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New services and applications are causing an exponential increase in Internet traffic. In a few years, the current fiber
optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity
dramatically limits the information transmission rate. Eigenvalue communication could potentially overcome these
limitations. It relies on a mathematical technique called “nonlinear Fourier transform (NFT)” to exploit the “hidden”
linearity of the nonlinear Schrödinger equation as the master model for signal propagation in an optical fiber. We
present here the theoretical tools describing the NFT for the Manakov system and report on experimental transmission
results for dual polarization in fiber optic eigenvalue communications. A transmission of up to 373.5 km with a bit
error rate less than the hard-decision forward error correction threshold has been achieved. Our results demonstrate
that dual-polarization NFT can work in practice and enable an increased spectral efficiency in NFT-based commu-
nication systems, which are currently based on single polarization channels. © 2018 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement

OCIS codes: (060.2330) Fiber optics communications; (060.1660) Coherent communications; (060.5530) Pulse propagation and

temporal solitons.
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1. INTRODUCTION

Fiber optics telecommunication is the currently established back-
bone infrastructure for most of the information flow across the
world [1]. However, the demand for an always increasing trans-
mission rate, which for the existing channels is necessarily asso-
ciated with an increment of the launched signal power to
minimize the optical signal-to-noise ratio (OSNR) degradation,
has been predicted to be asymptotically limited by the distortion
induced by the optical fiber nonlinearity [2,3]. It is a well-known
fact that light propagation in fiber optics is governed by the non-
linear Schrödinger equation (NLSE) [4] where the nonlinearity
arises due to the Kerr effect. Nonlinearity is a problem for trans-
mitting information with the currently used modulation formats
in fiber optics communications. Indeed, as the power is increased,
the signal is more distorted by the nonlinear crosstalk, thus limit-
ing the capability of the receiver in recovering the transmitted
information. It is therefore necessary to mitigate the nonlinear
effects to compensate for the distortions and to provide novel ap-
proaches for communication over the nonlinear fiber-optic chan-
nel. Two main paths have been followed up to now to counteract
this problem: the first approach consists of mitigating the non-
linear effects through a wealth of techniques such as optical
phase-conjugation [5] or digital back-propagation [6]; the second
path, more ambitiously, aims at encoding information into the

eigenmodes of the nonlinear channel, whose evolution is linear
upon spatial propagation. This second approach, originally called
eigenvalue communication, has been proposed by Hasegawa and
Nyu [7] and it is now, with various modifications, growing as
a new paradigm in optical communications [8].

This method exploits the exact integrability of the NLSE
through the inverse scattering transform (IST) [9] as the master
evolution equation of the electric field propagating in single-mode
fiber (SMF). Integrability of the NLSE was demonstrated by
Zakharov and Shabat back in 1972 [10], who found an associated
spectral problem related to a set of ordinary linear differential
equations. Following this approach, it is possible to identify the
eigenvalues, which can be considered to be analogous to the
frequencies in the classical Fourier transform, and the so-called
scattering coefficients, complex amplitudes associated to the
eigenvalues. The application of the IST to fiber optics commu-
nications allows the use of various and flexible modulation for-
mats [8]. Due to integrability, in the lossless and noiseless limit,
nonlinearity is not a detrimental factor anymore, but on the con-
trary, it is a constitutive element of the transmission system itself.
The parallelism between the linear Fourier transform method
used to solve linear initial value problems and the IST used to
solve nonlinear ones [9] has driven some authors to rename the
IST as the nonlinear Fourier transform (NFT) [11], which is the
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name currently used in the engineering communities (see [8] for a
recent review including historical details). The nonlinear Fourier
spectrum of a signal consists of a set of eigenvalues and the re-
spective associated scattering coefficients. The eigenvalues belong
either to a so-called discrete spectrum or to a continuous spectrum;
the first describes the solitonic components of the signal, while
the second is associated with dispersive waves and reduces to
the classical Fourier spectrum in the limit of low power.

Communications channels based on both discrete or/and
continuous spectrum modulations have been extensively
studied and experimentally demonstrated up to now for the
scalar (single polarization) NLSE (see e.g., [12–16] to cite just
a few).

