13,741 research outputs found

    ElasTraS: An Elastic Transactional Data Store in the Cloud

    Full text link
    Over the last couple of years, "Cloud Computing" or "Elastic Computing" has emerged as a compelling and successful paradigm for internet scale computing. One of the major contributing factors to this success is the elasticity of resources. In spite of the elasticity provided by the infrastructure and the scalable design of the applications, the elephant (or the underlying database), which drives most of these web-based applications, is not very elastic and scalable, and hence limits scalability. In this paper, we propose ElasTraS which addresses this issue of scalability and elasticity of the data store in a cloud computing environment to leverage from the elastic nature of the underlying infrastructure, while providing scalable transactional data access. This paper aims at providing the design of a system in progress, highlighting the major design choices, analyzing the different guarantees provided by the system, and identifying several important challenges for the research community striving for computing in the cloud.Comment: 5 Pages, In Proc. of USENIX HotCloud 200

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Maintaining consistency in distributed systems

    Get PDF
    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability

    Rigorous Design of Fault-Tolerant Transactions for Replicated Database Systems using Event B

    No full text
    System availability is improved by the replication of data objects in a distributed database system. However, during updates, the complexity of keeping replicas identical arises due to failures of sites and race conditions among conflicting transactions. Fault tolerance and reliability are key issues to be addressed in the design and architecture of these systems. Event B is a formal technique which provides a framework for developing mathematical models of distributed systems by rigorous description of the problem, gradually introducing solutions in refinement steps, and verification of solutions by discharge of proof obligations. In this paper, we present a formal development of a distributed system using Event B that ensures atomic commitment of distributed transactions consisting of communicating transaction components at participating sites. This formal approach carries the development of the system from an initial abstract specification of transactional updates on a one copy database to a detailed design containing replicated databases in refinement. Through refinement we verify that the design of the replicated database confirms to the one copy database abstraction

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page
    corecore