6 research outputs found

    Compact Formulae in Sparse Elimination

    Get PDF
    International audienceIt has by now become a standard approach to use the theory of sparse (or toric) elimination, based on the Newton polytope of a polynomial, in order to reveal and exploit the structure of algebraic systems. This talk surveys compact formulae, including older and recent results, in sparse elimination. We start with root bounds and juxtapose two recent formulae: a generating function of the m-Bézout bound and a closed-form expression for the mixed volume by means of a matrix permanent. For the sparse resultant, a bevy of results have established determinantal or rational formulae for a large class of systems, starting with Macaulay. The discriminant is closely related to the resultant but admits no compact formula except for very simple cases. We offer a new determinantal formula for the discriminant of a sparse multilinear system arising in computing Nash equilibria. We introduce an alternative notion of compact formula, namely the Newton polytope of the unknown polynomial. It is possible to compute it efficiently for sparse resultants, discriminants, as well as the implicit equation of a parameterized variety. This leads us to consider implicit matrix representations of geometric objects

    Exact resultants for corner-cut unmixed multivariate polynomial systems using the dixon formulation

    Get PDF
    Structural conditions on the support of a multivariate polynomial system are developed for which the Dixon-based resultant methods compute exact resultants. For cases when this cannot be done, an upper bound on the degree of the extraneous factor in the projection operator can be determined a priori, thus resulting in quick identification of the extraneous factor in the projection operator. (For the bivariate case, the degree of the extraneous factor in a projection operator can be determined a priori.) The concepts of a corner-cut support and almost corner-cut support of an unmixed polynomial system are introduced. For generic unmixed polynomial systems with corner-cut and almost corner-cut supports, the Dixon based methods can be used to compute their resultants exactly. These structural conditions on supports are based on analyzing how such supports differ from box supports of n-degree systems for which the Dixon formulation is known to compute the resultants exactly. Such an analysis also gives a sharper bound on the complexity of resultant computation using the Dixon formulation in terms of the support and the mixed volume of the Newton polytope of the support. These results are a direct generalization of the authors ’ results on bivariate systems including the results of Zhang and Goldman as well as of Chionh for generic unmixed bivariate polynomial systems with corner-cut supports

    Hybrid Sparse Resultant Matrices for Bivariate Polynomials

    Get PDF
    AbstractWe study systems of three bivariate polynomials whose Newton polygons are scaled copies of a single polygon. Our main contribution is to construct square resultant matrices, which are submatrices of those introduced by Cattaniet al. (1998), and whose determinants are nontrivial multiples of the sparse (or toric) resultant. The matrix is hybrid in that it contains a submatrix of Sylvester type and an additional row expressing the toric Jacobian. If we restrict our attention to matrices of (almost) Sylvester-type and systems as specified above, then the algorithm yields the smallest possible matrix in general. This is achieved by strongly exploiting the combinatorics of sparse elimination, namely by a new piecewise-linear lifting. The major motivation comes from systems encountered in geometric modeling. Our preliminary Maple implementation, applied to certain examples, illustrates our construction and compares it with alternative matrices

    Resultants and Discriminants for Bivariate Tensor-product Polynomials

    Get PDF
    International audienceOptimal resultant formulas have been systematically constructed mostly for unmixed polynomial systems, that is, systems of polynomials which all have the same support. However , such a condition is restrictive, since mixed systems of equations arise frequently in practical problems. We present a square, Koszul-type matrix expressing the resultant of arbitrary (mixed) bivariate tensor-product systems. The formula generalizes the classical Sylvester matrix of two univariate polynomials, since it expresses a map of degree one, that is, the entries of the matrix are simply coefficients of the input polynomials. Interestingly, the matrix expresses a primal-dual multiplication map, that is, the tensor product of a univariate multiplication map with a map expressing derivation in a dual space. Moreover, for tensor-product systems with more than two (affine) variables, we prove an impossibility result: no universal degree-one formulas are possible, unless the system is unmixed. We present applications of the new construction in the computation of discriminants and mixed discriminants as well as in solving systems of bivariate polynomials with tensor-product structure

    Matrix formulae for Resultants and Discriminants of Bivariate Tensor-product Polynomials

    Get PDF
    International audienceThe construction of optimal resultant formulae for polynomial systems is one of the main areas of research in computational algebraic geometry. However, most of the constructions are restricted to formulae for unmixed polynomial systems, that is, systems of polynomials which all have the same support. Such a condition is restrictive, since mixed systems of equations arise frequently in many problems. Nevertheless, resultant formulae for mixed polynomial systems is a very challenging problem. We present a square, Koszul-type, matrix, the determinant of which is the resultant of an arbitrary (mixed) bivariate tensor-product polynomial system. The formula generalizes the classical Sylvester matrix of two univariate polynomials, since it expresses a map of degree one, that is, the elements of the corresponding matrix are up to sign the coefficients of the input polynomials. Interestingly, the matrix expresses a primal-dual multiplication map, that is, the tensor product of a univariate multiplication map with a map expressing derivation in a dual space. In addition we prove an impossibility result which states that for tensor-product systems with more than two (affine) variables there are no universal degree-one formulae, unless the system is unmixed. Last but not least, we present applications of the new construction in the efficient computation of discriminants and mixed discriminants
    corecore