A series of key challenges that need to be met in order for
NFT-based communication to exit the labs and operate in
real-world infrastructures has been described recently [8]. One
of those challenges consists indeed of endowing the eigenvalue
communication approach with polarization division multiplexing,
which allows information to be encoded on both orthogonal
polarization components supported by SMFs. The description
of the light propagation, accounting for its polarization dynamics,
can be described, under specific conditions that apply to modern
communications fiber links, by the Manakov equations [17]. In a
milestone paper of nonlinear science, Manakov showed that those
equations can be solved analytically by the IST [18]. Detailed in-
vestigations of the solutions of the Manakov equations especially
concerning soliton and multisoliton dynamics in the presence of
noise and polarization mode dispersion (PMD) in optical com-
munications, as well as their connection with optical rogue waves
formation, are present in the literature [19–25].

To the best of our knowledge, the NFT dual-polarization
problem has never been tackled at the level aimed to demonstrate
a working communication system, and only very preliminary
theoretical works are present in the literature on this topic [26,27].

In this paper, we present the mathematical framework under-
lying the dual-polarization NFT, and we show an extension
of our recent results on the first experimental demonstration of
a dual-polarization nonlinear frequency division multiplexing
(DP-NFDM) fiber optics communication system [28]. We have
transmitted up to 373.5 km at the hard-decision forward error cor-
rection (HD-FEC) bit error rate (BER) threshold of 3.8 × 10−3,
with information encoded in the quadrature phase shift keying
(QPSK)-modulated scattering coefficients associated with two ei-
genvalues belonging to the Manakov system discrete spectrum, for
both orthogonal polarization components supported by a SMF.

The structure of the paper is as follows: in Section 2 we define
the NFT for the dual-polarization case, and we describe the math-
ematical tools—the Darboux transformation (DT)—needed to
generate the waveforms associated with a desired nonlinear spec-
trum for both field polarizations. In Section 3 we discuss the de-
tails of a DP-NFDM system. Finally, in Section 4, we present a
detailed account of the experimental transmission results, fol-
lowed by a discussion of the results and conclusions in Section 5.

2. MATHEMATICAL FRAMEWORK

A. Channel Model

The evolution of the slowly varying complex-valued envelopes
of the electric field propagating in a SMF exhibiting random
birefringence and whose dispersion and nonlinear lengths are

much larger than the birefringence correlation length is described
by the averaged Manakov equations [17,29],

8<
:

∂E1

∂l � −i β22
∂2E1

∂τ2 � i 8γ9 �jE1j2 � jE2j2�E1

∂E2

∂l � −i β22
∂2E2

∂τ2 � i 8γ9 �jE1j2 � jE2j2�E2

; (1)

where τ and l represent the time and space coordinates, respec-
tively, Ej, j � 1; 2 are the amplitudes of the two electric field
polarizations, β2 is the dispersion coefficient, and γ is the non-
linearity coefficient.

In order to remove any dependency from a specific channel,
it is common to work with the normalized version of Eq. (1). The
normalized Manakov system (MS) [18,30,31] is obtained by
performing the change of variable,

qj �
Ejffiffiffi
P

p ; t � τ

T 0

; z � −
l
L
; (2)

where P � jβ2j∕�89 γT 2
0�, L � 2T 2

0∕jβ2j, and T 0 is a free nor-
malization parameter, leading to

(
i ∂q1∂z � ∂2q1

∂t2 � 2�jq1j2 � jq1j2�q1
i ∂q2∂z � ∂2q2

∂t2 � 2�jq1j2 � jq2j2�q2
; (3)

where z and t represent the normalized space and time variables,
respectively. In this study, we have considered the anomalous
dispersion regime (β2 < 0), since it is the one that supports sol-
itons and corresponds to the regime of currently deployed SMFs.

In realistic systems, the field amplitude is attenuated upon
spatial propagation at a rate α∕2, where α is the attenuation
coefficient of the fiber. This breaks the integrability of Eq. (1).
However, it is possible to suitably redefine the fields E1;2 →
E1;2e−�α∕2�l in such a way that they obey a lossless equation with
an effective nonlinearity coefficient

γeff � γ�1 − e−αL�∕�αL�; (4)

where L is the length of one optical fiber span. The evolution
equation with the modified nonlinear term can be considered
the leading approximation of the lossy system when we account
for the periodic signal boosts due to the erbium-doped fiber am-
plifier (EDFA). This is the so-called lossless path-averaged (LPA)
model [32–34], which is in general valid when the amplifiers’
spacing is smaller than the soliton period, and it has been used
across all the present study.

