1,135 research outputs found

    Detecting event-related recurrences by symbolic analysis: Applications to human language processing

    Get PDF
    Quasistationarity is ubiquitous in complex dynamical systems. In brain dynamics there is ample evidence that event-related potentials reflect such quasistationary states. In order to detect them from time series, several segmentation techniques have been proposed. In this study we elaborate a recent approach for detecting quasistationary states as recurrence domains by means of recurrence analysis and subsequent symbolisation methods. As a result, recurrence domains are obtained as partition cells that can be further aligned and unified for different realisations. We address two pertinent problems of contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc

    Atypical hemispheric specialization for faces in infants at risk for autism spectrum disorder

    Full text link
    Among the many experimental findings that tend to distinguish those with and without autism spectrum disorder (ASD) are face processing deficits, reduced hemispheric specialization, and atypical neurostructural and functional connectivity. To investigate the earliest manifestations of these features, we examined lateralization of event-related gamma-band coherence to faces during the first year of life in infants at high risk for autism (HRA; defined as having an older sibling with ASD) who were compared with low-risk comparison (LRC) infants, defined as having no family history of ASD. Participants included 49 HRA and 46 LRC infants who contributed a total of 127 data sets at 6 and 12 months. Electroencephalography was recorded while infants viewed images of familiar/unfamiliar faces. Event-related gamma-band (30-50 Hz) phase coherence between anterior-posterior electrode pairs for left and right hemispheres was computed. Developmental trajectories for lateralization of intra-hemispheric coherence were significantly different in HRA and LRC infants: by 12 months, HRA infants showed significantly greater leftward lateralization compared with LRC infants who showed rightward lateralization. Preliminary results indicate that infants who later met criteria for ASD were those that showed the greatest leftward lateralization. HRA infants demonstrate an aberrant pattern of leftward lateralization of intra-hemispheric coherence by the end of the first year of life, suggesting that the network specialized for face processing may develop atypically. Further, infants with the greatest leftward asymmetry at 12 months where those that later met criteria for ASD, providing support to the growing body of evidence that atypical hemispheric specialization may be an early neurobiological marker for ASD.R01 DC010290 - NIDCD NIH HHS; R01-DC010290 - NIDCD NIH HH

    Informatics for EEG biomarker discovery in clinical neuroscience

    Get PDF
    Neurological and developmental disorders (NDDs) impose an enormous burden of disease on children throughout the world. Two of the most common are autism spectrum disorder (ASD) and epilepsy. ASD has recently been estimated to affect 1 in 68 children, making it the most common neurodevelopmental disorder in children. Epilepsy is also a spectrum disorder that follows a developmental trajectory, with an estimated prevalence of 1%, nearly as common as autism. ASD and epilepsy co-occur in approximately 30% of individuals with a primary diagnosis of either disorder. Although considered to be different disorders, the relatively high comorbidity suggests the possibility of common neuropathological mechanisms. Early interventions for NDDs lead to better long-term outcomes. But early intervention is predicated on early detection. Behavioral measures have thus far proven ineffective in detecting autism before about 18 months of age, in part because the behavioral repertoire of infants is so limited. Similarly, no methods for detecting emerging epilepsy before seizures begin are currently known. Because atypical brain development is likely to precede overt behavioral manifestations by months or even years, a critical developmental window for early intervention may be opened by the discovery of brain based biomarkers. Analysis of brain activity with EEG may be under-utilized for clinical applications, especially for neurodevelopment. The hypothesis investigated in this dissertation is that new methods of nonlinear signal analysis, together with methods from biomedical informatics, can extract information from EEG data that enables detection of atypical neurodevelopment. This is tested using data collected at Boston Children’s Hospital. Several results are presented. First, infants with a family history of ASD were found to have EEG features that may enable autism to be detected as early as 9 months. Second, significant EEG-based differences were found between children with absence epilepsy, ASD and control groups using short 30-second EEG segments. Comparison of control groups using different EEG equipment supported the claim that EEG features could be computed that were independent of equipment and lab conditions. Finally, the potential for this technology to help meet the clinical need for neurodevelopmental screening and monitoring in low-income regions of the world is discussed

