
 

 

 

 

 

Improvements in the robustness and accuracy of 

bioluminescence tomographic reconstructions of distributed 

sources within small animals 

 

Bradley J. Beattie 

 

 

Submitted in partial fulfillment of the 
requirements for the degree of 
Doctor of Engineering Science 

in the Fu Foundation School of Engineering 
and Applied Science 

 

COLUMBIA UNIVERSITY 

2018  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2018 
Bradley J. Beattie 
All rights reserved  



 

 

ABSTRACT 

Improvements in the robustness and accuracy of bioluminescence tomographic 

reconstructions of distributed sources within small animals 

Bradley J. Beattie 

 

High quality three-dimensional bioluminescence tomographic (BLT) images, if available, 

would constitute a major advance and provide much more useful information than the 

two-dimensional bioluminescence images that are frequently used today. To-date, high 

quality BLT images have not been available, largely because of the poor quality of the 

data being input into the reconstruction process. Many significant confounds are not 

routinely corrected for and the noise in this data is unnecessarily large and poorly 

distributed. Moreover, many of the design choices affecting image quality are not well 

considered, including choices regarding the number and type of filters used when 

making multispectral measurements and choices regarding the frequency and 

uniformity of the sampling of both the range and domain of the BLT inverse problem. 

Finally, progress in BLT image quality is difficult to gauge owing to a lack of realistic 

gold-standard references that engage the full complexity and uncertainty within a small 

animal BLT imaging experiment. 

Within this dissertation, I address all of these issues. I develop a Cerenkov-based gold-

standard wherein a Positron Emission Tomography (PET) image can be used to gauge 



 

 

improvements in the accuracy of BLT reconstruction algorithms. In the process of 

creating this reference, I discover and describe corrections for several confounds that if 

left uncorrected would introduce artifacts into the BLT images. This includes corrections 

for the angle of the animal’s skin surface relative to the camera, for the height of each 

point on the skin surface relative to the focal plane, and for the variation in 

bioluminescence intensity as a function of luciferin concentration over time. Once 

applied, I go on to derive equations and algorithms that when employed are able to 

minimize the noise in the final images under the constraints of a multispectral BLT data 

acquisition. These equations and algorithms allow for an optimal choice of filters to be 

made and for the acquisition time to be optimally distributed among those filtered 

measurements. These optimizations make use of Barrett’s and Moore-Penrose 

pseudoinverse matrices which also come into play in a paradigm I describe that can be 

used to guide choices regarding sampling of the domain and range. 
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1. INTRODUCTION 

1.1. Background and motivation  

Bioluminescence tomography (BLT) reconstruction algorithms have been available to 

researchers since Wang first described their theoretical basis in 2004 [1]. Today, BLT 

reconstruction capabilities are included as standard software accompanying the 

ubiquitous IVIS bioluminescence imaging systems (Perkin Elmer). However, these 

algorithms have seen relatively little use, as evidenced in the literature by the relative 

dearth of articles published that actually make use of BLT. 

BLT has not been well embraced, I believe, because of the generally poor quality of the 

BLT reconstructed images (suffering from clear artifacts, see figure 1.1, and because 

they are often noisy and unstable) and because the accuracy of these images has not 

been validated under realistic conditions (i.e. researchers don’t trust them to be 

accurate).  

It is well recognized that the BLT image 

reconstruction problem is ill-posed, requiring 

multispectral measurements to avoid 

degeneracy and often remains ill-conditioned 

even when multispectral measurements are 

made [2-4]. Thus it is typical for even small 

amounts of noise in the measured data to be 

greatly amplified during the reconstruction 

 

Figure 1.1 Although the bioluminescent 
tumor implanted in the brain of this mouse is 
roughly spherical, the source distribution 
shown here, reconstructed by Chaudhari et 
al. clearly is not. 



2 

process, producing images with a large degree of uncertainty, high noise levels and/or 

artifacts [5]. 

Methods of improving image quality can be roughly categorized into three different 

classes:  1) improvements in the precision and accuracy of the data being input into the 

image reconstruction algorithms, for example, the uncertainty in the measured data can 

be reduced by increasing the duration of the acquisition (i.e. counting more photons) [6];  

2) the condition number of the system matrix itself can be improved through design 

choices, for example, by reducing the number of unknowns (i.e. voxels) or increasing 

the information content of the measurements ‡; and  3) images can be improved 

through the application of advanced reconstruction algorithms  [7-12].  

Most efforts aimed at improving BLT image quality to date have fallen into this third 

category and generally speaking these involve some means of applying a priori 

information to constrain the solution space [13]. These constraints can reflect the 

realities of the physical system (e.g. allowing only positive solutions, i.e. photon 

intensities ≥ 0) or they can come in the form of biases reflecting expectations regarding, 

for example, the smoothness of the image, its sparsity, or limits on the source location. 

Generally this will involve a tradeoff between noise and bias and will only be successful 

to the extent that the a priori information that is being applied, whether implicitly or 

explicitly, is itself accurate [14]. In avoidance of imposing these sorts of biases, I will 

                                            

‡ This can readily be appreciated by considering the extremes. A system in which we seek to determine 
the intensity of a single large homogeneous voxel (i.e. reducing the number of unknowns to 1), clearly 
has a low condition number. Similarly, increasing the number of unknowns to the point where they exceed 
the number of measurements, creates an ill-posed problem with multiple solutions. 
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instead focus on improving image quality through the approaches within the first two 

categories.  

These improvements will come in the form of precise corrections for confounds 

encountered in the measurement process, including corrections for the varying heights 

and surface normals of the CCD measurements, improvements in the accuracy of 

camera and filter calibrations, and corrections accounting for the luciferin concentration 

dependent fluctuations in source intensity over time. The noise reduction and 

conditioning improvements that I propose, will make use of either the Moore-Penrose 

pseudoinverse [15, 16] of the system matrix, or of Barrett’s error matrix [17, 18]. I will 

show that it is possible to use these matrices to predict the uncertainty in images 

reconstructed with least-squares and maximum-likelihood expectation maximization 

(MLEM) algorithms, respectively. I will then demonstrate how this capability can be 

leveraged in a paradigm that will, among other things, allow the optimization of the 

choice of filters to be used in a multispectral measurement, the distribution of time 

among those acquisitions and also to make improvements in the system matrix 

conditioning through rational choices regarding the spatial distribution of the unknowns 

(i.e. voxels) within the solution space. 

In the context of making these improvements, I note that it is relatively straight forward 

to demonstrate through numerical simulations or simple phantoms that image quality 

can be improved using either the approaches I am proposing or through advanced 

image reconstruction algorithms. However, there remains the potential that other 

sources of uncertainty (for example, in the precise locations of the animal’s internal 
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organs or in the light propagation properties of these tissues) will continue to dominate, 

resulting in severe artifacts that may render the reconstructed images useless for many 

purposes. Therefore, some means of gauging the accuracy of the images is needed. 

To date, attempts to validate BLT results have generally used reference standards that 

are either overly simplistic or imprecise [19, 20]. The photon transport properties used in 

digital and physical phantoms generally do not portray the complexity or uncertainty of 

the in vivo setting. Light sources embedded within animals typically involve simple point-

like geometries whereas in preclinical practice, source geometries tend to be more 

distributed, and while phantoms having distributed sources can be devised, in these 

cases the photon transport properties of the phantom are both simplistic and 

unrealistically well known. More realistic in vivo experiments using positron emission 

tomography (PET) and single photon computed tomography (SPECT) image sets as 

surrogates for the bioluminescence distribution have been tried [19, 21] but in the 

manner in which this was done, the radionuclide distribution was not identical to the 

bioluminescence distribution.  

A more accurate reference image can be created by taking advantage of the Cerenkov 

light produced by the positron emissions of some radionuclides. Through a model of the 

Cerenkov light production process that I have developed, I will show that it is possible to 

make use of a PET image to precisely predict the Cerenkov light distribution, thus 

allowing the validation of the accuracy of a given reconstructed BLT image acquired 

under realistic conditions. 
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In summary, within this dissertation, I will address both the noise and the validation 

issues that I believe are currently hampering the adoption of BLT in the preclinical 

research setting. Through an understanding of the noise properties of the image 

acquisition and reconstruction processes and by making reasonable estimates of the 

source signal intensities, I will show that it is possible to both estimate the overall 

magnitude of the noise in the reconstructed images as well as to optimize the choice of 

wavelengths and the distribution of imaging times so as to minimize this noise. 

Moreover, by devising a gold reference standard within a live animal based upon PET, 

Cerenkov radiation and an accurate means of coregistering the PET-based reference 

with the reconstructed image sets, it will be possible to validate the improvement in 

accuracy made possible by these and other manipulations. 

1.2. The BLT inverse problem 

The recovery of three-dimensional (3D) images of the bioluminescence source 

distribution can be mathematically posed as a linear inverse source problem. In this 

model of the system, a vector Y of the measurements of the light emanating from the 

skin surface are said to be produced by the product of the system matrix, W, and a 

vector of the unknown source intensities, X [22]. In this case, each element of W 

describes the probability that a photon emanating from a given source location, will be 

detected by a given detector element. As such, the columns of W describe the 

projection of each source location onto the detector as a whole. Conversely, the rows of 

W describe the relative contributions of all of the voxels within the domain of the 

animal's interior to a given detector element (generally a CCD pixel viewing a location 

on the skin surface of the animal). While some investigators make use of somewhat 
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different definition of the problem, in these cases they are generally seeking a 

somewhat different solution, for example Han et. al. [23] takes a different approach but 

they are seeking to solve for both the source distribution and optical tissue properties 

simultaneously. Most investigators in BLT source reconstruction make use of essentially 

the same linear system I’ve described above [24-28]. 

For typical samplings of the surface and interior spaces, the number of interior space 

unknowns greatly exceeds the number of surface measurement locations; therefore 

nominally the problem is severely ill-posed [1]. Because of the Lambertian-like nature of 

the surface flux, imaging from additional angles around the animal does not add 

significant additional information (except to the extent that they visualize additional skin 

surface). And owing to the high degree of scatter, particularly for deeply placed sources, 

the spatial frequency content of the surface images is low and therefore increasing the 

spatial sampling frequency of these images likewise does not lead to significant 

improvements in the posedness of the system. 

1.3. Multispectral vs. hyperspectral  

Increasing the spectral sampling of the light, however, does have the potential to add 

independent new information [22], this primarily because the attenuation differs as a 

function of the color of the light. For hemoglobin, the predominant chromophore in 

mammalian tissues, the attenuation decreases monotonically over the range between 

about 560 and 660 nm. Thus the deeper the source, the greater the red shift in the 

spectrum of the light measured at the surface. 
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With a sufficient number of spectral measurements the system, in principle, will have a 

unique solution for any given spatial sampling frequency of the interior. This can best be 

appreciated by considering a case where the light is constrained to transit along a single 

depth-dimension (or equivalently, when there is no scatter) but attenuation remains. The 

sum of the light along this single dimension measured at N different wavelengths would 

allow for the determination of the intensity of N source locations along that length, this 

because the attenuation factor profiles for the different wavelengths are linearly 

independent. Moreover, without scatter the position of the source in the dimensions 

perpendicular to the depth dimension would be readily discernible at the resolution of 

the surface measurements. When scatter is present, however, the surface profiles co-

vary greatly, especially for deep sources. In summary, attenuation in effect improves the 

posedness of the problem, but high scatter causes it to remain ill-conditioned. 

In practice, the number of spectral measurements made, for example, on an IVIS 200 

bioluminescence imager is six, each using a 20 nm band-pass filter centered at 560, 

580, 600, 620, 640 and 660 nm. For an object the size of a mouse with typical spatial 

sampling, this results in a system matrix that is roughly square. Increasing the number 

of wavelengths measured has the potential to improve the conditioning of the system 

matrix if the tissue attenuation of each new wavelength is sufficiently different from that 

of the others. In this case, each additional wavelength will add a new set of rows to the 

system matrix. This additional information has the potential to increase the 

independence of the columns within the system matrix. 
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However, the emission spectrum of any given luciferase has a limited range, so there is 

no point measuring wavelengths beyond this range. Moreover, for wavelengths within 

the near-infrared, attenuation tends to flatten out and become roughly constant in the 

tissues of a mouse. Thus, no new information is gained by subdividing this range into 

multiple measurements. Similarly, there is little point in making measurements at the 

short (i.e. blue-green) wavelength end of the spectrum owing to similar redundancies in 

attenuation but also perhaps more importantly because the attenuation is so high at 

these wavelengths that no signal is detectable, except perhaps for the shallowest of 

sources [29]. 

The only remaining way to increase the number of wavelengths measured is to divide 

the spectrum over the luciferase emission peak more finely. If measuring with a filter 

this means using a narrower band-pass and throwing away more photons, reducing the 

signal to noise ratio. Methods have been proposed to make spectral bioluminescence 

measurements without filters [30], but without this specialized hardware there exists a 

tradeoff between adding new information (which improves conditioning) and reducing 

signal to noise (which exacerbates the effect of ill-conditioning). 

Relatively little work has been done to determine the optimal number of spectral 

measurements, the range of wavelengths, or the requisite relative exposure times for 

BLT image reconstruction. Taylor et al. in 2015 [31] sought to optimize acquisition time 

and wavelength selection based on simulations comparing three sets of wavelengths 

([560,580,600], [600,620,640] and [560,580,600,620,640]) and just two bandwidths (10 

and 20 nm). Only acquisition times equally distributed among these wavelengths were 
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considered. Their conclusion was that using the three longer wavelengths was as good 

as using all five and that a 20 nm bandwidth was best. However, members of this same 

group led by Dehghani and Styles had earlier published an information-theoretic method 

of selecting wavelengths [32] which concluded that the 580 nm measurement contained 

the most information and that when imaging with two wavelengths (note - larger 

numbers of wavelengths were not considered), the combination 570 and 580 nm was 

optimal. This earlier result did not consider the noise in the measurements, so perhaps 

this explains these contradictory results, however, this explanation was not offered by 

the authors. 

Although I will not pursue it here, a similar tradeoff exists when it comes to choices 

regarding the spatial sampling frequency of the surface measurements. Increasing the 

sampling frequency has the potential to improve conditioning, but for CCD cameras 

having variable charge binning (like those used on most bioluminescence imagers), the 

loss in signal to noise is greater than from a simple dividing of the photon counts among 

additional bins [33]. 

Lacking an easy means of adding directly measured information to improve the 

conditioning (though some attempts have been made [34-36]), investigators have 

proposed various means of adding a priori information (or assumptions) in the form of 

constraints on the solution space. These constraints can come in the form of restrictions 

on the number of spatial locations at which a solution is sought or constraints on the 

source intensities, or on the relationships among the source intensities at the solution 

sites. These constraints come in a variety of forms including pre-conditioners, 
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regularization/penalty-functions and basis functions among others. Adding constraints 

limits the degree to which potential solutions can co-vary with one another. This 

improves robustness and decreases noise, effectively trading noise for bias.  

The degree to which this works depends upon the accuracy of the assumptions 

employed. Some constraints are clearly applicable to all source distributions, for 

example, limiting source intensities to R≥0. Other constraints, however, are less 

generally applicable, for example, Wang et. al. [37] proposed the use of a permissible 

source region, which essentially assumed that at least the gross location of the source 

was known a priori.  Feng et. al. [38] later proposed a means of optimally defining this 

region. A related constraint first applied in BLT by Lu et. al [39], uses a compressed 

sensing approach that makes use of an L1-norm penalty to bias the results towards 

sparse solutions. Cong et. al. [40] proposed placing a limit on the total number of 

bioluminescent sources. Numerous other variants on these proposals all in some way 

promote sparsity in their solutions [10, 27, 41-52].  

A bias towards sparseness, however, can lead to overly sparse solutions and not all 

bioluminescence source distributions are in fact sparse. A relatively shallow tumor of a 

given size will produce a surface signal similar to that of a smaller (i.e. more sparse) 

deeper tumor. As can be appreciated by a careful review of the experiments by Lu et. 

al. [39], a bias towards sparseness will tend to select the latter solution (i.e. deeper 

sources). Experiments involving metastatic tumors or animals genetically engineered to 

express luciferase in specific tissues often will have distributed (i.e. non-sparse) source 
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distributions. For these situations, other types of constraints that don’t promote or 

assume sparsity may be superior.  

Penalties placed on the gradients of the solution do not promote sparsity but they do 

limit the resolution of the images. Moreover, these penalties tend to apply this 

smoothing uniformly without regard to the depth-dependent resolution inherent to BLT.  

Constraints in the form of basis functions proposed by some investigators [53, 54] 

likewise don’t promote sparsity and have the potential to address the depth-dependent 

resolution issue but to my knowledge basis functions specifically chosen to deal with 

this depth-dependence have not yet been pursued. 