B. Direct NFT

In order to compute the NFT of a signal q1;2�t�, it is first neces-
sary to associate to the MS Eq. (3) a so-called spectral problem.
This is known for the case of the NLSE as the Zakharov–Shabat
spectral problem (ZSP), while for the Manakov equations we can
call it the Manakov–Zakharov–Shabat spectral problem (MZSP).
The MZSP is defined by the following system of linear ordinary
differential equations:

∂v
∂t

� �λA � B�v (5)

being
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A �

0
B@

−i 0 0

0 i 0

0 0 i

1
CA B �

0
B@

0 q1 q2
−q�1 0 0

−q�2 0 0

1
CA;

where v is a solution, and λ is a spectral parameter.
Assuming the vanishing boundary conditions for the signal,

i.e., jq1;2�t�j → 0 for t → j∞j, it is possible to find a set of
canonical solutions to Eq. (5) called Jost solutions defined as [30]

ϕN �t; λ� →
 
1
0
0

!
e−iλt ; ϕ̄N �t; λ� →

 
0 0
1 0
0 1

!
eiλt t → −∞;

(6a)

ϕP�t; λ� →
 
0 0
1 0
0 1

!
eiλt ; ϕ̄P�t; λ� →

 
1
0
0

!
e−iλt t → �∞:

(6b)

fϕP�t; λ�; ϕ̄P�t; λ�g and fϕN �t; λ�; ϕ̄N �t; λ�g are two bases for the
eigenspace associate to λ. One can write ϕN �t; λ� and ϕ̄N �t; λ� as
a linear combination of the basis vectors fϕP�t; λ�; ϕ̄P�t; λ�g as

ϕN �t; λ� � ϕP�t; λ�b�λ� � ϕ̄P�t; λ�a�λ�; (7a)

ϕ̄N �t; λ� � ϕP�t; λ�ā�λ� � ϕ̄P�t; λ�b̄�λ�; (7b)

with coefficients a�λ�, b�λ�, ā�λ�, and b̄�λ�, where a�λ� is a scalar,
ā�λ� is a 2 × 2matrix, b�λ� is a two-entry column vector, and b̄�λ�
is a two-entry row vector. These coefficients are called scattering
coefficients. From the knowledge of the scattering coefficients, it
is possible to reconstruct the signal q1;2�t� uniquely.

Analogously to the case of the NLSE [11], we can define the
NFT continuous and discrete spectral amplitudes for the MS as

Qc�λ� � b�λ�a�λ�−1 λ ∈ R; (8a)

Qd;i�λi� � b�λi�a 0�λi�−1 λ1;…n ∈ CnR; (8b)

and a 0�λi� � da�λ�
dλ jλ�λi∀ λ1;…n ∈ CnR such that a�λi� � 0.

Although these spectral amplitudes are commonly used, it is more
convenient to work directly with the scattering coefficients a�λ�
and b�λ� [35]; hence, when throughout the whole paper we will
refer to the nonlinear spectrum, we will implicitly mean the ei-
genvalues and the associated scattering coefficients. The scattering
coefficients are time independent, and their spatial evolution is
given by [30]

a�λ; z� � a�λ; 0� ā�λ; z� � ā�λ; 0�; (9a)

b�λ; z� � b�λ; 0�e−4iλ2z b̄�λ; z� � b̄�λ; 0�e4iλ2z : (9b)

In order to not overburden the notation, we will drop the explicit
space dependence as we did in the beginning of this section. The
fact that the scattering coefficients are time invariant allows com-
puting them at an arbitrary instant of time. For example, using
Eq. (7a) and the boundary Jost solutions, they can be computed at
t � �∞. At this instant, ϕP�t; λ� is known. Moreover, it is pos-
sible to propagate ϕN �t; λ� from t � −∞, where it is known, to
t � �∞ by integrating Eq. (7a). Given the particular structure of
the Jost solutions, it results that the scattering coefficients are
given by

a�λ� � lim
t→�∞

�ϕN
1 �t; λ�ϕ̄P

1 �t; λ�−1� (10a)

b1�λ� � lim
t→�∞

�ϕN
2 �t; λ�ϕP

2;1�t; λ�−1�; (10b)

b2�λ� � lim
t→�∞

�ϕN
3 �t; λ�ϕP

3;2�t; λ�−1�; (10c)

and using Eqs. (6) and (7a) gives

a�λ� � lim
t→�∞

�ϕN
1 �t; λ��eiλt �; (11a)

b�λ� �
�
b1�λ�
b2�λ�

�
� lim

t→�∞

��
ϕN
2 �t; λ�

ϕN
3 �t; λ�

�
e−iλt
�
: (11b)

It should be noted that, compared to the NLSE case, there is an
additional scattering coefficient b2�λ� that can be used to encode
information, potentially doubling the system transmission rate.

