered sensing system for anticipating daily intentions, where the on-wrist sensors help us to persistently observe one's actions. The core of the system is a novel Recurrent Neural Network (RNN) and Policy Network (PN), where the RNN encodes visual and motion observation to anticipate intention, and the PN parsimoniously triggers the process of visual observation to reduce computation requirement. We jointly trained the whole network using policy gradient and cross-entropy loss. To evaluate, we collect the first daily "intention" dataset consisting of 2379 videos with 34 intentions and 164 unique action sequences. Our method achieves 92.68%, 90.85%, 97.56% accuracy on three users while processing only 29% of the visual observation on average

    VIENA2: A Driving Anticipation Dataset

    Full text link
    Action anticipation is critical in scenarios where one needs to react before the action is finalized. This is, for instance, the case in automated driving, where a car needs to, e.g., avoid hitting pedestrians and respect traffic lights. While solutions have been proposed to tackle subsets of the driving anticipation tasks, by making use of diverse, task-specific sensors, there is no single dataset or framework that addresses them all in a consistent manner. In this paper, we therefore introduce a new, large-scale dataset, called VIENA2, covering 5 generic driving scenarios, with a total of 25 distinct action classes. It contains more than 15K full HD, 5s long videos acquired in various driving conditions, weathers, daytimes and environments, complemented with a common and realistic set of sensor measurements. This amounts to more than 2.25M frames, each annotated with an action label, corresponding to 600 samples per action class. We discuss our data acquisition strategy and the statistics of our dataset, and benchmark state-of-the-art action anticipation techniques, including a new multi-modal LSTM architecture with an effective loss function for action anticipation in driving scenarios.Comment: Accepted in ACCV 201

    Sensor Fusion using Backward Shortcut Connections for Sleep Apnea Detection in Multi-Modal Data

    Full text link
    Sleep apnea is a common respiratory disorder characterized by breathing pauses during the night. Consequences of untreated sleep apnea can be severe. Still, many people remain undiagnosed due to shortages of hospital beds and trained sleep technicians. To assist in the diagnosis process, automated detection methods are being developed. Recent works have demonstrated that deep learning models can extract useful information from raw respiratory data and that such models can be used as a robust sleep apnea detector. However, trained sleep technicians take into account multiple sensor signals when annotating sleep recordings instead of relying on a single respiratory estimate. To improve the predictive performance and reliability of the models, early and late sensor fusion methods are explored in this work. In addition, a novel late sensor fusion method is proposed which uses backward shortcut connections to improve the learning of the first stages of the models. The performance of these fusion methods is analyzed using CNN as well as LSTM deep learning base-models. The results demonstrate a significant and consistent improvement in predictive performance over the single sensor methods and over the other explored sensor fusion methods, by using the proposed sensor fusion method with backward shortcut connections.Comment: Paper presented at ML4H (Machine Learning for Health) workshop at NeurIPS 2019. https://ml4health.github.io/2019
    corecore