The intent of the constraint methods described thus far has been to compensate for the 

ill-conditioning of the system matrix. This contrasts with rank reductions employed with 

the goal of speeding up the image reconstruction or making it more computationally 

manageable [55-58]. In general, rank reductions for speed up will tend to exacerbate ill-

conditioning in that some information (ideally information of little importance) is being 

thrown away. An exception to this rule is encountered when the discarding of 

information simultaneously involves a reduction in the signal to noise ratio of the 

measurements sufficient to overcome the reduction in the conditioning. This can occur 

when reducing the spatial sampling frequency of the surface measurements or when 

increasing the band-pass of spectral measurements. Some investigations of the latter 

have been made by Taylor et. al. [31, 59] but without regard to the tradeoff in the 

conditioning. 
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1.4. Overall Goals and Specific Aims 

The overall goal of this dissertation is to address two major factors that are limiting the 

acceptance of BLT by the cancer research community. First, I will develop a realistic, 

complex reference standard against which the accuracy of the BLT reconstruction can 

be judged. And second, I will implement algorithms that will guide the data acquisition in 

order to increase in the robustness and accuracy of BLT reconstructions. These goals 

will be accomplished by pursuing 3 specific aims: 

Specific aim 1.  Construct a multimodality registration system consisting of a 

bed capable of maintaining a mouse in a rigid pose under isoflurane 

anesthesia while it is transported between BLT, CT, PET and MR imaging 

systems, along with mechanisms to co-register the datasets acquired from 

each. In the context of this work I will also describe corrections for various 

confounds affecting the accuracy of the measurements. 

Specific aim 2.  Develop and validate a quantitative model of Cerenkov light 

production for 18F and other beta emitting radionuclides. This model will allow 

conversion of activity concentration as measured by PET to photon flux as a 

function of wavelength, thus enabling a PET image to be used as a 

reference standard in assessing the accuracy of a luminescence tomography 

reconstruction. In the context of this work I will also describe improvements 

to the calibration of the IVIS imaging device. 

Specific aim 3.  Develop algorithms and procedures to improve the quality 

of the data used to reconstruct images. This will be achieved by optimizing 
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the data sampling in a manner which takes into consideration the strength 

and spectrum of the light source, the choice of filters and the noise in the 

camera system. 

Further background on these efforts will be provided in later sections of this document. 
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2. SPECIFIC AIM 1: MULTIMODALITY REGISTRATION 

2.1. Overview 

The overall objective of the first specific aim is to co-register the datasets acquired on 

optical (e.g. IVIS 200), PET (e.g. Siemens Focus 120), CT (e.g. microCAT) and MR 

(e.g. Bruker) scanners based on a calibrated positioning of the animal within each 

scanner’s field of view. Accurate co-registration is a pre-requisite enabling the 

comparison of BLT reconstruction results to complex reference standards against which 

the accuracy of the BLT reconstruction can be judged.  

In vivo planar optical bioluminescence imaging (BLI) of small animals provides a high 

sensitivity, low background, non-invasive means of monitoring gene and protein 

expression and other cellular events at low cost [60-65]. However, the information that 

BLI provides is severely limited in terms of its ability to determine either the 

concentration or precise location of the bioluminescence source. These limits stem from 

the manner in which light propagates through biological tissues [66]. Unlike the high 

energy X-ray and gamma-ray photons used in radiographic and nuclear imaging, 

photons at the wavelengths typical in BLI (400-800nm) do not predominantly travel in a 

straight line from their source to the detector. Instead, bioluminescent light is highly 

scattered and attenuated, processes that obscure and dissemble the location and 

intensity of the true source distribution. The region on the skin surface of the animal 

from which light is seen to emanate (in rough terms) is the surface point closest to light 

source and the magnitude of the light flux at the surface is heavily dependent upon this 

distance. 
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Bioluminescence tomography (BLT) has the potential to remove these limitations, 

providing both quantitative accuracy and information regarding the precise location and 

3D distribution of the bioluminescence sources [67]. Recovering this information from 

the surface flux measurements however is difficult with results that are sensitive to the 

chosen light propagation model and the assigned tissue parameters [68]. Although it is 

known that the organs and tissues within an animal vary considerably in their light 

attenuating and scattering properties, BLT reconstruction algorithms often assume 

homogeneous tissue having composite attenuation and scatter parameters, this largely 

because knowledge of the internal anatomy is not available. 

Precise knowledge of the shapes and locations of the major organs within an animal 

therefore has the potential to significantly improve the accuracy of BLT reconstructions. 

This knowledge could be garnered from, for example, magnetic resonance (MR) and/or 

X-ray computed tomography (CT) scans that have been spatially registered to the 

bioluminescence images. These anatomical datasets could be segmented according to 

tissue type and to each a different set of light propagation properties assigned.  

To my knowledge, there have been just two previously published attempts to apply 

information regarding organ shapes and locations to assist in modeling the propagation 

of light through the tissues of a live mouse. The first of these estimated the shapes and 

positions of the major organs of the mouse using a generic segmented digital mouse 

atlas. This model was rotated, shifted, scaled and warped so that its exterior surface 

contours matched those of a CT taken of the animal after it had been frozen with liquid 

nitrogen in the pose it was in within the BLI imager [37]. The use of a generic mouse 
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atlas to estimate the mouse anatomy does not allow for abnormal anatomy (e.g. tumors) 

within the mouse. This particular deficiency was addressed in a study by another 

investigator, which applied similar methodology but this time to an MR image of the 

same animal from which the BLI images were obtained [69]. In spite of attempts to 

maintain the animal’s pose, it was again necessary to spatially warp the 3D dataset to 

get the MRI surface contours (in this case) to match those of a surface determined 

using photogrammetric techniques within the BLI imager. Warping in this manner is 

problematic because there are no measurements to guide the internal deformations of 

the organs and thus can lead to significant errors in the light propagation estimate. 

Furthermore, the accuracy of this type of retrospective fitting procedure is data 

dependent, having potentially large errors when the contours are smooth. 

In the approach I propose here, the animal is maintained in a fixed rigid pose across 

imaging sessions and thus I avoid the need for warping transforms. By using 

specialized hardware that allows precise positioning of the animal within each of the 

scanners, it is possible to use fixed a priori determined spatial transformations to 

register the image information among all modalities. The registration of the 3D data (CT 

and MR) to the 2D optical images is accomplished using a projective transformation that 

models the relative position, focal length, and field of view of the camera within the BLI 

system. Corrections are also made for the spatial distortions introduced by the BLI 

camera lens. This model of the BLI camera system can be used to transfer information 

in both directions between the anatomical and optical imaging spaces. For example, it 

can be used to map the BLI image data onto a skin surface determined from the 3D 
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anatomical data. Likewise, the skin or other surfaces can be mapped to a 2D image 

onto which the bioluminescence light signal can be superimposed.  

Registration of the image spaces at this stage prior to BLT reconstruction allows for the 

use of information derived from the anatomical datasets regarding the location and 

spatial distribution of various organs to be used within the BLT reconstruction algorithm. 

BLT reconstructions based on this mapping are effectively pre-registered to the 

anatomical data. This registration provides important anatomical context to assist in the 

interpretation of the reconstructed luminescent distribution. Perhaps more importantly, 

given the questionable accuracy of current BLT reconstruction algorithms in vivo, by 

using sources visible on both the optical and anatomical modalities, the MR (or CT) 

determined source distributions can be used as a gold standard against which the 

results of the BLT reconstructions can be assessed and validated. 

In this manuscript, I’ll describe procedures to register MR and CT image sets of a 

mouse to a set of optical bioluminescence planar images, allowing each animal’s own 

anatomy to define the spatial distribution of the attenuation and scatter parameters. By 

placing artificial light sources of known intensity within the animal that can be readily 

detected via CT and by using transgenic animals genetically engineered to have 

specific organs (visible on MR) express luciferase, I’ll demonstrate a means by which 

the accuracy of a given BLT reconstruction can be assessed. In addition, by rotating a 

mouse while maintaining its fixed pose within the BLI imager, I am able to accurately 

determine the dependence of the measured light intensity on the angle of the surface 

normal relative to the BLI camera. 
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2.2. Scanners.  

Brief descriptions of the three imaging systems used for the studies described in this 

manuscript are as follows. The IVIS 200 is a bioluminescence and fluorescence imaging 

system utilizing a 26x26 mm back-thinned, back-illuminated CCD, cryogenically cooled 

to -105º C. It has an adjustable field of view ranging from 4 to 26 cm and includes a light 

source and filter sets for fluorescence and multispectral bioluminescence imaging. The 

Bruker Biospec 47/40 (Bruker Biospin Inc., Karlsruhe, Germany) is a 4.7 Tesla 40 cm 

horizontal bore small animal imaging spectrometer equipped for multinuclear imaging 

studies and spectroscopy. The Siemens/CTI microCAT II (Siemens Medical Solutions, 

Malvern, PA) is a small animal CT scanner with an 8.5 cm axial by 5.0 cm transaxial 

FOV. It uses a 2048×3096 element CCD array coupled to a high-resolution phosphor 

screen via a fiber-optic taper and a Tungsten anode with a 6 micron focal spot. Its 

highest reconstructed resolution is about 15 microns in each dimension. 

2.3. Overview of the registration procedure.  

The overall objective here is to base the registrations on a calibrated positioning of the 

animal within each scanner’s field of view. Between and during the imaging sessions, 

the animal is held in a rigid pose, at a fixed position relative to the animal bed. This is 

accomplished by wrapping the animal with a thin 0.01 mm polyethylene wrap while it is 

positioned atop a custom designed bed with a nose cone for the administration of 

oxygen and gaseous anesthesia. The wrap applies a light pressure over the entire body 

of the animal, gently and efficiently restricting its movement. Registration then amounts 
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to establishing a frame of reference 

relative to the bed for each scanner and 

calculating the rigid or projective 

transforms that map between them. 

In these studies, I have used several 

different bed designs and many more 

are possible. Here I’ll briefly describe 

one such bed that is particularly apt for 

use in BLT reconstruction and is the 

one used in the animal experiments 

described below. The bed is fashioned 

from a 6 x 25 cm rectangular sheet of 1 

cm thick Lucite at the center of which is 

cut a 4 x 15 cm rectangular window. 

Over this window is stretched a single 

layer of 0.01 mm polyethylene plastic, 

adhering to the Lucite with the 

assistance of a restickable glue (3M 

Glue Stick). This sheet of plastic forms the bed on top of which the animal is laid. The 

animal is then sandwiched and pressed by a second layer of polyethylene, effectively 

restraining its movement to less than 0.62 mm [70] and allowing equally clear views of 

the animal from above and below (see figure 2.1) as it is suspended above the window. 

Squeezing the animal in this manner has had no apparent adverse affect on the 

Figure 2.1 Images of a mouse restrained on the bed. 
This bed can be moved between scanners while 
maintaining the animal in a fixed rigid pose. Within 
the IVIS optical imager, it can be rotated allowing the 
cameras to see both anterior and posterior views of 
the skin surface. Flattening the mouse in this way 
makes a large skin surface area visible using just two 
views. 
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animal’s health in the dozens of studies conducted to date. At one end of the Lucite is 

attached a block of Delrin plastic into which are drilled a set of  holes sized and spaced 

so as to mate with a corresponding set of pegs present on the bed mount adapters 

designed for each of the imaging modalities. 

For the IVIS, the bed mount includes a platform referencing two of the inside edges of 

the IVIS’ light-tight box. Thus, the bed mount and the attached bed can be consistently 

placed within the IVIS, thereby allowing precisely reproducible positioning of the animal 

relative to the camera for any given camera to subject distance. The bed and its 

mounting system were designed such that the bed can be pivoted about its long axis 

(inferior to superior axis of the mouse) in precisely calibrated 15º increments, allowing 

views of the animal from different vantage points.  

The microCAT has a motorized bed positioning mechanism with optically encoded 

position readout calibrated to a precision of 0.01 mm and a repositioning accuracy of 

better than 0.1 mm. A custom adapter is used to attach the animal bed to this bed 

positioning mechanism in a reproducible manner. It can then be removed for placement 

on the other scanners using specialized bed mounts designed for each. The coordinate 

system defined by the microCAT’s bed positioning mechanism was used as the 

reference frame to which both the Bruker and IVIS images are mapped. 

Positioning of an animal within the field of view of the Bruker does not easily lend itself 

to such reproducibility because its field of view is located deep within its bore and thus 

is remote from any potential spatial reference. Moreover, references within the bore are 

generally blocked by the gradient and readout coils. Therefore, I established a set of 
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markers within the bed that are visible both on MR and CT. Using landmarks derived 

from these markers it is possible to place the MR image set into the microCAT’s frame 

of reference. Alternatively, retrospective mutual information based volume registration 

methods work well when registering these two structural image datasets to one another. 

For a detailed description of the markers, the volume and landmark point based 

registration procedures and the effectiveness of the wrapping system in maintaining the 

rigidity of the animal, see Beattie, et al. [70]. 

2.4. Registration of a 2D image to a 3D image set.  

The conventional notion of what it means to register two three-dimensional (3D) image 

sets is to rotate and shift a target image set, so that its resampled voxels are in 

locations equivalent to those of the corresponding voxels within the reference image 

set. For the purposes of this manuscript, the idea is to co-register a 3D image set with 

an image that has only two dimensions. Furthermore, this two dimensional (2D) image 

is generated from the summation of photons traveling along vectors entering the 

camera and thus its pixels do not correspond to points in 3D space (as opposed to the 

pixels of a 2D slice through 3D space). In this case, the conventional notion of 3D image 

registration is ill applied, so instead I’ll make use of a paradigm more apt for the 

registration of 2D photographic images.  

In this paradigm, two 2D images are co-registered when through a series of 

transformations applied to the target image, the position, orientation, focal length and 

distortions of the reference image’s camera system are mimicked. In this way, the 

vectors associated with each pixel in the two images are made to overlay. Thus, for 
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these purposes, I will create a virtual camera capable of taking 2D images of the 3D 

image set information content. This virtual camera is simulated to have the same focal 

length and distortions and to be in the same position and orientation relative to the 

imaged object as the real 2D camera that acquired the reference (in this case 

bioluminescence) images. This virtual camera system can be made to visualize the 3D 

image set in a variety of ways, for example, it can slice through the 3D image set at an 

arbitrary depth and angle; or it can view maximum intensity projection information; or it 

can view the reflectance of virtual light sources off surfaces that have been segmented 

from the 3D data. 

2.5. BLI camera model.  

The camera model used was that of a basic pinhole camera as described by Hartley 

and Zisserman [71]. In this model, points in 3D space represented in homogenous 

coordinates (X,Y,Z,T)T are mapped onto the 2D image plane by the 3×4 projective 

transformation matrix which is decomposed and parameterized as follows: 

 (2.1) 

Here, Rxyz and Qxyz are rotation matrices having three parameters each. Point (pu,pv) is 

the center of the acquired 2D image, (cx,cy,cz) is the camera center, and β describes the 

rotation of the bed about its axis. Vector (tx,0,tz) defines the translation which when 

combined with Qxyz moves the bed from its position in the CT or MR coordinate system 
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onto the axis of the bed-mount in the BLI coordinate system. Altogether, this system 

requires 15 parameters (f, px, py, 3 for R, cx, cy, cz, β, 3 for Q, tx and tz), three of which 

were fixed (px, py and the rotation angle β) leaving 12 parameters to be fit during the 

calibration procedure.  

Distortion within the IVIS camera images was modeled using the radial distortion model 

described by Hartley and Zisserman [71]. In this model, the distortion is assumed to be 

solely a function of the radial distance from some central point and is estimated by a 

Taylor expansion, L(r)=1+κ1r+ κ2r2+ κ3r3+…; with r2=(x-xc)2+(y-yc)2 and where (xc,yc) is 

the central point. In this implementation, I have assumed that this central point 

corresponds to the principal point and image center (px, py). An image of a grid was 

used to calculate three terms of the Taylor expansion of the radial distortion function by 

minimizing the distance between the gridline intersections and corresponding virtual 

lines formed by end points of each gridline on the image periphery (as suggested by 

Hartley and Zisserman). 

2.6. BLI camera calibration.  

In order to cross-calibrate the IVIS and microCAT coordinate systems, a phantom for 

which corresponding points can be identified on both imaging systems was devised. 

Specifically, this phantom was made out of a 3x2x10 cm plastic block into which a grid 

of 1 mm wide by 1 mm deep grooves were cut, spaced 5 mm apart. The grooves 

themselves were painted white, while the tile surfaces of the block were painted black. 

Grids were cut into all six surfaces of the block, although only three surfaces were used 

in the calibration procedures described here.  
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The corners of the tiles are readily identified on both the reconstructed CT image sets 

and in the reflectance images from the IVIS. Within the microCAT image sets, the 3D 

coordinates of twenty-eight tile corners were manually identified. These points were 

arranged in grids of 3×4 points covering the top and the two adjacent long sides of the 

phantom. Note the grids all extend to the edges of the phantom, therefore the top 

shares its left-most and right-most columns of points (4 points each) with each of the 

respective sides (thus 3×3×4-4-4=28 points altogether).  