C. Inverse NFT

The inverse nonlinear Fourier transform (INFT) is the math-
ematical procedure that allows construction of a time domain
waveform starting from a given nonlinear spectrum. In our work,
we have performed the INFT at the transmitter by using an algo-
rithm based on the DT [36]. The DT is a natural candidate to
build time domain signals, especially when the information is en-
coded only in the discrete nonlinear spectrum. The method con-
sists of adding iteratively discrete eigenvalues to the nonlinear
spectrum while simultaneously updating the signal in the time
domain. The INFT based on the DT for eigenvalue communi-
cations was proposed in [37]. In our work, we have used the DT
for the MS derived by Wright [38]. We summarize here how the
DT for the MS works.

Let v be a column vector solution of the MZSP spectral
problem Eq. (5) associated with the MS for the signal q�t�
and the eigenvalue λ; then according to [38], a new solution
of Eq. (5), v̂, is given by the following equation:

v̂ � �λI3 − G0�v; (12)

where I3 is the 3 × 3 identity matrix, G0 � ΘM0Θ−1 with

Θ �
 v̄1 v̄�2 v̄�3
v̄2 −v̄�1 0
v̄3 0 −v̄�1

!
; (13)

where the matrix M0 � diag�λ0; λ�0 ; λ�0�, and v̄ � �v̄1; v̄2; v̄3�T is
a solution of Eq. (5) for the seed signal qj; j � 1; 2 and a fixed
value of λ � λ0. The DT gives the new signal waveforms in
the time domain for both polarizations q̂j; j � 1; 2 as a function
of the old signals qj, of the auxiliary solution v̄ and of the new
eigenvalue λ0 we want to add to the nonlinear spectrum,

q̂j � qj � 2i�λ�0 − λ0�
u�j

1�P2
s�1 jusj2

�j � 1; 2�; (14)

where uj � v̄j�1∕v̄1.
Starting from the “vacuum” solution qj�t� � 0; j � 1; 2, the

procedure sketched in Fig. 1 can be repeated iteratively to
generate the dual polarization time domain signal associated with
a nonlinear spectrum containing an arbitrary large number of
discrete eigenvalues.

The generic auxiliary solution v̄�k� that satisfies the MZSP for
the eigenvalue λk reads: v̄�k� � �A�k�e−iλk t ; B�k�eiλk t ; C �k�eiλk t�T
(fA�k�; B�k�; C �k�g being some initialization constants). Hence
after adding i eigenvalues, the auxiliary solutions are modified
according to the following chain of matrix multiplications:
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0
BB@

ˆ̄v�k�1

ˆ̄v�k�2

ˆ̄v�k�3

1
CCA � �λkI3 − G0i−1�…�λkI3 − G01�

0
B@

A�k�e−iλk t

B�k�eiλk t

C �k�eiλk t

1
CA; (15)

where the G0i matrices are evaluated as functions of the ith
auxiliary solution v̄�i� evaluated after i − 1 Darboux transforma-
tions; see also the scheme depicted in Fig. 1. The initialization
constants fA�k�; B�k�; C �k�g have been set respectively equal to
f1; −b1�λk�; −b2�λk�g in order to obtain the correct spectrum after
performing NFT and INFT in sequence as in the scalar case [39].
b1�λk� and b2�λk� are the scattering coefficients that we want to
associate to the eigenvalue λk for the two polarization compo-
nents, respectively.

3. DP-NFDM SYSTEM

In this section, the basic structure of a DP-NFDM system using
the discrete spectrum will be described. The digital signal process-
ing (DSP) chain will be introduced first and then the experimen-
tal setup will follow.

