1,322 research outputs found

    Low ML-Decoding Complexity, Large Coding Gain, Full-Rate, Full-Diversity STBCs for 2 X 2 and 4 X 2 MIMO Systems

    Full text link
    This paper (Part of the content of this manuscript has been accepted for presentation in IEEE Globecom 2008, to be held in New Orleans) deals with low maximum likelihood (ML) decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2Ă—22\times 2) and the 4 transmit antenna, 2 receive antenna (4Ă—24\times 2) MIMO systems. Presently, the best known STBC for the 2Ă—22\times2 system is the Golden code and that for the 4Ă—24\times2 system is the DjABBA code. Following the approach by Biglieri, Hong and Viterbo, a new STBC is presented in this paper for the 2Ă—22\times 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be \emph{information-lossless} and \emph{diversity-multiplexing gain} (DMG) tradeoff optimal. This design procedure is then extended to the 4Ă—24\times 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of M4M^4 for square QAM of size MM. In this paper, a scheme that reduces its ML-decoding complexity to M2MM^2\sqrt{M} is presented.Comment: 28 pages, 5 figures, 3 tables, submitted to IEEE Journal of Selected Topics in Signal Processin

    Low-loss directional cloaks without superluminal velocity or magnetic response

    Get PDF
    The possibility of making an optically large (many wavelengths in diameter) object appear invisible has been a subject of many recent studies. Exact invisibility scenarios for large (relative to the wavelength) objects involve (meta)materials with superluminal phase velocity (refractive index less than unity) and/or magnetic response. We introduce a new approximation applicable to certain device geometries in the eikonal limit: piecewise-uniform scaling of the refractive index. This transformation preserves the ray trajectories, but leads to a uniform phase delay. We show how to take advantage of phase delays to achieve a limited (directional and wavelength-dependent) form of invisibility that does not require loss-ridden (meta)materials with superluminal phase velocities.Comment: 3 pages, 2 figure

    A Low-Complexity, Full-Rate, Full-Diversity 2 X 2 STBC with Golden Code's Coding Gain

    Full text link
    This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2Ă—22\times 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.Comment: Submitted to IEEE Globecom - 2008. 6 pages, 3 figures, 1 tabl

    Real-Time Dispersion Code Multiple Access (DCMA) for High-Speed Wireless Communications

    Full text link
    We model, demonstrate and characterize Dispersion Code Multiple Access (DCMA) and hence show the applicability of this purely analog and real-time multiple access scheme to high-speed wireless communications. We first mathematically describe DCMA and show the appropriateness of Chebyshev dispersion coding in this technology. We next provide an experimental proof-of-concept in a 2 X 2 DCMA system. Finally,we statistically characterize DCMA in terms of bandwidth, dispersive group delay swing, system dimension and signal-to-noise ratio

    Dual polarization nonlinear Fourier transform-based optical communication system

    Get PDF
    New services and applications are causing an exponential increase in internet traffic. In a few years, current fiber optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication could potentially overcome these limitations. It relies on a mathematical technique called "nonlinear Fourier transform (NFT)" to exploit the "hidden" linearity of the nonlinear Schr\"odinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical tools describing the NFT for the Manakov system and report on experimental transmission results for dual polarization in fiber optic eigenvalue communications. A transmission of up to 373.5 km with bit error rate less than the hard-decision forward error correction threshold has been achieved. Our results demonstrate that dual-polarization NFT can work in practice and enable an increased spectral efficiency in NFT-based communication systems, which are currently based on single polarization channels

    Periodic nonlinear Fourier transform for fiber-optic communications, Part I:theory and numerical methods

    Get PDF
    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption
    • …
    corecore