451 research outputs found

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    3D-TV Production from Conventional Cameras for Sports Broadcast

    Get PDF
    3DTV production of live sports events presents a challenging problem involving conflicting requirements of main- taining broadcast stereo picture quality with practical problems in developing robust systems for cost effective deployment. In this paper we propose an alternative approach to stereo production in sports events using the conventional monocular broadcast cameras for 3D reconstruction of the event and subsequent stereo rendering. This approach has the potential advantage over stereo camera rigs of recovering full scene depth, allowing inter-ocular distance and convergence to be adapted according to the requirements of the target display and enabling stereo coverage from both existing and ‘virtual’ camera positions without additional cameras. A prototype system is presented with results of sports TV production trials for rendering of stereo and free-viewpoint video sequences of soccer and rugby

    Raum-Zeit Interpolationstechniken

    Get PDF
    The photo-realistic modeling and animation of complex scenes in 3D requires a lot of work and skill of artists even with modern acquisition techniques. This is especially true if the rendering should additionally be performed in real-time. In this thesis we follow another direction in computer graphics to generate photo-realistic results based on recorded video sequences of one or multiple cameras. We propose several methods to handle scenes showing natural phenomena and also multi-view footage of general complex 3D scenes. In contrast to other approaches, we make use of relaxed geometric constraints and focus especially on image properties important to create perceptually plausible in-between images. The results are novel photo-realistic video sequences rendered in real-time allowing for interactive manipulation or to interactively explore novel view and time points.Das Modellieren und die Animation von 3D Szenen in fotorealistischer Qualität ist sehr arbeitsaufwändig, auch wenn moderne Verfahren benutzt werden. Wenn die Bilder in Echtzeit berechnet werden sollen ist diese Aufgabe um so schwieriger zu lösen. In dieser Dissertation verfolgen wir einen alternativen Ansatz der Computergrafik, um neue photorealistische Ergebnisse aus einer oder mehreren aufgenommenen Videosequenzen zu gewinnen. Es werden mehrere Methoden entwickelt die für natürlicher Phänomene und für generelle Szenen einsetzbar sind. Im Unterschied zu anderen Verfahren nutzen wir abgeschwächte geometrische Einschränkungen und berechnen eine genaue Lösung nur dort wo sie wichtig für die menschliche Wahrnehmung ist. Die Ergebnisse sind neue fotorealistische Videosequenzen, die in Echtzeit berechnet und interaktiv manipuliert, oder in denen neue Blick- und Zeitpunkte der Szenen frei erkundet werden können

    Wide-baseline object interpolation using shape prior regularization of epipolar plane images

    Get PDF
    This paper considers the synthesis of intermediate views of an object captured by two calibrated and widely spaced cameras. Based only on those two very different views, our paper proposes to reconstruct the object Epipolar Plane Image Volume [1] (EPIV), which describes the object transformation when continuously moving the viewpoint of the synthetic view in-between the two reference cameras. This problem is clearly ill-posed since the occlusions and the foreshortening effect make the reference views significantly different when the cameras are far apart. Our main contribution consists in disambiguating this ill-posed problem by constraining the interpolated views to be consistent with an object shape prior. This prior is learnt based on images captured by the two reference views, and consists in a nonlinear shape manifold representing the plausible silhouettes of the object described by Elliptic Fourier Descriptors. Experiments on both synthetic and natural images show that the proposed method preserves the topological structure of objects during the intermediate view synthesis, while dealing effectively with the self-occluded regions and with the severe foreshortening effect associated to wide-baseline camera configurations

    10411 Abstracts Collection -- Computational Video

    Get PDF
    From 10.10.2010 to 15.10.2010, the Dagstuhl Seminar 10411 ``Computational Video \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    Flexible Stereoscopic 3D Content Creation of Real World Scenes

    Get PDF
    We propose an alternative over current approaches to stereoscopic 3D video content creation based on a free-viewpoint video. Acquisition and editing is greatly simplified. Our method is suitable for arbitrary real-world scenes. From unsynchronized multi-view video footage, our approach renders high-quality stereo sequences without the need to explicitly reconstruct any scene depth or geometry. By allowing to freely edit viewpoint, slow motion, freeze-rotate shots, depth-of-field, and many more effects, the presented approach extends the possibilities in stereo 3D movie creation.In diesem Report schlagen wir eine Alternative zu gegenwärtig in der Produktion von stereoskopischen Filmen verwendeten Techniken vor. Unser Ansatz basiert auf der Verwendung eines Systems zur Blickpunktnavigation. Die Aufnahme und die Editierung der Stereodaten wird dadurch erheblich vereinfacht. Unsere Methode generiert qualitativ hochwertige Stereosequenzen ohne dabei Szenengeometrie oder Szenetiefe explizit zu rekonstruieren. Das Verfahren ermöglicht es den Blickpunkt und die Wiedergabegeschwindigkeit zu ändern und visuelle Effekte zu integrieren, wodurch neue künstlerische Möglichkeiten in der stereoskopischen Filmproduktion erschlossen werden
    corecore