A. Transmitter and Receiver Digital Signal Processing

At the transmitter, the data bits are mapped to the scattering co-
efficients pairs fb1�λi�; b2�λi�g for i � 1; 2, where the eigenvalues
fλ1 � i0.3; λ2 � i0.6g are used for each symbol. We will refer to
these sets of coefficients and equivalently to the associated time
domain waveform as a DP-NFDM symbol. The scattering coef-
ficients associated with the first eigenvalue can assume values
drawn from a QPSK constellation of radius 5 and rotated by
π∕4, while those associated with the second eigenvalue are drawn

from a QPSK constellation of radius 0.14 as shown in Fig. 2. This
particular structure of the constellations was chosen to reduce the
peak-to-average power ratio (PAPR) of the signal at the transmit-
ter in order to limit the performance losses due to the limited
resolution of the digital-to-analog converter (DAC) and due to
the nonlinear characteristic of a Mach–Zehnder modulator
(MZM) and electrical amplifiers (see Supplement 1 for a detailed
explanation). The waveform associated to each DP-NFDM sym-
bol is generated using the DT described in the previous section
followed by the denormalization as in Eq. (2) with normalization
parameter T 0 � 47 ps. This choice of T 0 allows fitting the wave-
form in a time window of 1 ns (1 GBd) with enough time guard
band among successive DP-NFDM symbols to satisfy the vanish-
ing boundary conditions required to correctly compute the NFT.
The power Ptx of the digital signal thus obtained is later used to
set the power of the corresponding transmitted optical signal.

The channel is assumed to be a link of standard SMF with
EDFA lumped amplification, as in the experiment. In order to
take into account the presence of the losses, the LPA approxima-
tion is used in the normalization and denormalization steps of the
waveform before computing the NFT and after computing the
INFT, respectively.

At the receiver, the digital signal output by the digital storage
oscilloscope (DSO) is first rescaled so that its power is Ptx (the
power of the transmitted optical signal). Then an ideal rectangular
filter with bandwidth equal to the 99% power bandwidth of the
signal is used to filter the out of band noise. At this point, cross-
correlation-based frame synchronization using training sequences
is performed in order to optimally align the DP-NFDM symbol
to the processing window. For each DP-NFDM symbol, first the
eigenvalues are located using the Newton–Raphson search
method employing the one-directional trapezoidal method, and
then the coefficients b1;2�λi� are computed on the found eigen-
values using the forward-backward trapezoidal method (see
Supplement 1 for more details). The homodyne configuration
of the receiver allows us to avoid having a frequency offset

(a) (b) (c)

Fig. 2. Ideal normalized constellations are illustrated schematically: in
(a) the discrete eigenvalues λ1 � i0.3 and λ2 � i0.6 are depicted. The
scattering coefficients b1;2�λi�; i � 1; 2, associated with the two orthogo-
nal polarization components of the signal, are shown in (b) and (c), re-
spectively. Polarization 1 and Polarization 2 are on a violet and green
background, respectively. The scattering coefficients associated with
λ1 are chosen from a QPSK constellation of radius 5 and rotated by
π∕4, while those associated with λ2 from a QPSK constellation and
radius 0.14.

Fig. 1. Schematic of the DT. The S-node is the signal update oper-
ation corresponding to Eq. (14), and the E-node is the eigenvector up-
date operation corresponding to Eq. (12). At the step i � 1; 2; 3 the
auxiliary solution v̄�i� for λ � λi (red arrow) modifies the signal q�i−1�j
and all the other auxiliary solutions (blue arrows). The seed null signal
q�0�j , j � 1; 2 entering the first S-node is transformed after each step in
such a way that its discrete spectrum has a new eigenvalue added as shown
in the four insets in upper part of the figure.
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between the transmitter laser and the coherent receiver local os-
cillator (LO), but given the non-zero combined linewidth of the
two lasers (∼1 kHz), their coherence length is limited to about
90 km. This implies that the received constellations are affected
by phase noise when the transmission distance exceeds the coher-
ence length of the laser, causing errors in the detection of the sym-
bols. The phase noise is removed by applying the blind phase
search algorithm [40] in the NFT domain to each constellation
individually. Finally, the scattering coefficients are rotated back to
remove the phase factor acquired during the transmission
[Eq. (9b)], and the decision on the symbols is taken using a mini-
mum Euclidean distance decisor over the scattering coefficients.