These same tile corners were identified (again manually) in each of the 13 IVIS 

distortion corrected reflectance images in which the corners could be seen. Thus at       

-90º, 0º and +90º, a single face and therefore 12 points were in view and at each of the 

other 10 angles, two faces and therefore 20 points were in view. All combined, 236 

points within the 13 IVIS images were located. These same locations were modeled 

based on the 28 microCAT points and the known bed rotation angles. The 12 variable 

model parameters were adjusted to achieve a least squared error between the 

measured and modeled point locations using a constrained nonlinear fitting procedure 

(lsqnonlin in Matlab, The Mathworks Inc, Natick, MA). 

2.7. Registration accuracy.  

The accuracy of the registration was estimated by performing a number of repeat 

studies involving a mouse-like phantom. The phantom was mouse-like in terms of its 

size, weight and rough shape, so that the forces applied to the enclosing plastic wrap 

and bed support structure would be similar to those encountered with an actual animal. 

On the surface of this mouse phantom was glued four gaseous tritium light source 
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(GTLS) beads [mb-microtec ag, Niederwangen, Switzerland], two on each of what were 

effectively the anterior and posterior surfaces. These small (2.3×0.9 mm) cylindrical 

glass tubes emit a small, virtually constant (tritium powered fluorescence) level of light 

and are readily distinguishable on both the CT and bioluminescence images.  

Between each of the repeat studies, the bed was removed from its mount and the 

mounting platform removed from the IVIS, thus the measured accuracy takes into 

consideration the reproducibility of these bed positioning procedures. Note, errors due 

to the movement of the wrapped mouse were considered in my previously published 

work [70]. The bed repositioning was performed three times each time with images 

taken of the bed rotated at angles covering a full 360 degrees at 30 degree increments. 

Following each bioluminescence imaging session, the GTLS phantom was imaged on 

the CT each of which also involved the removal of the bed and its mount from the CT.  

On each of the three CT datasets, the centers of the four GTLS beads were manually 

identified (i.e. with a computer cursor). To these I applied the perspective and distortion 

transforms calculated in the calibration procedures generating a set of 2D locations 

within the bioluminescence image space. The corresponding locations as seen on the 

bioluminescence images were also identified manually and the absolute distance 

between corresponding transformed CT and bioluminescence point pairs determined. 

This was done for the 9 combinations of the bioluminescence and CT repositioning 

studies, each involving 12 pairings (one for each angle) of each of the two GTLS beads 

visible at a given angle.  
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The mean and standard deviations and max of 

the errors were calculated for each bead location 

at each angle, so that unusually large errors for a 

given bead (i.e. location within the image) or for a 

given angle could be identified. Failing the 

identification of any outliers, the results were 

summarized by a single mean, standard deviation 

and overall max error. 

2.8. Animals and imaging procedures.  

Numerous animal studies have been undertaken 

utilizing these registration procedures. Here I will 

describe three preparatory studies (described 

here as experiments 1, 2 and 3) whose results 

have general application and implications across 

all BLT reconstruction algorithms. In the first of these, experiment 1, I’ll measure the 

dependence of the measured surface flux on the angle of the skin surface relative to the 

camera. In experiment 2, I’ll provide direct evidence of the impact of inhomogeneous 

light propagation within the tissues of the mouse and in experiment 3, I’ll demonstrate a 

method of correcting for the time dependent changes in total light flux seen in typical 

luciferase based bioluminescence imaging studies due to substrate transport and 

consumption. Accounting for this time-course is important in multispectral and multiview 

BLT studies [22, 72-74], which involve multiple sequential images.  

Figure 2.2 Photograph (in gray-scale) of a 
transgenic mouse onto which the 
bioluminescence image (in hot-iron) has 
been superimposed. The abdomen of the 
animal has been opened surgically and 
some organs removed to provide a clear 
view of its kidneys. These images taken 
immediately post-mortem and following a 
luciferin injection, demonstrate the strong 
and equal CBR luciferase expression in 
the kidneys of this animal. 
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In experiments 1 and 2, the light source was a GTLS bead placed within a small 

catheter that was in turn placed within the rectum of a nude mouse (nu/nu). Prior to this 

placement, anesthesia was induced with 3% isoflurane and the eyes of the mouse were 

dabbed with a sterile ocular lubricant (Pharmaderm - Paralube Vet Ointment) to prevent 

drying. The mouse was then placed on the bed and secured with the plastic wrap 

following which it was imaged within the IVIS imager and on the microCAT CT scanner. 

The details of each of these imaging sessions are provided below. Continuously 

throughout and between all imaging studies the mouse was maintained under 

anesthesia using 1% isoflurane, with only momentary disconnects to allow transport 

between imaging systems. 

In experiment 3, I made use of a transgenic mouse that was genetically engineered 

such that both of its kidneys uniformly expressed click-beetle red luciferase (see figure 

2.2). It is worth noting that (like a Cerenkov/PET reference standard) animals of this 

type can also be an effective means of testing the accuracy of BLT reconstruction 

algorithms for distributed (i.e. non-point-like) sources in-vivo, because the source 

distribution is more predictable across animals (compared to implanted, luciferase 

expressing tumors, for example) and because the organs expressing the luciferase are 

readily seen on MR. The use of this animal for the purposes here, however, is to 

demonstrate a means to correct for the time-course of bioluminescence light output 

following the luciferin injection.  

Unlike the nude mice used in the first two experiments, the transgenic mouse has dark 

brown fur that can interfere with the measurement of the bioluminescence signal. To 
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avoid this interference, the abdomen of the animal was depilated prior to imaging. This 

animal received a bioluminescence image set followed by scans on the microCAT CT 

and Bruker MR. Details of the imaging protocols used on this animal are described 

below. 

2.9. Imaging protocols.   

Imaging on the IVIS varied somewhat with the experiment. For the angular dependence 

measurement, both reflectance and bioluminescence mode images were acquired for 

each angular position of the bed as it was rotated in 15 degree increments between ± 

90 degrees. All bioluminescence images were acquired in the “open” filter setting (i.e. 

with no filter present). 

In experiment 2, demonstrating the affect of tissue heterogeneity, the animal was 

imaged from above in a prone position. Several attempts were made with slight 

adjustments to the position of the GTLS bead until the bioluminescence image achieved 

a bimodal surface flux suggesting preferential light pathways to either side of the spine. 

Upon achieving this position, the animal was imaged using the full set of 20 nm 

bandpass filters available on the IVIS 200 covering the range from 560 to 660 nm. 

For experiment 3, imagesets of the mouse were taken from both the anterior and 

posterior views. Each imageset consisted of a reflectance image followed by the full set 

of 20 nm bandpass filter images. Bracketing and interposed between each of these, a 

short (10 sec) “open” filter setting image was acquired. This entire imaging sequence 

commenced two minutes following an intraperitoneal injection of luciferin (150 mg/kg in 

100 µL). 
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For the MicroCAT imaging, three hundred and sixty transmission images were acquired 

at 1º increments encircling the mouse. These images were reconstructed with a cone-

beam 3D FBP algorithm (COBRA software from the Exxim Computing Corp. 

Pleasanton, CA) into a 192×192×384 matrix over a 4.38×4.38×8.76 cm FOV (i.e. 

0.228×0.228×0.228 mm voxels). 

Images acquired on the Bruker MR were made using a 7 cm Bruker birdcage coil tuned 

to 200.1 MHz and the 10 mT/m gradient coil system. 3D images were obtained with a 

fast spin-echo sequence with a repetition interval (TR)= 1.2s, effective echo time (TE)= 

40ms, image matrix of 128×96×256, 8 repetitions per phase encoding step and a total 

imaging time of 61 minutes. The final voxel dimensions for these images are 

0.341×0.333×0.333 mm. 

 

2.10. Registration accuracy.  

The results of the test of the BLI to CT registration accuracy showed no bias in the 

error, neither for the angle of rotation nor for the bead location (see Table 2.1).  The 

mean error across all beads was 0.36 mm with a standard deviation of 0.23 mm. The 

maximum error encountered over all measurements was 1.08 mm. 
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Table 2.1.  The mean error in the BLI to CT registration for individual beads as the bed 
is rotated. 

angle 
(degrees) 

-165 -135 -105 -75 -45 -15 15 45 75 105 135 165 

bead 1a or 
1b avg 
(mm) 

0.56 0.17 0.35 0.40 0.31 0.52 0.25 0.29 0.25 0.24 0.12 0.24 

bead 2a or 
2b avg 
(mm) 

0.44 0.33 0.53 0.44 0.55 0.31 0.39 0.40 0.36 0.38 0.48 0.42 

 

2.11. Experiments 

Experiment 1 - Angular dependence.  By the time a given photon reaches the inner 

surface of an animal’s skin, it has usually undergone numerous scattering events such 

that virtually all information regarding the direction of its source has been lost. 

Moreover, for this reason, photons impinge on the inner surface nearly isotropically. 

However, because of the change in refractive index when moving from skin to air, the 

exit angle is not isotropic and thus the apparent intensity of the light emanating from a 

given surface point is dependent upon the angle between the skin surface normal and 

the camera line of sight. For BLT this dependence needs to be accounted for or 

corrected when determining the surface flux at each surface point. 
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Figure 2.3 shows the measurements 

made in experiment 1 of relative light 

intensity as a function of the exit angle 

fitted with a curve modeled based upon 

the Snell and Fresnel equations and 

assuming a refractive index of 1.4 (the 

value measured in mammalian tissues 

by Bolin, et al. [75]). The derivation of 

this model will be described in section 

2.15 of this manuscript. In measuring 

the angular dependence, I chose a set 

of surface points based upon a 

threshold applied to the bioluminescence image taken at bead-angle zero. The surface 

normal for these points was determined from the CT image and the angle relative to the 

camera was garnered from the rotations to be applied to the CT data in registering the 

bioluminescence and CT data sets. Given the somewhat flattened body contour of the 

mouse (see figure 2.4a) the selected surface point normal vectors were all within 5 

degrees of one another and therefore considered to correspond to a single mean angle 

(note this mean angle was not zero for the horizontal bed position since the surface of 

the mouse was at a slight angle relative to the bed). This same set of surface points 

were followed as the bed was rotated to different positions between ±75º in 15º 

increments. The intensities of the bioluminescence light at these surface points were 

Figure 2.3 Measurements (x’s) of the relative light 
intensity as the angle between the surface normal 
and the camera line-of-sight varies between 
(approximately) ±75º. The solid line shows the light 
fall-off predicted by the proposed model assuming a 
refractive index (r.i.) for biological tissues equal to 1.4 
and a mouse imaged in air (r.i.=1.0). 
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averaged at each angle and associated 

with the bed angle plus the mouse-to-

bed angular offset. The intensities were 

then normalized to have unit maximum 

amplitude. 

Experiment 2 – tissue heterogeneity.  

Figure 2.4 shows a set of images taken 

in experiment 2. Based on the skin 

surface contour as seen on the CT (in 

figure 2.4a) one would not expect the 

bimodal surface flux seen in the 

bioluminescence images (figure 2.4b) if 

the underlying tissue was 

homogeneous in its light propagation properties. The CT image shows that the GTLS 

bead is positioned directly beneath the spine in this animal suggesting that increased 

attenuation through the bone may explain the bimodal distribution. 

Experiment 3 – time course correction.  As described in the Materials and Methods 

section, the in vivo multispectral bioluminescence imaging protocol includes “open” (i.e. 

unfiltered) acquisitions bracketing each of the images acquired with one of the 20 nm 

bandpass filters. The intent of these repeat measures is to monitor the time-course of 

luciferase enzyme-substrate activity (and perhaps other physiological changes) leading 

to changes in the measured surface flux. Note that here I am assuming there are no 

Figure 2.4 Transaxial and sagittal cross sections 
through CT image of a mouse showing location of the 
GTLS bead relative to the spin (a). Images in (b) show 
measured luminescence signal in color 
surperimposed on the reflectance image of the mouse 
(left), a surface rendering taken from the CT (middle) 
and a volume rendering of the bone also taken from 
the CT (right). 
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changes in the spatial distribution of the enzyme or substrate nor changes affecting the 

spectrum of the light emissions (e.g. temperature induced red-shift [76]).  

The procedure to correct for the 

enzyme-activity time-course is as 

follows. To each of the “open” images 

the same region of interest enveloping 

the bulk of the light emanating from the 

mouse was applied and the time of 

acquisition and total light flux (in 

photons per second per steradian) was 

recorded. The unfiltered light flux at the 

time of the filtered image acquisition 

was estimated by linear interpolation of the bracketing unfiltered light flux 

measurements. The time-course correction factor for each filtered image taken from a 

given viewpoint (anterior or posterior) is simply the ratio of the interpolated flux relative 

to flux of the first open image from that viewpoint. The change in the time-course 

between views was determined by extrapolating the correction factors from the first view 

to the time of the first open acquisition of the second view. All of the second viewpoint 

correction factors are then scaled by this extrapolated factor. A plot of the resulting 

correction factors is shown in figure 2.5. 

Figure 2.5 Plot of correction factors as a function of 
time. The two line segments, left and right, were 
determined from the “open” measurements from the 
posterior and anterior views, respectively. The 
individual anterior factors were all scaled by the same 
constant so as to produce the overall smooth time-
course shown. 
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2.12. Light Fall-off Correction.  

The model I propose for describing the fall-off in 

light intensity as the angle between the camera 

line-of-sight and the surface normal increases is 

derived from Snell’s law and the Fresnel equations 

and assumes that photons just prior to exiting the 

animal are isotropic. Thus, the incident angle θ1 

(see figure 2.6) is uniformly distributed over ±90º. When these photons are moving from 

the animal (with refractive index n1) into air (with refractive index n2 < n1), if they are 

incident at an angle θ1 greater than ( )121 nnsincrit
−=θ  then they are internally reflected. 

Whereas, if they are incident at an angle less than θcrit their exit angles θ2 are distributed 

over the range ±90º. This distribution however is not uniform. Instead, for each 

arbitrarily small solid angle dθ1, there is a corresponding (larger) solid angle dθ2 into 

which the photons are distributed. The ratio of these solid angles dθ1/dθ2 determines the 

reduction in light flux and can easily be calculated by solving Snell’s law of refraction 

formula (equation 1) for θ1 and taking its derivative with respect to θ2 (result shown in 

equation 2.2).  

 ( ) ( )21 21 θθ sinnsinn ⋅=⋅  (2.2) 
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Figure 2.6  Diagram defining 
parameters θ1, θ2, n1 and n2 
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This relationship is modified 

slightly by the partial reflections 

occurring for incident angles less 

than θcrit described by the Fresnel 

equations. The Fresnel equation 

describing the fraction of light 

transmitted as a function of the 

incident (or exit) angle is shown in 

equation 2.3. The complete 

description of the angular 

distribution of the exiting photons for isotropic incident photons is the product of 

equations 2.3 and 2.4, Tdθ1/dθ2. 
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This model was tested on a phantom consisting of a large Delrin plastic block 10×10×4 

cm. In the center of one of the 10×10 cm sides was drilled a 2 cm deep cylindrical hole 

with a diameter of 0.5 cm. This in turn was filled by a snugly fitting cylindrical peg, also 

made of Delrin. Into the tip of the peg, a small hole was excavated, just large enough to 

accommodate a GTLS bead. The GTLS bead, so placed, was positioned in the center 

of the large Delrin block. The block, in turn, was placed on the bed mount within the 

IVIS imager and luminescent images were acquired with the block rotated at a series of 

angles between ±75º (at 15º increments). Delrin is known to have a refractive index of 

Figure 2.7 A plot similar to that of figure 2.3 except here 
describing the light emanating from a point source placed 2 
cm deep within a Delrin plastic block. The solid line in this 
case is the modeled function using the known refractive 
index for Delrin. 
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about 1.48 [77] and this value worked well when fitting the model to the averaged 

surface flux (see figure 2.7). 

2.13. Discussion 

The majority of bioluminescence tomography reconstruction algorithms, when tested in 

vivo, lack a gold-standard reference describing the true light-source distribution. This 

lack of in vivo testing and validation has hampered both the continued refinement and 

the acceptance of BLT for routine use. The registration procedures I propose enable the 

development of a gold-standard reference to which the reconstructed luminescence 

source distribution can be compared.  

Although it as yet an open question, further improvements in the accuracy and 

robustness of BLT reconstructions may require the incorporation of additional a priori 

information. In particular, the spatial distributions of tissues having differing light 

propagation properties may have significant impact. CT/MR to BLI registration allows a 

mechanism via which this type of information may be exploited in BLT. By using the 

animal’s own MR or CT, even abnormal anatomies may be handled. 

