21,870 research outputs found

    Recovery in quantum error correction for general noise without measurement

    Get PDF
    It is known that one can do quantum error correction without syndrome measurement, which is often done in operator quantum error correction (OQEC). However, the physical realization could be challenging, especially when the recovery process involves high-rank projection operators and a superoperator. We use operator theory to improve OQEC so that the implementation can always be done by unitary gates followed by a partial trace operation. Examples are given to show that our error correction scheme outperforms the existing ones in various scenarios.Comment: 10 page

    Active stabilisation, quantum computation and quantum state synthesis

    Full text link
    Active stabilisation of a quantum system is the active suppression of noise (such as decoherence) in the system, without disrupting its unitary evolution. Quantum error correction suggests the possibility of achieving this, but only if the recovery network can suppress more noise than it introduces. A general method of constructing such networks is proposed, which gives a substantial improvement over previous fault tolerant designs. The construction permits quantum error correction to be understood as essentially quantum state synthesis. An approximate analysis implies that algorithms involving very many computational steps on a quantum computer can thus be made possible.Comment: 8 pages LaTeX plus 4 figures. Submitted to Phys. Rev. Let

    Effective fault-tolerant quantum computation with slow measurements

    Get PDF
    How important is fast measurement for fault-tolerant quantum computation? Using a combination of existing and new ideas, we argue that measurement times as long as even 1,000 gate times or more have a very minimal effect on the quantum accuracy threshold. This shows that slow measurement, which appears to be unavoidable in many implementations of quantum computing, poses no essential obstacle to scalability.Comment: 9 pages, 11 figures. v2: small changes and reference addition

    Resilient Quantum Computation: Error Models and Thresholds

    Get PDF
    Recent research has demonstrated that quantum computers can solve certain types of problems substantially faster than the known classical algorithms. These problems include factoring integers and certain physics simulations. Practical quantum computation requires overcoming the problems of environmental noise and operational errors, problems which appear to be much more severe than in classical computation due to the inherent fragility of quantum superpositions involving many degrees of freedom. Here we show that arbitrarily accurate quantum computations are possible provided that the error per operation is below a threshold value. The result is obtained by combining quantum error-correction, fault tolerant state recovery, fault tolerant encoding of operations and concatenation. It holds under physically realistic assumptions on the errors.Comment: 19 pages in RevTex, many figures, the paper is also avalaible at http://qso.lanl.gov/qc

    Resilience to time-correlated noise in quantum computation

    Full text link
    Fault-tolerant quantum computation techniques rely on weakly correlated noise. Here I show that it is enough to assume weak spatial correlations: time correlations can take any form. In particular, single-shot error correction techniques exhibit a noise threshold for quantum memories under spatially local stochastic noise.Comment: 16 pages, v3: as accepted in journa

    Efficient feedback controllers for continuous-time quantum error correction

    Full text link
    We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form of real-time quantum feedback. We expect this paradigm to be useful for systems in which error recovery operations cannot be applied instantaneously. While we could not find an exact low-dimensional filter that combined both continuous syndrome measurement and a feedback Hamiltonian appropriate for error recovery, we developed an approximate reduced-dimensional model to do so. Simulations of the five-qubit code subjected to the symmetric depolarizing channel suggests that error correction based on our approximate filter performs essentially identically to correction based on an exact quantum dynamical model

    Quantum error correction benchmarks for continuous weak parity measurements

    Full text link
    We present an experimental procedure to determine the usefulness of a measurement scheme for quantum error correction (QEC). A QEC scheme typically requires the ability to prepare entangled states, to carry out multi-qubit measurements, and to perform certain recovery operations conditioned on measurement outcomes. As a consequence, the experimental benchmark of a QEC scheme is a tall order because it requires the conjuncture of many elementary components. Our scheme opens the path to experimental benchmarks of individual components of QEC. Our numerical simulations show that certain parity measurements realized in circuit quantum electrodynamics are on the verge of being useful for QEC

    Recovering quantum information through partial access to the environment

    Full text link
    We investigate the possibility of correcting errors occurring on a multipartite system through a feedback mechanism that acquires information from partial access to the environment. A partial control scheme of this kind might be useful when dealing with correlated errors. In fact, in such a case, it could be enough to gather local information to decide what kind of global recovery to perform. Then, we apply this scheme to the depolarizing and correlated errors, and quantify its performance by means of the entanglement fidelity
    corecore