30,005 research outputs found

    Robust causal structure learning with some hidden variables

    Full text link
    We introduce a new method to estimate the Markov equivalence class of a directed acyclic graph (DAG) in the presence of hidden variables, in settings where the underlying DAG among the observed variables is sparse, and there are a few hidden variables that have a direct effect on many of the observed ones. Building on the so-called low rank plus sparse framework, we suggest a two-stage approach which first removes the effect of the hidden variables, and then estimates the Markov equivalence class of the underlying DAG under the assumption that there are no remaining hidden variables. This approach is consistent in certain high-dimensional regimes and performs favourably when compared to the state of the art, both in terms of graphical structure recovery and total causal effect estimation

    Survivor-complier effects in the presence of selection on treatment, with application to a study of prompt ICU admission

    Full text link
    Pre-treatment selection or censoring (`selection on treatment') can occur when two treatment levels are compared ignoring the third option of neither treatment, in `censoring by death' settings where treatment is only defined for those who survive long enough to receive it, or in general in studies where the treatment is only defined for a subset of the population. Unfortunately, the standard instrumental variable (IV) estimand is not defined in the presence of such selection, so we consider estimating a new survivor-complier causal effect. Although this effect is generally not identified under standard IV assumptions, it is possible to construct sharp bounds. We derive these bounds and give a corresponding data-driven sensitivity analysis, along with nonparametric yet efficient estimation methods. Importantly, our approach allows for high-dimensional confounding adjustment, and valid inference even after employing machine learning. Incorporating covariates can tighten bounds dramatically, especially when they are strong predictors of the selection process. We apply the methods in a UK cohort study of critical care patients to examine the mortality effects of prompt admission to the intensive care unit, using ICU bed availability as an instrument

    Learning Counterfactual Representations for Estimating Individual Dose-Response Curves

    Full text link
    Estimating what would be an individual's potential response to varying levels of exposure to a treatment is of high practical relevance for several important fields, such as healthcare, economics and public policy. However, existing methods for learning to estimate counterfactual outcomes from observational data are either focused on estimating average dose-response curves, or limited to settings with only two treatments that do not have an associated dosage parameter. Here, we present a novel machine-learning approach towards learning counterfactual representations for estimating individual dose-response curves for any number of treatments with continuous dosage parameters with neural networks. Building on the established potential outcomes framework, we introduce performance metrics, model selection criteria, model architectures, and open benchmarks for estimating individual dose-response curves. Our experiments show that the methods developed in this work set a new state-of-the-art in estimating individual dose-response
    • …
    corecore