Lastly, I have demonstrated corrections for two confounds that play a role in many BLT 

acquisitions, the changes in bioluminescence flux as a function of time and as a function 

of angle between the surface normal and camera line-of-site. In correcting for this latter 

confound I propose a model that relates the distribution of light propagation vectors for 

photons impinging on the inner surface of the skin to those exiting the skin surface. This 

model was tested using careful measurements made possible by the described 

registration procedures. 
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It is my hope and expectation that taken together these pieces form a platform upon 

which bioluminescence tomography reconstruction algorithms may be improved and 

refined and ultimately validated, paving the way for routine preclinical use. 
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3. SPECIFIC AIM 2: CERENKOV QUANTITATION 

3.1. Overview 

The reference standard images I propose to use are PET images that have been 

reconstructed within the same spatial frame of reference within which a luminescence 

dataset is acquired [78]. The luminescence data will come in the form of Cerenkov 

radiation, which will act as a surrogate for bioluminescence. Cerenkov radiation is 

produced by and is virtually 100% correlated with the locations of the positrons whose 

distribution is described by the PET image. PET images describe positron concentration 

and the intensity of the Cerenkov light produced by the positrons can be calculated 

directly from this information based on first principles [79]. Thus, with the appropriate 

scaling, PET images can provide ground truth against which a BLT algorithm's 

reconstruction can be tested. 

Cerenkov radiation (CR), first described by Pavel Cerenkov nearly a century ago, is 

produced when a charged particle travels through a dielectric medium at a speed 

greater than the phase velocity of light in that medium (i.e. greater than the speed of 

light in a vacuum divided by the refractive index of the medium) [80, 81]. These 

conditions produce a photonic shockwave somewhat similar to the sonic shockwave 

(i.e. sonic boom) associated with supersonic bodies in air. Cerenkov photons have a 

broad frequency spectrum with intensity inversely proportional to the square of the 

photon's wavelength within and extending somewhat beyond the visible range. 
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Recent renewed interest in CR began following the demonstration of detectable 

amounts of light emanating from a radionuclide bearing live mouse [82, 83], suggesting 

the possibility of exploiting this phenomenon for medical research and possibly clinical 

purposes. In this context, a number of radionuclides have been tested for CR production 

(e.g. F-18, N-13, Cu-64, Zr-89, I-124, Lu-177, Y-90, I-131) [84, 85] including some 

radionuclides, In-111 and Ac-225, that one might not, upon initial consideration, expect 

to produce CR owing to their lack of a sufficiently high velocity charged particle 

emission. In-111 decays via electron capture and emits only γ-rays with significant 

abundance. Ac-225 is a virtually pure α emitter, but α's in water become superluminal 

only at energies well beyond those of Ac-225's emissions. Never-the-less, experiments 

designed to measure CR conducted by multiple groups have detected light emanating 

from both In-111 and Ac-225 [84, 85]. However, to-date, clear evidence demonstrating 

that the Cerenkov mechanism is the source of this light has been lacking. 

Of the potential biomedical uses of CR, the most commonly cited application is as a low 

cost, high throughput alternative to PET imaging [82, 83, 86] referred to as Cerenkov 

Luminescence Imaging (CLI). Other proposed applications include: an alternative to 

bremsstrahlung for imaging pure β- emitting radionuclides [82, 86]; a higher resolution 

autoradiography method for high energy β's [86]; intra-operative or endoscopic imaging 

of targeted structures in humans [85]; an excitation source for various fluorophores [87-

89]; and most recently a renewed interest in using CR as a light source for 

photodynamic therapy [90, 91]. In each of these applications there are also 

disadvantages to using a Cerenkov derived signal (e.g. limited half-life, ionizing 

radiation, poor tissue penetration). As such, it is yet unclear whether any of these new 
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applications of Cerenkov imaging will prove to be clearly superior to extant techniques 

and enjoy widespread use.  

However, one concrete and clearly advantageous proposed use of CR is as a means of 

validating the results of luminescence tomography reconstruction algorithms [82]. Thus 

far, manuscripts have been published using both SPECT [20] and PET [92, 93] imaging 

as validated reference standards. In these papers, the comparison of the reconstructed 

luminescence to the nuclear imaging reference was limited to a simple difference 

between centroid locations. One of these papers [93] looked at the linearity between the 

two signal intensities but did not establish a relationship in absolute terms that spanned 

the in vitro and in vivo conditions. 

The work to be presented here seeks to establish such a cross-calibration between the 

signals derived from CR and nuclear tomographic imaging modalities, thus allowing 

nuclear imaging to better serve as a means of validating luminescence tomography 

reconstruction algorithms. Since PET and (in some cases) SPECT are already 

quantitative in terms of absolute radioactivity, establishing a cross-calibration amounts 

to determining the quantity of CR produced per unit radioactivity under imaging 

conditions and then measuring the light in absolute terms.  

I accomplish this task using a set of computer models of CR production and apply the 

models to predict and tabulate the efficiency of CR production for a number of medical 

radionuclides under a variety of conditions affecting said efficiency. I also look at the 

intrinsic resolution of the Cerenkov light produced by these radionuclides. Experiments 

involving a subset of these radionuclides will be used to validate the model results. And 
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as an aside, I evaluate the CR production capacity of the two radionuclides for which 

this capability has been questioned, namely In-111 and Ac-225. 

Finally, I propose here a simple system that uses CR as a low intensity light source able 

to calibrate luminescence imaging systems and thus avoids the expense of specially 

calibrated sources, integrating spheres and the like. I’ll present data suggesting that this 

approach is more accurate than calibrations currently performed by manufacturers, 

including with regard to the calibration of spectral filters. 

3.2. Modeling.  

Overview.  The radionuclides to be considered here decay primarily by α, β+, β- and γ 

emissions. Neutrinos, conversion electrons, Auger electrons, characteristic x-rays, 

bremsstrahlung radiation, annihilation photons, δ-rays, e+/e- pairs and secondary 

electrons are also produced.  

The α particles emitted by radionuclides generally are not of sufficient energy to be 

superluminal when transiting through water, biological tissues or other non-periodic 

mediums of moderate refractive indices, and should not produce CR. Likewise, the 

secondary electrons produced by the transiting α's are not of sufficient velocity because 

each electron receives only a small fraction, a maximum of ( )2
5.48E-4 4 /mM M m= + , of 

the α's energy (where m  and M  are the rest masses of the electron and α, 

respectively). Neutrinos, Auger electrons, characteristic x-rays and e+/e- pairs (i.e. pair 

production), are all either not produced at significant quantities, are not of sufficient 

energy or do not interact with matter with sufficient efficiency to produce Cerenkov 
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radiation. Bremsstrahlung radiation can extend into the visible spectrum and thus 

conceivably could be confused with Cerenkov radiation, but the amount within the 

visible range is expected to be negligibly small and its wavelength distribution would be 

dissimilar to the characteristic one over wavelength squared Cerenkov distribution and 

thus can be easily distinguished. This leaves β+, β-, δ-rays, conversion electrons and 

secondary electrons produced by both γ-rays and annihilation photons as the potential 

dominant sources of Cerenkov radiation. These are all, in essence, β particles (i.e. 

electrons or positrons) of varying origin. Over the range of β energies of interest here, 

there are negligible differences in the Cerenkov producing properties of β+ and β- 

particles and no difference what-so-ever among β-, δ-rays, conversion electrons and 

secondary electrons [94]. 

Table 3.1 lists for each of the radionuclides to be modeled, the total abundance of each 

of the types of emissions at least some of which have sufficient energy to produce CR in 

water. Along with the half life and total abundance[95], I list the abundance of the 

portion of those emissions that are above the energy threshold of CR production in 

water (refractive index 1.33, threshold 263 keV [96]) and in mammalian tissue 

(refractive index of 1.4, threshold 219 keV [75]); these based on my integrations of the β 

energy spectra [95]. For example, while the overall β+ abundance of F-18 is 97% the β+ 

with energy ≥ 263 keV is only 43% and ≥ 219 keV is 54%. Note that since annihilations 

photons have a kinetic energy of 511 keV, they are above the threshold for both 

refractive indices (1.33 and 1.4) and their abundance is twice that of the β+ total 

abundance. 
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Table 3.1.  Total abundance and abundance of emissions having energy greater 
than CR thresholds in water and in biological tissues. 

radio-
nuclide 

half lifea β+ (%) β- (%) 
conversion electrons 

(%)
γ-rays (%) 

  total 1.33 1.4 total 1.33 1.4 total 1.33 1.4 total 1.33 1.4
C-11 20.4 m 100 69 77   
N-13 9.97 m 100 79 84   
O-15 122 s 100 90 93   
F-18 109 m 97 43 54   
Cu-64 12.7 h 18 9 11 39 11 15 < 0.1 <0.1  
Ga-67 3.26 d   34 0 0 88 22 22
Ga-68 67.7 m 89 83 85 < 0.1 4 4 4
Zr-89 3.27 d 23 17 19 < 0.1 101 101 101
Y-90 2.67 d   100 89 91 < 0.1 <0.1  
In-111 2.80 d   16 0 1 185 0 94
In-114m 49.5 d   81 0 0 22 6 6
In-114 71.9 s   100 85 89 < 0.1 <0.1  
I-124 4.18 d 24 22 23 < 0.1 99 99 99
I-131 8.03 d   100 36 35 6 2 2 101 98 98
Ac-225 10.0 d   67 0 0 7 0 1

The radionuclides of interest for production of CR are listed in this table, and are modeled in this work. 
Characteristics of each radionuclide are given including half life, total abundance and abundance of 
emissions greater than the threshold for CR production. The CR abundance efficiencies are given for 1) 
water (refractive index 1.33, threshold 263 keV) and 2) mammalian tissues (refractive index 1.4, threshold 
219 keV). a s - seconds, m - minutes, d – days. 

Notable in this table is the lack of CR producing emissions for Ac-225 which has been 

reported to be a strong light producer [85]. The experiments with Ac-225 replicated this 

result so I thought to consider Ac-225's daughters which I expected to be in transient 

equilibrium with Ac-225 in these samples. Table 3.2 shows the CR capable abundances 

for Ac-225's daughter radionuclides along with their relative activities at transient 

equilibrium. These numbers suggest that Bi-213 and Pb-209 are the likely sources of 

the bulk of the detected CR. 
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Table 3.2. Ac-225 daughters abundance of emissions and those having energy 
greater than the CR threshold. 

Ac-225 
daughters 

Half lifea 

% of Ac-225 
activity at 
transient 

equilibrium 

β+ (%) β- (%) 
conversion 

electrons (%) 
γ-rays (%) 

    total 1.33 1.4 total 1.33 1.4 total 1.33 1.4
Fr-221 4.9 m 100   6 0 0 12 0 0
At-217 32.3 ms 100   < 0.1 < 0.1
Bi-213 45.59 m 100  98 65 71 5 5 5 27 27 27
Tl-209 2.20 m 2.2  100 81 85 29 4 4 282 198 198
Po-213 4.2 μs 97.8   < 0.1 < 0.1
Pb-209 3.253 h 100.01  100 28 35
Bi-209 stable    

The alpha-emitting radionuclide Ac-225 has been identified as a strong producer of CR light. Assuming 
their stable equilibrium with Ac-225, I’ve listed the relative activities of the daughters. In this table I also 
list the characteristics of the daughter radionuclides, their total abundance and their capabilities to 
produce CR in water and tissue. a s - seconds, m - minutes, d - days 

Note that In-114m (see Table 3.1) is a common long-lived impurity in samples of In-111. 

In-114m, in turn, decays to In-114. Because of In-114's short-half life its activity level in 

samples is in transient equilibrium with the In-114m within a few minutes and thus the 

two will have roughly equal activity levels. Samples of In-111 that are to be used 

clinically can have In-114m activity levels up to 0.15% [97] (and therefore an equal 

fraction of In-114) and this fraction will increase over time given In-111's faster rate of 

decay. In-114 has significant CR production potential from its highly abundant high 

energy β- emission (see Table 3.1). 

Modeling Cerenkov production per β of a given initial energy.  The production of 

CR from a β particle is described by the Frank-Tamm formula [98] here integrated over 

a range of wavelengths. 

 
2 2

1 2

1 1 1
2 1

N

x n
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δ λ λ ϕ
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This formula gives the number of Cerenkov photons generated per unit path length 

having wavelengths within the interval from 
1λ  to 

2λ  expressed in the desired length 

unit. Here n  is the mean refractive index and ϕ  is the velocity of the β-particle divided 

by the speed of light in a vacuum and α  is the fine structure constant.  

The β-particle velocity, ν , can be determined from its energy, E , as follows:.  
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0

2

0

1
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c
E E

ν = −
+

 
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where c  is the speed of light in a vacuum and 
0E  is the rest mass of the β-particle 

expressed in the same units as E . 

For a given initial energy, I used Euler's method to integrate equation (1) over the full 

path length of the β-particle as it decreased in energy while transiting through a medium 

presumed to be of infinite spatial extent. During this integration, the rate of energy loss 

was interpolated from the ESTAR Stopping Power and Range Tables provided by the 

National Institute of Standards and Technology [99]. The table used in the model had 

250 logarithmically spaced points between 1 keV and 10 MeV. The energy step size for 

the Euler integration was 0.1 percent of the instantaneous β energy or 0.1 keV, 

whichever was larger. The total path lengths calculated, implicit in this process, were 

found to have a maximum error of 0.3% relative to the CSDA (continuous slowing down 

approximation) within the range of sampled energies. It should be noted that the full 
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path length was calculated for testing purposes only. During routine use the integration 

for each β is terminated when its energy drops below the CR threshold. 

Modeling Cerenkov production by β's and conversion electrons.  In order to 

determine the average number of Cerenkov photons produced by β particles (or 

equivalently by conversion electrons) per disintegration for a given radionuclide, I 

weighted the above described integral by the relative probability of a β of a given energy 

being emitted by that radionuclide and then summed across all possible energies (i.e. a 

third integration of the original Frank-Tamm formula). The probability for each β energy 

was derived from the β spectra available from the Lund/LBNL Nuclear Data Search 

website [95]. The spectra were sampled at 1 keV intervals. 

Modeling Cerenkov point spread function.  In addition to the above described 

numerical models relating absolute number of Cerenkov photons to initial β energy, I 

developed a Monte-Carlo model to determine the Cerenkov point spread function (PSF) 

for a given radionuclide. In order to incorporate this spatial information, this model 

calculates the tortured path that each β particle makes as it generates Cerenkov 

photons and scatters off nuclei and electrons within the medium.  

My model of this transport process closely followed the work of Levin and Hoffman who 

modeled positron transport for the purpose of determining the positron-electron 

annihilation PSF for various radionuclides [100, 101]. In brief, I too made use of Bethe's 

calculations of Moliere's theory of multiple elastic scattering from the nucleus [102] and 

Ritson's model of the δ-ray energy distribution [103]. For details, please see the original 

manuscripts. My model differed from Levin's in that instead of using the Bethe-Bloch 
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formula to determine the collisional energy loss rate, I used the aforementioned ESTAR 

table. And, instead of using the Wu and Moskowski and Daniel models of β energy 

spectra, I again used the aforementioned tables from Lund/LBNL. As a check on the 

accuracy of the model, I calculated the positron PSF for some of the same radionuclides 

described by Levin and found the results to be comparable. 

At each step of the β transport, I calculated the number of Cerenkov photons produced 

based on the length of the step and on the energy of the β at the start of the step 

(applying equation 1 as before). The location of the Cerenkov photons was distributed 

linearly along the path of the β for that step. Any δ-rays of sufficient energy were set to 

generate Cerenkov photons in the same manner as the β particles. 

Modeling Cerenkov from secondary electrons excited by γ-rays and annihilation 

photons.  Secondary electrons produce CR in a manner identical to that of β- particles. 

However, the location of the Cerenkov production is generally far away from the 

originating radionuclide. This is because the γ-rays or annihilation photons will often 

travel a long distance before undergoing the photoelectric or Compton interaction that 

ultimately gives rise to a secondary electron. As such, the total amount of CR produced 

by secondary electrons will be geometry dependent. Larger volumes will tend to have a 

larger fraction of total Cerenkov signal produced by secondary electrons but this is 

contingent on annihilation photons and/or γ-rays of sufficient energy to produce 

secondary electrons capable of producing Cerenkov photons within the given medium. 

To investigate and quantify this effect, I created two Monte Carlo model variants 

describing the transport of γ-ray and annihilation photons. The first consisted of a 
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radionuclide point source within an infinite medium. This model was used to determine 

the PSF of CR due to secondary electrons. The second variant consisted of 

radionuclide evenly distributed within a cuboid-shaped medium. This model was 

specifically intended to mimic the conditions of the phantom studies (described below) 

that were designed to calibrate the luminescence scanner. 

In both of these models, the initial directions of the simulated γ-rays emanating from the 

radionuclide source were randomly sampled so as to be uniformly distributed within the 

4π solid angle about the source. Annihilation photon directions were similarly distributed 

but were created in pairs with members traveling in opposite directions. The distance 

traveled by each photon before interacting with the medium was randomly sampled 

from an exponential distribution, the log-slope of which was interpolated from a table of 

photon cross-sections, XCOM, available from the National Institute of Standards and 

Technology website [104]. The table made use of the standard grid available on the 

website but truncated to have energies between 1 keV and 10 MeV.  