    Neurotechnology and Psychiatric Biomarkers

    Get PDF

    Analysis of EEG signals using complex brain networks

    Get PDF
    The human brain is so complex that two mega projects, the Human Brain Project and the BRAIN Initiative project, are under way in the hope of answering important questions for peoples' health and wellbeing. Complex networks become powerful tools for studying brain function due to the fact that network topologies on real-world systems share small world properties. Examples of these networks are the Internet, biological networks, social networks, climate networks and complex brain networks. Complex brain networks in real time biomedical signal processing applications are limited because some graph algorithms (such as graph isomorphism), cannot be solved in polynomial time. In addition, they are hard to use in single-channel EEG applications, such as clinic applications in sleep scoring and depth of anaesthesia monitoring. The first contribution of this research is to present two novel algorithms and two graph models. A fast weighted horizontal visibility algorithm (FWHVA) overcoming the speed limitations for constructing a graph from a time series is presented. Experimental results show that the FWHVA can be 3.8 times faster than the Fast Fourier Transfer (FFT) algorithm when input signals exceed 4000 data points. A linear time graph isomorphism algorithm (HVGI) can determine the isomorphism of two horizontal visibility graphs (HVGs) in a linear time domain. This is an efficient way to measure the synchronized index between two time series. Difference visibility graphs (DVGs) inherit the advantages of horizontal visibility graphs. They are noise-robust, and they overcome a pitfall of visibility graphs (VG): that the degree distribution (DD) doesn't satisfy a pure power-law. Jump visibility graphs (JVGs) enhance brain graphs allowing the processing of non-stationary biomedical signals. This research shows that the DD of JVGs always satisfies a power-lower if the input signals are purely non-stationary. The second highlight of this work is the study of three clinical biomedical signals: alcoholic, epileptic and sleep EEGs. Based on a synchronization likelihood and maximal weighted matching method, this work finds that the processing repeated stimuli and unrepeated stimuli in the controlled drinkers is larger than that in the alcoholics. Seizure detections based on epileptic EEGs have also been investigated with three graph features: graph entropy of VGs, mean strength of HVGs, and mean degrees of JVGs. All of these features can achieve 100% accuracy in seizure identification and differentiation from healthy EEG signals. Sleep EEGs are evaluated based on VG and DVG methods. It is shown that the complex brain networks exhibit more small world structure during deep sleep. Based on DVG methods, the accuracy peaks at 88:9% in a 5-state sleep stage classification from 14; 943 segments from single-channel EEGs. This study also introduces two weighted complex network approaches to analyse the nonlinear EEG signals. A weighted horizontal visibility graph (WHVG) is proposed to enhance noise-robustness properties. Tested with two Chaos signals and an epileptic EEG database, the research shows that the mean strength of the WHVG is more stable and noise-robust than those features from FFT and entropy. Maximal weighted matching algorithms have been applied to evaluate the difference in complex brain networks of alcoholics and controlled drinkers. The last contribution of this dissertation is to develop an unsupervised classifier for biomedical signal pattern recognition. A Multi-Scale Means (MSK-Means) algorithm is proposed for solving the subject-dependent biomedical signals classification issue. Using JVG features from the epileptic EEG database, the MSK-Means algorithm is 4:7% higher in identifying seizures than those by the K-means algorithm and achieves 92:3% accuracy for localizing the epileptogenic zone. The findings suggest that the outcome of this thesis can improve the performance of complex brain networks for biomedical signal processing and nonlinear time series analysis

    Stochastic Resonance Modulates Neural Synchronization within and between Cortical Sources

    Get PDF
    Neural synchronization is a mechanism whereby functionally specific brain regions establish transient networks for perception, cognition, and action. Direct addition of weak noise (fast random fluctuations) to various neural systems enhances synchronization through the mechanism of stochastic resonance (SR). Moreover, SR also occurs in human perception, cognition, and action. Perception, cognition, and action are closely correlated with, and may depend upon, synchronized oscillations within specialized brain networks. We tested the hypothesis that SR-mediated neural synchronization occurs within and between functionally relevant brain areas and thus could be responsible for behavioral SR. We measured the 40-Hz transient response of the human auditory cortex to brief pure tones. This response arises when the ongoing, random-phase, 40-Hz activity of a group of tuned neurons in the auditory cortex becomes synchronized in response to the onset of an above-threshold sound at its “preferred” frequency. We presented a stream of near-threshold standard sounds in various levels of added broadband noise and measured subjects' 40-Hz response to the standards in a deviant-detection paradigm using high-density EEG. We used independent component analysis and dipole fitting to locate neural sources of the 40-Hz response in bilateral auditory cortex, left posterior cingulate cortex and left superior frontal gyrus. We found that added noise enhanced the 40-Hz response in all these areas. Moreover, added noise also increased the synchronization between these regions in alpha and gamma frequency bands both during and after the 40-Hz response. Our results demonstrate neural SR in several functionally specific brain regions, including areas not traditionally thought to contribute to the auditory 40-Hz transient response. In addition, we demonstrated SR in the synchronization between these brain regions. Thus, both intra- and inter-regional synchronization of neural activity are facilitated by the addition of moderate amounts of random noise. Because the noise levels in the brain fluctuate with arousal system activity, particularly across sleep-wake cycles, optimal neural noise levels, and thus SR, could be involved in optimizing the formation of task-relevant brain networks at several scales under normal conditions
    • …
    corecore