B. Experimental Setup

The experimental setup and the block diagrams of the DSP are
depicted in Fig. 3. At the transmitter, a fiber laser (FL) with sub-
kilohertz (kHz) linewidth is modulated using an integrated dual
polarization I/Q modulator driven by an arbitrary waveform gen-
erator (AWG) with 20 GHz analog bandwidth and 64 GSa/s.
Before uploading it to the AWG, the signal generated by the
INFT is predistorted using the ideal inverse transfer function
of the MZM (asin�·�). This predistortion is required in order
to have a good trade-off between signal-to-noise ratio (SNR)
at the output of the MZM and signal distortions caused by its
nonlinear transfer function. Nonetheless, given the still high
PAPR of the optimized waveform considered (see Supplement
1), this predistortion is not optimal, and advanced methods
can be employed to improve further the quality of the transmitted
signal [41]. The channel is a fiber link composed of up to 9 spans
of SMF fiber with dispersion D � 17.5 ps∕nm · km, nonlinear
coefficient γ � 1.25 W−1 km−1, attenuation α � 0.195 dB∕km,
and PMD coefficient<0.1 ps km−1∕2. Two different span lengths
of L � 41.5 and L � 83 km were employed. Considering these
channel parameters, the complex baseband signal generated
by the INFT with LPA and denormalized has the following
properties: 99% of its power contained within a bandwidth W
of 12.7 GHz, a PAPR of 9.49 dB, and an average power Ptx

of 5.30 dBm and 7.70 dBm for the span lengths L of 41.5
and 83 km, respectively. Given these channel and signal param-
eters, we have that the soliton period, defined as �π∕2�Ld , with
Ld � �W jβ2j�−1 the dispersion length [8,42], is 436 km. Being
this much larger than the typical birefringence correlation length,
which is on a scale of few tens of meters [29], guarantees the
applicability of the Manakov averaged model.

In order to properly match the transmitted signal to the chan-
nel, the gain of the EDFA at the transmitter is tuned in such a way
to set the power of the optical signal to Ptx. The optical signal is
then transmitted through the channel.

At the receiver, the signal is first sent through a 0.9 nm optical
band pass filter (OBPF), and then a polarization controller (PC)
was used to manually align the polarization of the signal to the
optical front end. The use of the PC was required to avoid the use
of polarization tracking algorithms for the NFT signals, which
were not available at the time of the experiment. In the future
it could be possible to use modulation-independent polarization
tracking algorithms, as an example, employing independent com-
ponents analysis [43]. The signal is then detected by using a stan-
dard coherent receiver (33 GHz analog bandwidth, 80 GSa/s) in a
homodyne configuration where the transmitter laser is used as
LO. The acquired digital signal consisting of five blocks of 105

DP-NFDM symbols is then fed to the receiver DSP chain
described previously.

4. EXPERIMENTAL RESULTS

The system was initially tested in a back-to-back (B2B) configu-
ration, where the transmitter output has been directly connected
to the receiver, in order to obtain the best performance achievable
by the system in the sole presence of the intrinsic transceiver dis-
tortions (e.g., transmitter front-end distortion, detector noise,

Fig. 3. Experimental setup with transmitter and receiver DSP chain. Abbreviations not defined in the main text: balanced photodetector (BPD), direct
current (DC).

Fig. 4. System performance in terms of BER as a function of the
OSNR in a back-to-back configuration. The BER of the individual con-
stellations are shown by the violet (Polarization 1) and green (Polarization
2) curves and are grouped per eigenvalue (λ1 � i0.3; λ2 � i0.6). The
black curve represents the average BER over the four constellations.
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etc.) and additive white Gaussian noise (AWGN) as is commonly
done for linear coherent systems. The OSNR was swept by vary-
ing the noise power added to the signal at the receiver input. The
adopted metric for measuring the performances allows a direct
comparison with standard coherent transmission systems. The
OSNR range considered is the region of interest where the
system performance is around the HD-FEC threshold. The mea-
sured average BER is shown in Fig. 4. A visible effect is the fact
that the BER is not the same for the four different constellations,
but it is worse for the two constellations associated with the eigen-
value with the largest imaginary part. This effect can be related to
the dependency of the noise variance of both the eigenvalues and
the corresponding scattering coefficients on the imaginary part of
the eigenvalues themselves [44–48]; an analysis of the noise dis-
tribution for the various eigenvalues and scattering coefficients is
provided in Supplement 1.