The total cross-section was used to determine the distance the photon traveled before 

interacting but the type of interaction, photoelectric, Compton or other, was randomly 

sampled reflecting the relative probabilities of each. When simulating a photoelectric 

interaction, all of the photon's energy was transferred to the secondary electron and the 

photon was terminated. For a Compton interaction, the Klein-Nishina formula was used 

to determine the scattering angle into which the photon was propagated, as well as the 

associated amount of energy transferred to the secondary electron. The CR associated 

with the secondary electron, if any, was determined from a lookup table calculated by 
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the Cerenkov model based on the electron's initial energy (i.e. the path integral of 

equation 1). For the PSF model, all Cerenkov radiation was attributed to the site of the 

photoelectric or Compton interaction. All other types of interaction were assumed not to 

produce CR (e.g. pair-production was ignored). 

3.3. Experimental Cerenkov measurements.  

In order to test these models, five types of experiments were conducted (see Table 3.3). 

In one type of experiment, I acquired a luminescence spectrum. In a second type, I 

varied the refractive index of the medium (water) by adding 25% by weight of sodium 

chloride. In the third type, the volume of the medium was varied while maintaining a 

constant amount of radionuclide, thus achieving a range of surface to volume ratios and 

radionuclide concentrations. All measurements for these first three types of experiment 

were made using one of three simple acrylic boxes having 2 mm thick walls; one had a 

3.4x3.4x3.4 cm interior, another was 5.4x5.4x5.4 cm and the third was 9.6x9.6x9.6 cm. 

Henceforth these will be referred to as the 3.4, 5.4 and 9.6 cm boxes respectively. All 

three were painted on all surfaces with flat black spray paint (Krylon Fusion). Tests on 

the boxes without radionuclide present demonstrated that they did not phosphoresce 

significantly following exposure to visible light. 
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Table 3.3.  Radionuclides tested and the types of experiments conducted on each. 

 Experiment Conducted (and Number)

Radionuclide 
Spectrum 
only (1) 

Refractive 
index (2) 

Volume 
change (3) 

β PSF (4) 
Secondary 

electron PSF 
(5)

F-18 X X X X X
Ga-68 X X X
Zr-89 X X X
In-111 X X 
I-131 X X 
Ac-225 X  

Experiments were used to validate the computation model presented. This table lists the experiment 
types, as well as the radionuclides employed to evaluate them. 

 

The remaining two types of experiment were designed to measure the beta and 

secondary electron PSF's. The fourth experiment type, measuring the beta PSF, used a 

5x5x3 cm solid acrylic block into which was cut a 0.11x3 cm by 1 cm deep slot on the 

5x5 cm surface. The slot was filled with a mixture of radionuclide, India ink and 

surfactant. The India ink significantly reduced the CR emanating from the slot itself, 

leaving predominantly CR produced in the acrylic, which was taken to have a refractive 

index of 1.491 [105]. The surfactant allowed the slot to be filled without significant air 

pockets.  

The fifth experiment type, which measured the secondary electron PSF, made use of a 

10x10x5 cm solid acrylic block onto which a small drop of radionuclide was placed in 

the center of its 10x10 cm face. 

All CR measurements were made on Caliper Life Science's IVIS 200 luminescence 

imager with the phantom placed in the center of a 13x13 cm field-of-view. The camera 

focus was set at 1.5 cm above the platform (i.e. the surface on which the box rested). 

The IVIS 200 uses a fixed focus lens and adjusts the focal point by adjusting the 
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platform height relative to the camera. The 1.5 cm setting is the default focus point and I 

used this setting regardless of the height of fluid contained within the box. For the 

acrylic block phantom measurements, the camera was focused on the proximal surface 

of the block. All luminescence images were taken with an f-stop of f1 and a binning of 4 

(i.e. 2x2 groups of pixels summed). Cosmic ray and background corrections were 

turned on. Total radioactivity of the radionuclide samples were measured with a 

Capintec Model CRC-127R dose calibrator (Capintec, Inc. Ramsey, NJ). 

The IVIS 200 uses a cooled, back-thinned CCD (charge coupled device) detector. The 

signal measured from each pixel of this detector is roughly proportional to the number of 

photons impinging on the element during an image acquisition frame. The lens that 

focuses the light on the CCD includes an aperture which defines the solid angle of 

photon acceptance at a given focus point distance. The focus distance, along with the 

focal length of the lens, determines the surface area seen by each pixel. Thus the 

images acquired by the IVIS can be calibrated to photons per second per cm2 per 

steradian. For isotropic sources, the pixel values can be summed and multiplied by 4π 

steradians and by the area covered by the pixels in cm2 to arrive at the total photon flux 

in photons per second. 

Although the direction in which Cerenkov photons propagate is dependent upon the 

direction of travel and energy of the charged particle, because the directions of the 

charged particles in these Cerenkov efficiency experiments are isotropic, so too on 

average are the Cerenkov photons. Note this is not precisely true of the secondary 

electrons or their associated Cerenkov photons in the Cerenkov efficiency experiments. 



52 

The initial direction of travel of secondary electrons relative to the parent photon 

direction is governed by the Klein-Nishina equation and is not strictly isotropic. 

However, as these electrons scatter producing CR along their path much of the 

directional bias is lost to the point where an isotropic assumption is acceptable. A 

similar reasoning applies to the β's and associated Cerenkov photons in the PSF 

measurements. 

The photon attenuation of deionized water and 25 percent NaCl in water is negligible 

over the range of wavelengths of the spectral measurements (550 to 670 nanometers). 

Thus, the total photon flux (within a range of wavelengths), after applying the 

corrections described below, is a direct estimate of the total CR production by the total 

radioactivity present. Thus the efficiency of the CR production can be simply calculated 

as the photon flux divided by the total radioactivity (e.g. photons per second per 

becquerel or equivalently, photons per disintegration). It should be noted that this 

means that the total photon flux measurement is by-in-large independent of the 

concentration of the radionuclide and that the pixel intensities varied predominantly with 

the surface area of the medium. 

3.4. Spectral measurements.  

Spectral luminescence measurements were made using the six 20-nanometer band-

pass filters available on the IVIS 200, centered at 560, 580, 600, 620, 640 and 660 

nanometers. Immediately preceding these image acquisitions, one or more open (i.e. 

without filter) images were acquired, varying the frame duration until a reasonably low-

noise image of the Cerenkov radiation was achieved. The filtered image frame durations 
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were set to be 20 times that of the low-noise open image. The open measurements 

were used only to predict reasonable frame times for the filtered measurements. I did 

not model the open condition. Prior to the spectral acquisition and each of the open 

acquisitions, an associated reflected light image was acquired.  

3.5. Cerenkov efficiency as a function of refractive index.  

Radionuclide, initially in a volume no greater than 1 mL, was thoroughly mixed with 

deionized water achieving a total volume of 30 (or 100 in some experiments) mL at 

room temperature. The refractive index of this medium was taken to be 1.333 with a 

density of 0.998 g/cc at 20 ̊C. This solution was then transferred to the 3.4 (or the 5.4) 

cm box and a set of spectral measurements made with the IVIS imager. 

The solution was then temporarily transferred to a container with a closeable top, to 

which was added 10 (or 33.3) grams of NaCl and shaken to dissolution, thus achieving 

a 25% by weight salt solution assumed to have a refractive index of 1.377 [96] and 

density of 1.281 g/cc [106]. The salt solution was then returned to the box container and 

imaged as before. 

3.6. Cerenkov efficiency as a function of volume.  

Radioactivity was initially mixed with 10 mL of deionized water and imaged in the 3.4 cm 

box placed in the center of the field of view. Without moving the box, 15 mL of deionized 

water was added bring the total to 25 mL. It was allowed to mix thoroughly and was 

reimaged. This sequence was then repeated but this time adding 25 mL (for a total of 

50 mL). The whole volume was then transferred to the 9.6 cm box, also placed in the 
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center of the field of view. Another 50 mL of deionized water was added and imaged. 

The sequence was repeated two more times adding 150 and 250 mL for a total of 250 

and 500 mL in the container, respectively. 

3.7. Region of interest measurements and profiles.  

All region of interest measurements were made using the Living Image software 

(Caliper LifeSciences, Inc., Hopkinton, MA) which comes standard with the IVIS 200. 

This software is designed to provide quantitatively accurate images in radiance units 

(photons/second/cm2/steradian) and includes adjustments accounting for platform 

height, lens aperture setting, field inhomogeneity, pixel binning and various sources of 

background. For the Cerenkov efficiency measurements, I placed a large region of 

interest over the homogeneous region within and well away from the edges of the box 

containing the deionized water or salt solution medium. The mean radiance within this 

region was then multiplied by the known surface area of the box opening (e.g. 92.16 

cm2 for the 9.6 cm box) and by 4ߨ steradians to arrive at the total Cerenkov photon flux 

in photons per second. Calculating the total flux in this manner, effectively corrects for 

light lost due to β particles entering the side walls of the container. 

The PSF profiles were measured using custom code written in Matlab (The MathWorks, 

Inc., Natick, MA). For the Cerenkov profile due to β emissions, this entailed first rotating 

the image so that the slot was precisely aligned with the vertical axis of the image and 

then summing along the length of the slot to generate a profile extending perpendicular 

to the slot. 
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For the Cerenkov profile due to secondary electrons, the center of the drop (i.e. the 

radionuclide source) was identified within the image and the mean radiance surrounding 

that central point was plotted as a function of distance from that point. 

3.8. Corrections 

IVIS recalibration.  During the course of this work it quickly became apparent that 

neither the global absolute calibration nor the relative calibration of the individual 20 nm 

band-pass filters of the IVIS imager was accurate. Specifically I noted that the Cerenkov 

spectra I was measuring did not have the characteristic one over wavelength squared 

shape I was expecting and yet the shape was consistent across radionuclides (Figure 

3.1A). Examining the Cerenkov spectra published by others [84] I noted similarly 

consistent spectral curve shapes across radionuclides that were both different from the 

theoretical shape and different from that which I was measuring. I also noted, even after 

all corrections, that my Cerenkov measurements were consistently about half of that 

predicted by the models. Cleaning the lens and filters within the IVIS had a dramatic 

affect on the system's sensitivity but still failed to bring it in line with expectations. 

Rather than publish data based on what I believed to be a miscalibrated instrument, I 

decided to recalibrate the IVIS based on a single spectral measurement of the 

Cerenkov light given off by Ga-68 in deionized water. This amounted to multiplying each 

of the filtered measurements by a slightly different factor ranging between 2.3 and 2.8. 

This same set of constants was used for all subsequent measurements (i.e. in effect I 

recalibrated the filters). 
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Decay Correction.  All doses were calculated as the mean dose present during the 

interval over which the image was acquired. This was accomplished by applying a 

decay factor to the dose calibrator measurement. The decay factor, DF , was calculated 

using the following well known formula: 

Figure 3.1. Evaluation and Correction of Luminescence Imaging System for CR. A) The CR 
efficiency measured as a function of one over the photon wavelength squared using calibrations provided 
by the manufacturer. These plots should be linear. B) Test of the linearity of the photon flux 
measurements. C) The diagram depicts the lens of the luminescence imager (gray ellipse) and defines 
the parameters used in expression (4). Plot on right shows the measured camera sensitivity as a function 
of the height of the imaged object (dark circles) along with a fit of expression (3) to determine the value 
for parameter H (which was otherwise difficult to measure directly). D) Same data as in (A) but now after 
calibrations based on the model and the spectral measurements for Ga-68. All measured spectral data 
are now very close to linear. 
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where ( ) 1 2ln 2 Tλ = ,  1 2T  is the radionuclide half life, t  is the time between when the 

dose was measured and the start of the acquisition frame and τ is the frame duration. 

Background Correction.  The standard image processing on the IVIS 200 includes a 

correction for the roughly uniform background typically encountered in luminescence 

imaging. However, in these measurements there was an additional source of 

background when imaging some radionuclides. This background is due to the direct 

detection of x-ray, γ-ray and/or annihilation photons by the luminescence detector. 

Because these high energy photons are not focused by the IVIS's lens system, this 

background too is fairly uniform. To correct for this background, I subtracted a constant 

from the luminescence image. The constant was determined by taking the mean value 

of a large region of interest placed a few cm away from the radionuclide source in each 

acquisition. 

Linearity Correction.  If all other things are held constant, the amount of Cerenkov 

radiation produced by a radionuclide is directly proportional to the amount of 

radioactivity present. Thus, given the well and accurately known half-life of F-18, for 

example, multiple measurements of Cerenkov light made as a radionuclide decays 

make for a good test of the linearity of a luminescence imaging system. 

To test the linearity of the IVIS 200, I started with 3.5 mCi of F-18 diluted in 150 mL of 

deionized water, placed in the 5.4 cm box and imaged it repeatedly over 6.5 half-lives, 
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11.9 hours total. The frame duration (i.e. time the shutter was open) was held constant 

at 5 minutes for each measurement. Images were acquired every 54.885 minutes (i.e. 

1/2 of F-18's 109.77 minute half-life) with the 560 nm (20 nm band pass) filter in place. 

In Figure 3.1B is shown a scatter-plot of the radioactivity level versus the background 

corrected total photon flux rate measured in each image. The solid line shows the 

amount of Cerenkov light predicted by the model. Based on these results I determined 

that a linearity correction was not necessary. 

Source to Camera Distance Correction.  As a point source moves closer to the 

camera system, the solid angle limiting which photons have a chance of being detected 

by the camera, increases. Thus, closer objects appear brighter than more distant 

objects. For the phantom studies, the camera is detecting light from sources distributed 

throughout the depth of the liquid medium. Sources at shallower depths, therefore, are 

being detected with greater efficiency. This effect is described by the expression: 
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where d  is the depth relative to a reference distance H  (e.g. the distance to the focus 

point) and A  is the radius of the aperture at f1 which, for the IVIS 200, is 6.35 cm [107]. 

The value for H  was determined by performing a nonlinear least-squares fit to a series 

of measurements of the total photon flux taken from a constant planar source positioned 

at various heights relative to the focus point (1.5 cm above the platform in all the 
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measurements). This procedure found H  to be 51.2 cm. The parameter definitions, 

measurements and the fit are shown in Figure 3.1C.  

In addition, because of the change in refractive index between the medium and the air 

above it, each plane at a given depth is magnified (a phenomenon well known to 

SCUBA diving enthusiasts, wherein objects under water appear to be closer than they 

really are). This magnification affect reduces the apparent radiance at a given depth in 

that the photons produced there appear to be generated over a larger surface area. 

Specifically, the magnification and thus the factor decrease in radiance, is described by 

the following: 
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where D  is the distance below the surface, L  is the distance from the lens to the 

surface, F  is the focal length of the lens and n is the refractive index of the medium. 

To arrive at a correction for measurements taken from fluids of differing depths, I 

averaged expression (4) divided by expression (5) over the entire depth of the fluid 

medium. 

Loss of Cerenkov at Surfaces Correction.  The β-particles leaving the medium at its 

surfaces result in a loss of Cerenkov light production. This loss was estimated by the 

following: 

 
( )

0 0
0.5

y

C S psf x dx dy
∞

⋅ ⋅ − 
  

 (3.6)  



60 

where ( )psf x  is the CR point spread function, C  is the radionuclide radioactivity 

concentration, S  is the medium's surface area and x  and y  are both distances from the 

side of the container.  

Because the measurements of total photon flux avoided losses at the sides of the box 

(by extrapolating the central homogeneous radiance to the edges), S  refers only to the 

area of the top and bottom surfaces. This expression assumes infinite extent for the 

dimensions parallel to the edge and does not consider the overlap at the edges and 

vertices of the containers, which will become significant as the container dimensions 

approach the full width half max of the PSF. For the containers, however, this does not 

incur a significant error given the PSF's considered here. 

3.9. Comparisons 

Comparison of Measured and Modeled Cerenkov Efficiencies.  Following the 

recalibration of the IVIS 200 imager based upon my measurements of the Ga-68 CR 

spectrum, all spectral measurements of CR demonstrated the characteristic one over 

wavelength squared functional form (see Figure 3.1D). This was true for both the 

deionized water and salt solution measurements and for all radionuclides, including the 

Ac-225 and In-111 measurements. Moreover the magnitude of the predicted relative to 

the measured CR efficiencies, following the recalibration, were all within the error of the 

dose calibrator measurements.  



61 

 

Figure 3.2A shows a representative acquisition for the experimental validation of the 

model results. The signal at a defined wavelength window (650-670 nm) from a 

radioactive source in a defined medium (for example, water) and in a defined volume. 

