4 research outputs found

    Regularization Techniques for Inverse Problem in DOT Applications

    Get PDF
    Diffuse optical tomography (DOT) is an emerging diagnostic technique which uses near-infra-red light to investigate the optical coefficients distribution in biological tissues. The surface of the tissue is illuminated by light sources, then the outgoing light is measured by detectors placed at various locations on the surface itself. In order to reconstruct the optical coefficients, a mathematical model of light propagation is employed: such model leads to the minimization of the discrepancy between the detected data and the corresponding theoretical field. Due to severe ill-conditioning, regularization techniques are required: common procedures consider mainly \u2113 1-norm (LASSO) and \u2113 2-norm (Tikhonov) regularization. In the present work we investigate two original approaches in this context: The elastic-net regularization, previously used in machine learning problems, and the Bregman procedure. Numerical experiments are performed on synthetic 2D geometries and data, to evaluate the performance of these approaches. The results show that these techniques are indeed suitable choices for practical applications, where DOT is used as a cheap, first-level and almost real-Time screening technique for breast cancer detection

    Reconstruction Method for Optical Tomography Based on the Linearized Bregman Iteration with Sparse Regularization

    No full text
    Optical molecular imaging is a promising technique and has been widely used in physiology, and pathology at cellular and molecular levels, which includes different modalities such as bioluminescence tomography, fluorescence molecular tomography and Cerenkov luminescence tomography. The inverse problem is ill-posed for the above modalities, which cause a nonunique solution. In this paper, we propose an effective reconstruction method based on the linearized Bregman iterative algorithm with sparse regularization (LBSR) for reconstruction. Considering the sparsity characteristics of the reconstructed sources, the sparsity can be regarded as a kind of a priori information and sparse regularization is incorporated, which can accurately locate the position of the source. The linearized Bregman iteration method is exploited to minimize the sparse regularization problem so as to further achieve fast and accurate reconstruction results. Experimental results in a numerical simulation and in vivo mouse demonstrate the effectiveness and potential of the proposed method
    corecore