In order to demonstrate fiber transmission with the proposed
system, a transmission was performed over a link of N spans of
SMF with span length L � 41.5 and L � 83 km. The perfor-
mance in terms of BER as a function of the transmission distance
is shown in Figs. 5(a) and 5(b) for the four different constella-
tions. The difference in performance in the two eigenvalues
appears in this case too. This can also be seen from the constel-
lation plots after 373.5 km in Fig. 6, where the two constellations
associated with λ2 are sensibly more degraded than those related

to λ1, which are still well defined. Similar performance can instead
be seen in the two different polarizations of the same eigenvalue.

Finally, in Fig. 5(c) we compare the average BER for the two
span lengths used in the test in order to check the impact of the
LPA approximation. Worse performances are expected when
longer links are used, being γeff [given in Eq. (4)] farther from
the real γ of the fiber in this case. The BER curve for the
41.5 km span contains two outlier points at 124.5 km and
249 km that are slightly worse than the general trend of the curve.
This is believed to be caused by instabilities in the setup when the
related experimental traces were acquired, in particular an incor-
rect alignment of the polarization to the receiver due to a drift in
the polarization state of the received signal. Besides these two
points, the rest of the 41.5 km curve lies under the one for
the 83 km spans, confirming that the use of longer spans adds
a slight degradation in the performance of the system. The maxi-
mum reach of the system achieved with BER under the HD-FEC
threshold is 373.5 km using 41.5 km spans and 249 km with
spans of 83 km. It should be noted that in our experimental setup
the PMD effect was not compensated for. However, for the trans-
mission lengths and PMD values of the standard SMF employed,
the accumulated differential group delay is negligible if compared
with the pulse duration [4]. The impact of PMD is therefore not
expected to have had a major impact on the results shown. New
approaches have been developed to compensate for PMD effects
in linear transmission systems [49], and a recent work has shown
in simulations that for a DP-NFDM system employing the con-
tinuous spectrum, PMD effects could be compensated for in the
nonlinear domain by using a linear equalizer [27]. Similar tech-
niques may be applied to discrete DP-NFDM systems.

5. CONCLUSIONS

We have demonstrated experimentally, for the first time to the
best of our knowledge, an eigenvalue-based optical communica-
tion system employing two orthogonal modes of polarization.
We encoded 8 bits/DP-NFDM symbol and demonstrated trans-
mission up to 373.5 km. Furthermore, we have shown that a
powerful, but rather abstract mathematical technique, the
Darboux transformation, can indeed have a far-reaching impact
in applied nonlinear optics, namely, in fiber-based telecommuni-
cation systems. Our results pave the way toward doubling the in-
formation rate of NFT-based fiber optics communication systems.
Althoughmore research work needs to be done in this direction, by
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Distance [km]
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B
E

R
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Pol. 1
Pol. 2

83 249 415 581 747
Distance [km]

(b)

Pol. 1
Pol. 2

41.5 207.5 373.5 539.5 705.5
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(c)

41.5 km span
83 km span

Fig. 5. System performance in terms of BER as a function of the transmission distance for the four individual constellations for (a) L � 41.5 km and
(b) L � 83 km spans. The violet (Polarization 1) and green (Polarization 2) curves are grouped per eigenvalue (λ1 � i0.3; λ2 � i0.6). (c) Comparison of
the average BER versus transmission distance between links of the two different span lengths. The error bars represent the standard deviation over five
processed blocks of 105 DP-NFDM symbols.

Fig. 6. The four experimental constellations of the scattering coeffi-
cients b1;2�λi�; i � 1; 2 associated with the two eigenvalues (λ1 � i0.3;
λ2 � i0.6) are shown at the transmitter side (left) and after 373.5 km
transmission with 41.5 km spans (right). Polarization 1 and
Polarization 2 are on a violet and green background, respectively.
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demonstrating the possibility of using dual-polarization NFT
channels, we have indeed successfullymet one of the key challenges
that were explicitly highlighted in a recent review of this research
field [8] as necessary steps in order to bring eigenvalue communi-
cation from a pioneering stage to be a working infrastructure for
optical communications in the real world. Furthermore, the
demonstration of polarization division multiplexing is a significant
step toward a fair comparison of the NFT-based channels with the
currently used linear ones where polarization divisionmultiplexing
is an established practice.
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