Extraneous background signal is subtracted. A chart, Figure 3.2B, with bars breaking 

 

Figure 3.2. CR Efficiency Contributions From Three Sources; Modeled and Experimental 
Readings. A) The experimental setup is shown for a representative acquisition. The radionuclide was 
diluted in a defined medium and CR efficiency was measured and the background is subsequently 
subtracted. B) CR efficiency contributions from three sources, β-particles, conversion electrons and 
secondary electrons, as determined by the models along with comparisons to measured efficiencies. C) 
Contributions to CR production by Ac-225 and its daughters in deionized water as predicted by the 
model. D) Modeled and measured CR production efficiency for In-111 plus an assumed 0.05% impurity 
of In-114. All efficiencies shown are for the production of photons having wavelengths between 650 and 
670 nanometers. The results are from experiments using deionized water and a 25% by weight sodium 
chloride and water solution (“salt”). Note - Ac-225+ denotes Ac-225 plus its daughters in transient 
equilibrium. 
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down the contributions for beta, conversion electron and secondary electron 

components for each radionuclide in water and in salt solution with X's showing 

measures made with the 660 +/- 10 nm band pass filter. Each of the measurements was 

made using a reasonably large volume of medium (~100 mL except for I-131 which was 

made in ~30 mL) and yet the CR contribution from secondary electrons in almost all 

cases was negligibly small. This was despite the high abundance of annihilation 

photons in Ga-68 and F-18. This can be understood by appreciating that Compton 

interactions in these mediums are far and away the dominant mechanism by which an 

annihilation photon (having a kinetic energy of 511 keV) gives rise to secondary 

electrons. Compton interactions allow a maximum transfer of energy to the secondary 

electron that is well below the energy of the photon; the so-called Compton edge. For a 

511 keV photon, the maximum energy transfer in a Compton interaction is 340.7 keV. 

Most interactions transfer far less energy. 

Zr-89 on the other hand has an appreciable contribution from secondary electrons. In 

this case, however, these are not primarily resultant from Zr-89's annihilation photons 

but rather from its 100% abundant 909 keV gamma which can transfer up to 709.6 keV 

in a Compton interaction. The related conversion electrons also contribute significantly 

to Zr-89's CR production efficiency. 

The observant reader will also have noticed that Ga-68's CR efficiency in the salt 

solution medium is lower than that in deionized water, a trend that runs contrary to the 

usual increase with increasing refractive index (see below and Figure 3.5A). The 

explanation for this can be found by noting that the salt solution also has a higher mass 
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density and therefore a higher β attenuation cross-section and concomitant reduced β-

particle path length. Increased density therefore tends to reduce CR production 

efficiency, but for radionuclides having relatively low energy β's, the increased refractive 

index overwhelms this reduction. For the high energy β's of Ga-68 however, the impact 

of refractive index is small and the density effect dominates. 

Comparison of Measured and Modeled for Actinium-225 and Indium-111.  As can 

be seen in Figure 3.2B, the model does an excellent job predicting the amount of CR 

produced by Ac-225 and its daughters when it is assumed that transient equilibrium has 

been reached. It should be noted that the dose calibrator setting I used (Capintec cal 

#775 with a 5X multiplier) to quantify the dose, makes a similar assumption. For the 

volume of medium used in this experiment, the contribution from secondary electrons 

(and from conversion electrons in general), were negligible, leaving β-particles from Ac-

225's daughters as the predominant source. The CR contribution from Ac-225 itself is 

non-existent (see Figure 3.2C) and the vast majority of the CR signal is attributed to Bi-

213. 

The model of In-111 in a 25% salt solution medium predicted a CR production efficiency 

of 2.57e-5 photons per disintegration within the 550 to 570 nanometer range. This is just 

2.5% of the light within this range that was measured emanating from the In-111 sample 

in the experiment. In deionized water, the model predicted zero contribution from In-

111. If, however, I assumed that In-114 was present as an impurity in the sample at a 

level of 0.05% (i.e. within the FDA allowed 0.15% for this unexpired sample), the 

measured and modeled came within reasonable agreement (see Figure 3.2D) 
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especially considering that the background levels in these measurements were over 

80% of the measured signal.  

Comparison of Measured and Modeled Cerenkov from β, Point-Spread-Functions.  

Figure 3.3A shows a Monte Carlo simulation of the paths taken by 200 β+ particles 

emanating from a single point and having energies equivalent to those emanating from 

F-18. CR is produced all along these tracks until the β energy drops below the CR 

threshold.  

The experiments measuring the Cerenkov from β PSF used a roughly planar source of 

radioactivity and was integrated over the two axes parallel to this plane; the depth 

dimension integration being done implicitly by the camera resulting in an image (see 

figure 3.3B) and the other during the post processing of the images. As such, these 

experiments did not measure the PSF directly but rather they measured (approximately) 

the projection of this function onto the axis perpendicular to the plane. Therefore, I 

adjusted the output of the model, which calculates the distribution of Cerenkov light 

about a point source, projecting this light onto a single axis. 

Figures 3.3C and D show the integrated PSF profiles from this type of experiment for F-

18 and Ga-68, respectively. The profiles extend through and beyond the radionuclide 

containing slot (i.e. plane) in both directions and thus there are two independent 

measurements of the projected PSF with a gap (the width of the slot) in between. The 

India ink greatly diminished but did not eliminate the Cerenkov light emanating from the  



65 

 

Figure 3.3. CR from β's Point Spread Functions. A) Simulated β+ tracks (blue) from an F-18 point 
source. Red tracks are from δ particles. B) A representative acquisition of the PSF experimental setup. 
This shows the channel in the acrylic block filled with a mixture of activity, surfactant and India ink. C) 
Integrated F-18 and D) Ga-68 measured radiance profiles shown as diamonds. Solid lines are modeled 
shapes with fitted amplitudes assuming β-particle source of CR.

slot proper, hence the signal attributed to this region seen in the graphs. The solid lines 

are the modeled PSF projections (one a mirrored version of the other and separated by 

the known gap width) scaled somewhat arbitrarily so as to achieve a good fit to the 

measured data. 

Comparison of Measured and Modeled Cerenkov from Secondary Electrons, 

Point-Spread-Function.  The measurement of the Cerenkov from secondary electrons 
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PSF, likewise, did not measure the PSF radial profile directly. Instead, in this 

measurement the camera first integrates the PSF over the depth dimension (i.e. that 

parallel to the direction in which the camera is pointing) and the resultant two-

dimensional PSF is then projected onto a single radius during post processing. The 

output of the model was adjusted to mimic these projection operations and the result 

was scaled to fit the measured curve. The result is shown in Figure 3.4A. 

 

Figure 3.4. Volume Dependence of CR Production. A) Projected point spread function for F-18 drop 
placed on acrylic plastic. Measured radiance shown as diamonds. Solid line is modeled shape with fitted 
amplitude assuming secondary electron source of CR. B) CR efficiency of Zr-89 as a function of the 
dimensions of the deionized water medium. Measured values made using the 560 nanometer bandpass 
filter are shown as diamonds. Solid line is the modeled efficiency. 

As can be seen in this plot the tail of the PSF would actually extend beyond the 

dimensions of the block. A block large enough to measure the PSF in its entirety would 

not be able to fit in the light tight enclosure of the IVIS camera system. 

Comparison of Measured and Modeled Volume Dependence.  The model of the loss 

of CR due to β's and conversion electrons near the exterior surfaces in the experiments 

suggest that this affect is negligibly small for the volumes used. As noted previously 

though, CR production attributed to secondary electrons is expected to increase with 
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increases in the overall size of the medium. Figure 3.4B shows this dependency for the 

one radionuclide looked at having a significant CR contribution from secondary 

electrons, Zr-89. The predictions closely match the measured efficiencies. 

3.10. Modeled Cerenkov production efficiencies as a function of 
refractive index.  

Having validated the accuracy of the models, I thought it would be beneficial to use the 

models to characterize a larger list of radionuclides so that investigators might use this 

information when selecting a CR producing radionuclide for a given purpose. Towards 

this end, I present in Figures 3.5A,B the CR production efficiencies for photons within 

the 550 to 570 nm range from β emissions predicted by the model and plotted as a 

function of refractive index for a variety or radionuclides. Other wavelength ranges can 

readily be calculated from this information by applying knowledge of the CR spectral 

shape. These curves assume a medium with β and γ cross-sections and density equal 

to that of water at 20 ̊C, this in spite of the changing refractive index. While this is not 

entirely realistic, I felt the curves would be informative and reasonably accurate for 

water-like mediums such as biological tissue. To highlight this point I've included, on the 

same graph, points calculated for the cross-section [108], density and refractive index of 

tissue [75]. These efficiencies are also shown in Table 3.4 for the reader's convenience. 

The values shown do not include the CR production attributed to conversion electrons 

or to secondary electrons, which for the small animal geometries where this information 

is likely to be applied, are both expected to be small.  
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Figure 3.5. Modeled Cerenkov production efficiencies as a function of refractive index. Curves are 
the modeled efficiencies for β-particle produced CR as a function of refractive index assuming β cross-
section properties and density of water. Efficiencies are in photons within the 550 to 570 nm range per 
disintegration. The X's used the β cross section properties of biological tissue. (A) and (B) list different 
radionuclides. Note - Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium. 

As can be appreciated in these curves, CR production efficiency generally increases 

with increasing refractive index but the rate of this increase is radionuclide dependent. 

Generally speaking, radionuclides having higher energy β emissions will have a lower 

proportional increase in CR per unit increase in refractive index whereas radionuclides 

having β's closer to the CR threshold will have a greater proportional increase. 

Table 3.4.  CR from β Efficiencies. 

Radionuclide Efficiency Radionuclide Efficiency
C-11 0.5568 Zr-89 0.1230
N-13 1.0132 Y-90 3.7047
O-15 2.3301 I-124 0.3718
F-18 0.1328 I-131 0.0703

Cu-64 0.0583 Ac-225+ 1.0143
Ga-68 2.5607 

The CR efficiencies for the radionuclides modeled in Figure 3.5A,B at the refractive index of tissue (1.4) 
are listed for convenience. Efficiencies are in photons within the 550 to 570 nm range per disintegration. 
Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium. 
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3.11. Modeled Cerenkov point spread functions.  

The Cerenkov from β PSF (prior to projection) is radially symmetric and therefore is 

described by its projection onto a single radius (i.e. integration over all angles). The 

resultant profile, it turns out, is reasonably well described by a sum of two exponentials. 

In order to arrive at robust values for the full-width at half-max (FWHM) and full-width at 

tenth-max (FWTM) values for this profile, I chose to fit the Monte-Carlo modeled data 

with a sum of two exponentials and calculate the metrics from the fitted curves using the 

modeled maximum value as the peak value. I present the results in Table 3.5 for the 

simulations of several commonly used radionuclides in biological tissue (i.e. refractive 

index 1.4 and tissue β attenuation). 

Table 3.5.  CR from β PSF width metrics. 

Radionuclide FWHM FWTM Radionuclide FWHM FWTM 
C-11 0.712 1.824 Zr-89 0.712 1.664 
N-13 0.816 2.330 Y-90 1.082 5.010 
O-15 0.928 3.644 I-124 0.882 3.406 
F-18 0.492 1.066 I-131 0.490 1.086 
Cu-64 0.492 1.080 Ac-225+ 0.790 2.194 
Ga-68 0.928 3.996  

List of PSF of the modeled radionuclides at the refractive index of tissue (1.4). FWHM and FWTM values 
are in mm. Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium. 

 

3.12. Discussion 

I have developed a set of models that accurately predict the CR production efficiency of 

various radionuclides through two mechanisms, directly from emitted β particles (and 

equivalently from conversion electrons) and from secondary electrons produced by the 

radionuclide's γ-rays or annihilation photons. The models allow both the refractive index 

and the photon cross-sections of the medium to be varied and thus should work for a 
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variety of materials, including biological tissues. I've applied these models in two 

geometries (a point source in an infinite medium and a uniformly filled cuboid medium) 

and validated them experimentally. These models can be readily adapted to geometries 

of arbitrary shape and source distribution. 

In addition, I have used these models to tabulate, for a number of commonly used 

medical radionuclides, the CR production efficiency and parameters describing the β 

particle and secondary electron Cerenkov point spread functions. This information can 

be used to evaluate which radionuclides are most suitable for a given application. 

In 1969, HH Ross [109] modeled CR based counting of β emissions as an alternative to 

scintillation counting for radionuclide calibration purposes. My work builds on Ross' with 

improvements in accuracy and extensions specifically suited to imaging applications.  

While this manuscript was under initial review, a paper by Mitchell et. al. that described 

modeling of Cerenkov production was published [110]. My work differs from theirs in 

that their models utilized Monte Carlo techniques at an earlier stage and they did not 

consider CR production by secondary electrons. Nor did they attempt to validate many 

of their results. Although their model was based on entirely different computer code, the 

Cerenkov efficiency results they reported are virtually identical to the values I calculate 

with my CR from β's model. 

Since the radioactivity level of many radionuclides can be determined with great 

accuracy, the Cerenkov efficiency information allows for a simple means of calibrating 

imaging systems capable of measuring low levels of light. Pure positron emitters (such 
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as F-18 or Ga-68) in water will have little volume dependency and can be calibrated 

accurately in a dose calibrator. Ga-68 in particular is insensitive to small changes in 

refractive index in the vicinity of 1.33 and thus measurements from it are robust to 

temperature fluctuations and other factors affecting the refractive index of the medium. 

A β- emitter having only relatively low energy γ's (for dose calibration) may be even 

better. Using a simple setup, such as one of the boxes I described, the measured light 

in photons per second corresponds directly to the total dose of radionuclide. The 

corrections for background, source to camera distance and surface loss were all very 

small; as was the secondary electron contribution. Thus a simple multiple integration of 

the Frank-Tamm formula provides a robust and direct estimate of the true photon flux. 

By choosing a radionuclide with a moderate half-life, the linearity of the system can also 

readily be tested and nonlinearities corrected. 

I investigated the mechanism of the light production for two radionuclides, Ac-225 and 

In-111, for which the Cerenkov mechanism was called into question. My analysis 

suggests that Ac-225 per se does not generate Cerenkov light, but that one of its β 

emitting daughters, Bi-213, is responsible for the bulk of the Cerenkov signal with 

significant contributions from Tl-209 and Pb-209. For In-111 I found that although it is 

theoretically capable of producing CR, the amount of light produced is extremely small 

and significantly smaller than that which was measured. I show evidence that the 

amount of CR produced is consistent with an In-114 impurity as its source. 

As mentioned in the Introduction, the primary goal in developing these models is to 

determine the amount of CR produced by radionuclides placed within biological tissues. 
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For this purpose, accurate knowledge of the refractive index of the tissue is necessary. 

However, there is a fair amount of uncertainty in the literature regarding the refractive 

indices of tissues [111] and even small differences can have a large impact on the 

amount of CR produced. There is also likely to be variation from one organ to another 

within the animal and certainly the refractive index will be very different for structures 

such as the urinary bladder. Radionuclides having higher energy β's are less sensitive 

to these variations in refractive index and therefore may be more desirable although at 

the cost of a reduction in resolution. In another context, the application of a controlled 

electron energy source may prove to be an accurate method of assaying the refractive 

index of a given tissue. 
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4. SPECIFIC AIM 3: OPTIMIZED ACQUISITION PROTOCOL 

4.1. Overview 

When an investigator plans an experiment in which he or she will be acquiring data with 

a bioluminescence imager for the purpose of generating BLT reconstructed images, 

they are faced with several choices regarding how to acquire that data. They need to 

decide what the overall duration of the acquisition should be, what filters to use during 

the acquisition and how they should distribute the overall time among the different 

filtered measurements. They also need to decide what spatial sampling frequency to 

use (i.e. the height of the camera and the binning of the CCD) and what voxel size to 

use in the reconstruction. Currently, there is little to no guidance to help investigators 

make these decisions. It is my goal here to rectify this situation. 

Specifically I will be proposing procedures and algorithms that seek to reduce the noise 

and improve the overall quality of the data that is used to reconstruct BLT images. In 

order to do this optimally, it will be necessary to establish a relationship between the 

noise in the data and the noise in the final image. This relationship ultimately depends 

on the specific reconstruction algorithm used. For the purposes here, I will do this for 

two reconstruction algorithms, a maximum likelihood expectation maximization 

algorithm (MLEM) [112] and a direct reconstruction algorithm employing the Moore-

Penrose pseudoinverse [15, 16]. Although the Moore-Penrose is seldom if ever used in 

practice, its use here (as I’ll detail below) is somewhat pedagogical. Moreover, both the 

Moore-Penrose and MLEM methods can be considered canonical in that each finds a 
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solution using a pure classic target function, unbiased by regularizations, penalty 

functions, et cetera. 

The Moore-Penrose pseudoinverse matrix is well known for its capacity to compute a 

‘best fit’ least-squares solution to a system of linear equations like those which are 

encountered in BLT image reconstruction [16] (for details see section 4.5). Because this 

solution is a linear operation it can also be used to determine the uncertainties in the 

solution as a function of the uncertainties in the measurements. If one expresses the 

measurement uncertainty as a standard deviation about the expected values, the 

elements of the pseudoinverse can be seen to be coefficients weighting the relative 

contributions of the measurements to the uncertainty in each voxel solution. Following 

standard propagation of uncertainty rules, the standard deviations sum in quadrature 

wherein these coefficients are also squared [113]. 

As I will demonstrate below, given an accurate estimate of the measurement noise level 

this operation provides an exact estimate of the uncertainty in the least-squares solution 

to the BLT inverse problem and in addition, allows for an optimal selection of filters 

within a specified range of wavelengths along with the optimal distribution of acquisition 

times among those filters given an overall duration for the experiment. Because it 

provides an uncertainty estimate for each individual voxel, this information can also be 

used to guide the sampling of the solution space (i.e. the number, size and distribution 

of voxels within the animal or objects interior). 

However, while all of this works perfectly for least-squares solutions, it is rare in BLT 

that a least-squares solution is sought. Without a constraint requiring only positive 



75 

valued solutions, the noise in the resultant images is simply much too high. To get 

around this problem an iterative MLEM algorithm (for details see section 4.5) can be 

used to reconstruct the images.  

In 1994 Barrett et al. [17] undertook an investigation of the noise properties of the 

MLEM algorithm and determined that the uncertainty in the solution after k iterations, ߳ሺ௞ሻ, was log-normally distributed and could be approximated from a linear operation 

acting on the measurement noise, ߟ, specifically: 

 ߳௡ሺ௞ሻ = ∑ ܷ௡,௠ሺ௞ሻெ௠ୀଵ ∙  ௠ (4.1)ߟ

wherein ܷሺ௞ሻ is calculated in an iterative procedure (see Barrett [17] for details). 

For the purposes here, I will make use of the ܷሺ௞ሻ matrix for MLEM solutions in manner 

similar to my use of the Moore-Penrose pseudoinverse for least-squares solutions. 

However, because of the approximations used by Barrett in the derivation of ܷሺ௞ሻ, the 

noise estimates are not as accurate and the time distributions are in some cases slightly 

suboptimal. 

4.2. Camera noise model 

In bioluminescence imaging there are practical limits on the maximum source intensity 

per voxel within an animal. Given this maximum and a specified useful dynamic range, 

one can infer a threshold difference in source intensities that one would want to be able 

to reasonably detect. Summed across all wavelengths, in vivo photon flux rates in Colo 

26-luc2 cells (for example) have been found to be about 250 photons per second per 
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cell [114]. Assuming 106 cells per µL, a voxel volume of 1 µL and a target dynamic 

range of 1000:1, this would mean that we’d want to reliably distinguish voxels having a 

difference in photon flux of 2.5x105 photons per second.  

For the purposes of this dissertation it will be assumed that the noise in the 

measurements made by the BLT camera system are due to photon shot noise, CCD 

readout noise and CCD dark current. Thus the camera sensitivity and noise will not vary 

over the field of view but they will vary with the resolution of the CCD image (i.e. the 

image matrix size) and the band-width of the filters. The dark current noise will be 

assumed to increase linearly with time, whereas the read noise will be time invariant. 

The signal to noise ratio of this system thus can be described by the following 

expression: 
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where: P = photon flux incident on the CCD (photons/pixel/second) 
 Qe = quantum efficiency of the CCD (85%) 
 D = dark current (1.82x10-4 electrons/second per 13.5x13.5 um pixel) 
 Nr = read noise (5 electrons rms/pixel regardless of pixel size) 
 t = integration time (seconds) 

 

4.3. Digital mouse phantom 

In order to assess the benefit of the proposed algorithms it is important to start with a 

system matrix based on a model that demonstrates the depth dependent resolution and 
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spectral shift dependencies encountered in live animals. However, it is also important 

that the accuracy of the inverse problem results not be adversely affected by 

inaccuracies of the system model owing to uncertainties regarding the light propagation 

properties of the tissue. 

These types of uncertainties are prevalent in live animal models, therefore I made use 

of a digital mouse phantom derived from a whole-body CT image of a live mouse. The 

CT image was segmented using MIPAV image processing software (NIH, Center for 

Information Technology) applying a simple threshold to separate the body from the 

surrounding air followed by the application of its “fill holes” morphological filter. The 

voxels immediately outside the mouse were then identified using MIPAV’s “find edges” 

function. 

4.4. Solving the forward model 

The BLT system matrix was calculated based on an empirical model fitted to data 

originating from a Monte Carlo simulation (code I’ve developed similar to the beta 

particle transport Monte Carlo code that I wrote for specific Aim 2 – see Appendix for 

details) of photon propagation from a point source centered within a sphere of “tissue” 

having a reduced scattering coefficient of 0.92 mm-1 (this being a rough average value 

for a variety of tissues within the visible range). Each iteration of the Monte Carlo code 

simulated 10,000 photons and calculated the path-length each traveled before reaching 

the surface for a given sphere radius without attenuation. For each sphere radius 

(ranging from 0.5 to 100 mm) a histogram of the path-lengths was averaged over 10 

iterations. The resultant mean histograms (see figure 4.1) all appeared to be log-normal 
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with log-means (i.e. the mean of the log of the path-length distribution) and log-stdevs 

that varied with the sphere radius.  

 

Figure 4.1. Three pathlength histograms for spheres of radius 18, 40 and 70 mm all shown as blue bars 
superimposed on the same plot. The red, orange and yellow curves describe the fitted model histograms 
for each of the three spheres, respectively, with means and standard deviations described by equations 
4.5 and 4.6. 

Fitting this data with empirically derived models (i.e. functions that fit well) arrived at the 

following expressions for the log-mean of the path-length distribution (LMD) and the log-

standard deviation of the distribution (LSD): 

ሻݎሺܦܯܮ  = ݈݊ሺ0.7339ݎଵ.ଽ଴଻ + 1.66ሻ (4.3) 

ሻݎሺܦܵܮ  = 0.1973ሺ1 − ݁ି଴.ହହହ଼௥ሻ + 0.3146݁ିଵ.ସ଴ଷ௥ (4.4) 
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Figure 4.2  Data points describing the log-mean of the pathlength distribution (A) and the log-standard 
deviation of the pathlength distribution (B). The fitted curves are described by equations 4.3 and 4.4, 
respectively.  

Using these formulas, it was possible to resurrect the path-length distributions expected 

for a given voxel to surface-point distance (see figure 4.2A and B). And then using the 

pathlength distribution information, it was in turn possible to determine what the photon 

intensity would be at the surface for a given linear attenuation coefficient. This was done 

by scaling (the bins of) the frequency distribution by the attenuation expected for the 

path-length (i.e. bin location). The result was then integrated to get the overall 

probability of a photon traveling that far, and these in turn were assumed to be 

distributed over the surface of a sphere of that radius. 
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4.5 Image Reconstruction Methods 

For the purposes of this dissertation I made use of two different reconstruction 

algorithms, one direct and the other iterative. The direct solution was calculated using 

the Moore-Penrose pseudoinverse of the system forward model matrix W. Solutions to 

linear matrix problems (such as the one posed by BLT) when solved using the Moore-

Penrose pseudoinverse are well known to produce a least-squares solution. A short 

proof of this assertion (adapted from [115]) and derivation of the pseudoinverse from a 

singular value decomposition of W, are as follows. 

By the singular value decomposition theorem, any real valued matrix, W, can be 

factored into a product of three matrices, W=USVT, where the columns of U and V are 

orthonormal (i.e. mutually orthogonal and of unit length) and S is diagonal with positive 

real entries (known as the singular values of W). Thus the inverses of U and V are equal 

to their transposes and the inverse of S is a diagonal matrix, S+, in which the elements 

of S have been replaced by their reciprocals. The pseudoinverse of W (commonly 

denoted as W+), is defined as follows: 

 ܹା = ሺ்ܷܸܵሻିଵ (4.5) 

which resolves to: 

 ܹା = ܸܵା்ܷ (4.6) 

In section 1.2 of this manuscript I defined the BLT system equation to be: 

 ܻ = ܹܺ (4.7) 
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where X is the vector of unknown voxel source intensities and Y is the vector of 

measured spectral surface intensities. However, owing to the noise in Y it is no longer 

necessarily in the range of W and therefore this equality does not hold. So instead we 

seek a solution X0 that minimizes the L2-norm of the residual (i.e. the least squares 

solutiuon). In other words, we seek a specific X0 which produces a smaller residual 

norm than any general X: 

 ‖ܹܺ଴ − ܻ‖ ≤ ‖ܹܺ − ܻ‖ (4.8) 

This solution can be found using the Moore-Penrose pseudoinverse using a simple 

matrix multiply as demonstrated in the following: 

 ܹܺ − ܻ = ܹܺ − ܻ +ܹܹାܻ −ܹܹାܻ (4.9) 

which after rearranging and factoring becomes: 

 ܹܺ − ܻ = ܹሺܺ −ܹାܻሻ + ሺܫ −ܹܹାሻሺ−ܻሻ (4.10) 

then taking the norms (i.e. the lengths of the vector components) and applying the 

Pythagorean theorm: 

 ‖ܹܺ − ܻ‖ଶ = ‖ܹሺܺ −ܹାܻሻ‖ଶ + ‖ሺܫ −ܹܹାሻሺ−ܻሻ‖ଶ (4.11) 

and now defining X0 calculated from Y using the pseudoinverse W+ like so: 

 ܺ଴ = ܹାܻ (4.12) 

and then substituting into 4.11 after distributing (-Y): 
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 ‖ܹܺ − ܻ‖ଶ = ‖ܹሺܺ − ܺ଴ሻ‖ଶ + ‖ሺܹܺ଴ − ܻሻ‖ଶ (4.13) 

And since all the terms in 4.13 are positive, it can easily be seen that 4.8 holds true and 

thus that the X0 calculated using the pseudoinverse is the least-squares solution. It is 

worth noting here that this method allows negative values in the solution for X, which of 

course is nonsensical when describing the intensity of a light source.  

The second BLT image reconstruction algorithm I used was the maximum likelihood 

expectation maximization algorithm (MLEM).  It constrains the solution to have only 

positive values and assumes that the noise in Y is Poisson distributed [116]. It is 

summarized by the following expressions: 

 ܺ௡ሺ௞ାଵሻ = ௑೙ሺೖሻௌ೙ ∙ ∑ ൤ ௡ܹ,௝் ൬ ௒೘∑ ௐ೘,೔௑೔ሺೖሻ೔ಿసభ ൰൨ெ௝ୀଵ  (4.14) 

where M is the number of measurements and N is the number of unknowns and where 

Sn is defined as: 

 ܵ௡ = ∑ ௡ܹ,௠ெ௠ୀଵ  (4.15) 

However, if Y is corrected for counts stemming from the CCD dark current, cosmic rays 

and other sources of background, by subtracting estimates of these counts from Y prior 

to entering into the MLEM algorithm, the noise is no longer Poisson distributed. This 

deficit was recognized and was addressed in the context of PET image reconstruction 

by Politte et. al. in 1991 [117]. The simple expedient Politte proposed to get around this 

problem was to add an estimate of the noise, σm, to the product WX within the loop of 

the iterations as shown in expression 4.16. 
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 ܺ௡ሺ௞ାଵሻ = ௑೙ሺೖሻௌ೙ ∙ ∑ ቈ ௡ܹ,௝் ቆ ௒೘∑ ௐ೘,೔௑೔ሺೖሻାఙ೘೔ಿసభ ቇ቉ெ௝ୀଵ  (4.14) 

In this way the uncorrected Y is used and retains its Poisson statistics. 

The need for such an adjustment may not be well appreciated by some investigators 

making use of the MLEM in the context of BLT or it may be assumed to be a small 

effect, so I will take this opportunity to give an example of the magnitude of error when 

this adjustment is not made. This example here made use of the simulated mouse 

model which will be described in detail in a later section (4.12) of this manuscript. 

Looking at the images of Figure 4.3 the importance of Politte’s approach is readily 

apparent. The image on the left (4.3A) is a coronal cross-section through the original 

un-noised source distribution and is provided here a reference for the ground truth. The 

image calculated from 160 iterations of the MLEM algorithm and employing Politte’s 

adjustments is shown in figure 4.3B. The image in Figure 4.3C shows the impact of 

assuming that the noise is negligible and not accounting for it within the loop. While 

Figure 4.3D shows what happens when Y is corrected for noise prior to entering the 

MLEM algorithm. 
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Figure 4.3  Coronal cross-section through original simulated source distribution intensity data (A). Same 
cross-section reconstructed from noisy data and using an estimate of that noise within the loop for the 
MLEM algorithm as proposed by Politte (B). Images reconstructed from the same data using MLEM but 
assuming negligible noise (C). And in (D) a reconstruction from the same data and noise estimate used in 
(B) but but this time the data was pre-corrected before applying the standard MLEM algorithm. 

 

4.6. Derivation of the optimization expression 

In this section I will derive a formula that will allow an investigator to determine the 

optimal distribution of acquisition times for a given set of filtered measurements. To do 

this I’ll start by considering a vector with elements Xn describing the photon fluence rate 

for each voxel (1≤n≤N, where N is the number of voxels) within an object (e.g. a mouse) 

being imaged within a bioluminescence imager. The expected fluence rate Ym·j 

measured by each of the detectors (e.g. each of M pixels, 1≤m≤M, within a CCD 

camera) at a given wavelength j  (1≤j≤J, where J is the number of wavelengths) 

acquired with a given band-pass filter within the bioluminescence imager, can be 

modeled as a matrix multiplication ௠ܻ = ∑ ௠ܹ,௡ܺ௡ே௡ୀଵ .  Each wavelength will have its 

own weight matrix (a subset of the full matrix W), which I’ll designate as Wj with 
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elements Wm·j,n. and each is acquired for a given duration, Tj, to yield a separate vector 

of photon counts Cj (with elements ܥ௠∙௝) for each wavelength. Note here that in this 

definition each weight matrix Wj  (for each wavelength) is accounting for the relative 

intensity of the light source at a given wavelength (i.e. for the source spectrum). Thus, 

for example, all other things being equal, if the relative amplitude at wavelength j for a 

given luciferase is double that of another luciferase, then Wj  of the former will be double 

that of the latter. 

Because C involves counting statistics, the uncertainty associated with each element of 

C is Poisson distributed and is equal to the square root of the counts, ߪ஼೘∙ೕ = ඥܥ௠∙௝.  
However, we are interested in the uncertainty in Y and ultimately its impact on the 

uncertainty in X. To get the uncertainty in Y it is necessary to divide the uncertainty in C 

by the acquisition time  ߪ௒೘∙ೕ = ఙ಴೘∙ೕ்ೕ = ඥ஼೘∙ೕ்ೕ = ඥ௒೘∙ೕ்ೕ்ೕ .  There are of course other sources 

of noise in the measurement of C and I will incorporate these later, but for now I’ll 

assume this simple Poisson noise model. 

There are several means of solving for X given Y, but for the purposes here I’ll start by 

making use of the Moore-Penrose pseudoinverse of W which when matrix multiplied by 

Y estimates X in a manner that minimizes its squared error. I’ll designate this matrix as 

W+, which like W can also be partitioned into submatrices, Wj
+, each corresponding to a 

different wavelength. Because matrix multiplication is a linear operation, when 

multiplying Y by W+, the error in Y is also multiplied by W+. However, uncertainties sum 

in quadrature and thus the expression for the overall uncertainty X,  ߪ௑,  is as follows: 
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௑ߪ  = ටଵே∑ ∑ ቀ ௡ܹ,௠∙௝ା ∙ ௒೘∙ೕቁଶெ∙௃௠∙௝ୀଵே௡ୀଵߪ  (4.15) 

which in turn expands to: 

௑ߪ  = ඨଵே∑ ∑ ൬ ௡ܹ,௠∙௝ା ඥ௒೘∙ೕ்ೕ்ೕ ൰ଶெ∙௃௠∙௝ୀଵே௡ୀଵ  (4.16) 

Distributing the square and using the notation  ൫ ௡ܹ,௠∙௝ା ൯ଶ = ௡ܹ,௠∙௝ାଶ   gives: 

௑ߪ  = ටଵே∑ ∑ ௡ܹ,௠∙௝ାଶ ௒೘∙ೕ்ೕெ∙௃௠∙௝ୀଵே௡ୀଵ  (4.17) 

and finally – defining  ܳ௝ = ଵே∑ ∑ ௡ܹ,௠∙௝ାଶெ∙௃௠∙௝ୀଵே௡ୀଵ ௠ܻ∙௝  this simplifies to: 

௑ߪ  = ට∑ ொೕ்ೕ௃௝ୀଵ  (4.18) 

When the acquisition times for each wavelength are specified and there exists a 

reasonable estimate of  ௠ܻ∙௝, this expression provides an estimate of the overall 

uncertainty in X (a useful result in its own right), but it also provides the basis upon 

which it is possible to determine the optimal time distribution among a given set of 

filtered measurements (i.e. wavelengths). To demonstrate this, I’ll start by considering 

just two wavelengths. 

௑ߪ  = ටொభభ் + ொమమ்  (4.19) 

Now, define  T=T1+T2  and ݂ = భ்்  to get: 
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௑ߪ  = ටொభ௙் + ொమሺଵି௙ሻ் (4.20) 

Based on this expression we will seek the value of  ݂  which minimizes  ߪ௑  and start by 

noting that squaring both sides does not affect the optimal  ݂  value. Similarly the value 

of T is inconsequential. 

 ܶଶߪ௑ଶ = ܳଵ݂ିଵ + ܳଶሺ1 − ݂ሻିଵ (4.21) 

Now, taking the derivative wrt ݂, setting the result to zero and rearranging: 

 ܳଵ݂ିଶ = ܳଶሺ1 − ݂ሻିଶ (4.22) 

 
ொభொమ = ௙మሺଵି௙ሻమ (4.23) 

and now taking the square root of both sides: 

 
ඥொభඥொమ = ௙ሺଵି௙ሻ (4.24) 

and putting back T1 and T2 

 
ඥொభඥொమ = భ்்మ (4.25) 

The expression for ݂ becomes: 

 
ඥொభඥொభାඥொమ = ݂ (4.26) 
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This can be extended to more than two wavelengths to arrive at the final expression for 

determining the optimal time distribution: 

 
ඥொೕ∑ ඥொ೔಻೔సభ = ௝݂ (4.27) 

As promised earlier, I’ll now consider the additional complication posed by other 

sources of noise inherent to the measurement of Y.  For a CCD based system this 

primarily comes in the form of a time dependent dark current, D, and a time 

independent read noise, R. I’ll assume here that both of these sources of noise are 

uniform across all detectors and wavelengths (but note that the following could also 

easily be adjusted for non-uniform noise). In any case, assuming uniform noise, the 

expression for the uncertainty in each element of Y is: 

௒೘∙ೕߪ  = ට൫௒೘∙ೕା஽൯்ೕାோ்ೕ  (4.28) 

Then following the same sequence of manipulations used previously: 

௑ߪ  = ඩଵே∑ ∑ ቌ ௡ܹ,௠∙௝ା ට൫௒೘∙ೕା஽൯்ೕାோ்ೕ ቍଶெ∙௃௠∙௝ୀଵே௡ୀଵ  (4.29) 

௑ߪ  = ඨଵே∑ ∑ ௡ܹ,௠∙௝ାଶ ௒೘∙ೕା஽ା ೃ೅ೕ்ೕெ∙௃௠∙௝ୀଵே௡ୀଵ  (4.30) 

and here adding definitions for  ܳ஽ = ஽ே ∙ ∑ ∑ ௡ܹ,௠∙௝ାଶெ∙௃௠∙௝ୀଵே௡ୀଵ    and  ܳோ = ோே ∙∑ ∑ ௡ܹ,௠∙௝ାଶெ∙௃௠∙௝ୀଵே௡ୀଵ   to get: 
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௑ߪ  = ඨ∑ ொೕାொವାೂೃ೅ೕ்ೕ௃௝ୀଵ  (4.31) 

௑ߪ  = ඨொభାொವାೂೃ೅భభ் + ொమାொವାೂೃ೅మమ்  (4.32) 

௑ߪ  = ඨொభାொವାೂೃ೑೅௙் + ொమାொವା ೂೃሺభష೑ሻ೅ሺଵି௙ሻ்  (4.33) 

This expression can readily be minimized using a nonlinear search but can also can be 

more quickly and robustly minimized by noting first that if R is assumed to be negligible 

for a moment and defining  ෠ܳ௝  to include  ܳ஽, i.e.  ෠ܳ௝ = ܳ௝ + ܳ஽,  then we get the same 

solution (4.27) as before. This can be used as the initial estimate of the optimal time 

distribution – 

 ௝݂ሺଵሻ = ටொ෠ೕ∑ ඥொ෠೔಻೔సభ  (4.34) 

but then iterated several times now incorporating a term accounting for the read noise. 

 ௝݂ሺ௞ାଵሻ = ඨொ෠ೕା ೂೃ೑ೕሺೖሻ∑ ඨொ෠೔ା ೂೃ೑ೕሺೖሻ಻೔సభ  (4.35) 

In practice, iterating this expression 10 or more times converges to greater than 4 

significant digits. In all of the following simulations, for good measure the expression 

was iterated 20 times. 
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Incorporating the additional sources of noise into expression (4.18) gives the final 

expression predicting the overall image noise  (root mean squared error): 

௑ߪ  = ଵ√் ඨ∑ ொೕାொವାೂೃ೅ೕ௙ೕ௃௝ୀଵ  (4.36) 

As mentioned in the Introduction to this specific aim, the above result works perfectly 

well for least-squares solutions but does not work for MLEM solutions. However, 

returning to equation (4.16) and substituting Barrett’s U matrix gives (note ellipses are 

used to emphasize that ߪሷ௑ is log-normal distributed): 

ሷ௑ߪ  = ඨଵே∑ ∑ ൬ܷ௡,௠∙௝ ඥ௒೘∙ೕ்ೕ்ೕ ൰ଶெ∙௃௠∙௝ୀଵே௡ୀଵ  (4.37) 

All the manipulations (4.17) through (4.36) apply equally to this expression but 

substituting ܷ௡,௠∙௝ for ௡ܹ,௠∙௝ା  and ߪሷ௑ for ߪ௑. 

4.7. Algorithm to select optimal filters 

The calculations described above allow for the determination of the optimal distribution 

of time among a set of measurements given that the filters for those measurements had 

already been chosen. These same equations, however, can also be employed to make 

an optimal selection of filters within a specified range of wavelengths using the following 

algorithm (see Appendix for Matlab code): 

1) Start by selecting the range of wavelengths. Generally this will be a range 

spanning the luciferase source spectrum, but in the case of a Cerenkov source 
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the range is only limited by the sensitivity of the CCD and attenuation of the 

tissue. 

2) Divide the range of wavelengths into discrete bands. The number of bands, J, 

here is only limited by computational capacity. For the geometry of interest, solve 

the forward model for each of the bands thereby determining the weight matrix, 

Wj, for each wavelength band. Again note that the magnitude of each Wj here 

incorporates the relative magnitude of the source spectrum at that wavelength. 

3) Select an overall duration to be allotted to the entire acquisition and use 

expressions (4.34) and (4.35) – or their equivalents in the case of a planned 

MLEM reconstruction - to determine the optimal distribution of times among the 

current set of filters. Use equation (4.36), or (4.37) as appropriate, to estimate the 

expected degree of noise in the solution. Use this noise level as the current 

minimum. 

4) Then, independently for each adjacent pair of wavelengths, sum the 

corresponding Wj matrices and recalculate U (or W+). Based on this new U (or 

W+), recalculate the optimal distribution and re-estimate the new noise level. 

Once this is done for all adjacent pairs, take the pairing having the minimum 

expected noise level and compare it to the current minimum. If greater than the 

current minimum, stop. Otherwise accept the summed pair of wavelengths 

having the minimum expected noise and repeat step 4, recalculating and testing 

the newly adjacent pairs. 
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4.8. Testing the optimization expression 

Owing to correlations between the system matrix and the errors in any given 

measurement, there is in fact no single time distribution that will for all samplings 

produce a solution with minimal noise. Instead, the optimality of the time distribution 

only becomes apparent when considering the expected noise level (i.e. the noise level 

averaged over many samplings). Moreover, in order to get a gold standard reference 

based upon which the true optimal distribution can be assessed, it is necessary to 

calculate the expected noise-level for all possible time distributions. Because of 

compute limitations, this is simply impractical for a realistic, highly sampled object (e.g. 

mouse) with many wavelengths. So instead, I sought to verify the optimization 

calculations making use of a very small toy system involving just 3 internal voxels (i.e. X 

having just 3 elements) and 5 detector elements (i.e. Y with 5 elements). Thus each Wj 

is a 5x3 matrix and each element of Wj was calculated as ݏ௝݁ିఒೕௗ  where d is a random 

distance between 0 and 10 mm, and  ߣ௝  and  ݏ௝  are the wavelength’s attenuation 

coefficient and relative spectral intensity (of the photon source), respectively. 

Using this simple system, it was possible to simulate photon transport and detection, 

reconstruct images and calculate the expected root-mean-squared error (RMSE) when 

seeking a least squares solution to the image reconstruction problem or calculate the 

expected root-mean-squared log error (RMSLE) when using an MLEM reconstruction. 

The means of these errors were determined based on 10,000 acquisitions with 

independently sampled random noise. The noise was added using Matlab’s poissrnd 

function which takes as its argument the mean of the desired noise distribution. This 
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was specified as  ൫ ௝ܹ ∗ ܺ + ൯ܦ ௝݂ܶ + ܴ. The dark current and read noise parameter 

values, D and R respectively, were set based on the IVIS 200 specifications 

(D=0.009787 cnts/sec/pixel and R=1.995 cnts/pixel).  

A cohort of 10,000 simulated acquisitions was repeated for each of 25 different time 

distributions,  ଵ݂߳ሼ0.02: 0.04: 0.98ሽ, in a two wavelength system. This was then repeated 

another 25x25=625 times  (same ଵ݂߳ሼ0.02: 0.04: 0.98ሽ  but the remainder of the time split 

between  ଶ݂  and  ଷ݂  with ଶ݂߳ሼ0.02: 0.04: 0.98ሽ)  in a 3 wavelength system. Among all the 

time distributions tried, the distribution resulting in lowest expected (i.e. averaged over 

10,000 trials) RMSE or RMSLE was identified. This is the brute force determined 

optimal time distribution. The RMSE and RMSLE error level for the analytically 

determined optimal time distribution (as determined using the iterative procedure 

described by expression (4.35) was also calculated once again averaging over 10,000 

noise samplings. This was also repeated for an analytically determined optimal time 

distribution based on a uniform source distribution (i.e. where it was assumed that there 

was no knowledge of the distribution of X) and finally for a naïve uniform time 

distribution.  In addition, for each simulation a prediction of the noise level was made 

using expressions (4.36) and (4.37) and these were compared to the measured mean 

noise level. 

For the two-wavelength system, the entire process was repeated 100 times, each time 

using a different randomly chosen source spectrum, set of distances, source intensities, 

attenuation coefficients and overall acquisition time (between 1 and 36,000 seconds). 

For each of these 100 repetitions the percent error between the brute-force and metric 
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predicted error levels was calculated and the mean, standard deviation and the 

maximum of the percent errors was determined. Similarly, the three-wavelength system 

simulations were repeated but owing to the significant additional computational burden 

this was done just 10 times. 

4.9. Two-wavelength LSQ simulation results 

Monte-Carlo simulations were undertaken to demonstrate definitively the accuracy with 

which the calculations derived here are able to determine the optimal distribution of 

times among the filtered acquisitions. Two equations were investigated:  1) appropriate 

for least-squares solutions to the inverse problem and making use of the Moore-

Penrose pseudoinverse and;  2) appropriate for MLEM solutions to the inverse problem 

and making use of Barrett’s error estimating matrix. MLEM and other constrained 

solutions are of more practical utility but because Barrett’s U matrix involves some 

approximating assumptions, it can fail when those assumptions are violated.  
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Unconstrained least-squares 

solutions for the BLT problems 

investigated here, on the other 

hand, generally produce uselessly 

noisy images, however, the 

Moore-Penrose calculations 

should be exact in every instance 

and hence the reason for their 

inclusion here. 

Each “toy” two-wavelength system 

was simulated 10,000 times 

(differing only in noise) at each of 

20 different time ratios between 

the two measurements. One hundred such toy systems were simulated. Figure 4.4 

shows the results from one of these. Each point along the red line shows the average of 

10,000 calculations of the RMSE relative to the true voxel intensities at a given relative 

duration of measurement for the first wavelength. The X-location at which this curve 

reaches its nadir is the brute force determined optimal fraction of time that should be 

spent measuring the first filtered image given the parameters (source spectrum, 

attenuation, geometry, etc.) of this specific toy system. The horizontal blue line shows 

the level of that minimum. The two stars, show the optimal fractional time determined 

using equation (4.36) when the true distribution is known perfectly (black star) and when 

just rough information regarding the overall signal magnitude (assumed to be distributed 

Figure 4.4  The red curve describes the brute force 
determined overall least squares uncertainty in the inverse 
solution as a function of the fraction of time spent on the 1st 
of two measurements made a differing wavelengths. This is 
the result for one toy problem selected out of 100 tried. Each 
point along the red curve is the average of 10,000 measured 
uncertainties. The black and green stars show the predicted 
optimal fractional times and associated uncertainties, given 
perfect and rough knowledge about the source distribution, 
respectively. 
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uniformly) is available (green star) for the calculation. In practice, the true source 

distribution will not be known in advance, so the green star shows more realistically 

what can be achieved in practice. Overall, these results demonstrate that the formulas 

derived in section 4.6 are consistently able to find the optimal distribution of acquisition 

times between the two filtered measurements. 

Figure 4.5 A and B show a comparison of the predicted an actual (i.e. measured) mean 

RMSE uncertainties at the calculated optimal time distribution for each of the 100 toy 

systems modeled, given perfect and rough information about the source distribution, 

respectively.  These results show that the equation I derived predict the image noise 

almost perfectly. 

  

Figure 4.5  Plots showing a comparison of the predicted and measured average uncertainty for each of 
the 100 toy problems tested, given perfect information about the source distribution (A) and given rough 
information (B). 
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4.10. Three-wavelength LSQ simulation 

Given how equation (4.36) was 

derived, I had some concern that the 

extrapolation to more than two 

wavelengths might be problematic. 

Therefore, a similar set of brute-force 

Monte-Carlo calculations of the 

optimal time distribution were 

undertaken, however, this time 

involving three wavelengths. In this 

case only ten toy systems (each 

parameterized by a different set of 

random values) were modeled, but 

each tried at 125 different time distributions, averaged over 10,000 runs (1,250,000 

simulations altogether). The resultant 125 points in 3D (fraction 1 by fraction 2 by 

RMSE) was fitted to a surface using Matlab’s griddata function. This surface is 

displayed as a colorized 2D image in figure 4.6, with RMSE represented by the pixel 

color. The black and green stars again show the optimal time distribution determined by 

equation (4.36) given perfect and rough information, respectively. This result shows that 

the accuracy of the predictions demonstrated previously for the two-filter case (figure 

4.4), also extend to a larger number of filters. 

 

Figure 4.6  Topogram of RMSE uncertainty, shown in 
color, as a function of the relative fraction of time spent 
on each of the first two filtered measurements. The 
remaining time fraction (1-f1-f2) was given to the 
measurement using the third filter. Black and green 
stars show location of predicted minima.
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4.11. Two-wavelength MLEM simulation 

As mentioned previously, the intent in showing the above results for an unconstrained 

LSQ solution is to demonstrate that the overall approach works precisely. As such, they 

also serve to demonstrate that the occasional poor performance of the MLEM targeted 

optimization seen in the following results, are therefore due to approximations implicit to 

the calculations of Bartlett’s U matrix, not because of problems or inaccuracies in the 

optimization per se. 

 

Figure 4.7  Data similar to that shown in figure 4.5 except this time predictions are made using Barrett’s 
matrix, inverse problem is solved using MLEM and uncertainty is measured as RMSLE. 
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Figures 4.7 A and B mirror the results 

shown in figures 4.5 A and B except this 

time the optimal time distribution 

predictions were based on Bartlett’s U 

matrix, the images were reconstructed 

using an MLEM algorithm and the 

uncertainty was measured in RMSLE. 

Similarly figure 4.8 mirrors figure 4.4 

again depicting a selected result out of 

the 100 toy systems simulated. Never-the-less, it can be appreciated from these plots 

that the utility of the expression derived for the least-squares solution case, also extend 

to MLEM reconstructed images. 

 

4.12. Mouse simulations 

Although the toy systems used to test the optimization calculations were designed to 

mimic the salient characteristics of real BLT problems, it can be argued that they do not 

reflect the potential complications of a full sized system encountered in the preclinical 

setting. Therefore, I created a model of light propagation and detection based on a set 

of CT and PET images of an actual live adult nude mouse, co-registered using the 

procedures described in Specific Aim 1. The CT was used to define the geometry of the 

mouse and the PET images were used to define the source distribution of the light 

emanating from within the mouse based upon the predictions of the Cerenkov models 

 

Figure 4.8   Data similar to that shown in figure 4.4 
except this time predictions are made using 
Barrett’s matrix, inverse problem is solved using 
MLEM and uncertainty is measured as RMSLE.
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described in Specific Aim 2. This source distribution was then converted to light source 

intensities for individual wavelengths assuming both Cerenkov and firefly luciferase 

source spectra. The PET tracer that was used was 89Zr oxalate which is known to 

uptake into the bones. A maximum intensity projection (MIP) of the PET image data is 

shown in figure 4.9A. The Cerenkov and firefly source spectra are shown in figure 4.9B.  

The propagation of the light through the tissues of the mouse was modeled using the 

equations described in Section 4.4 and using the wavelength dependent attenuation 

coefficients shown in figure 4.9C. 

  

Figure 4.9  (A) MIP image of source distribution; (B) plot of normalized Cerenkov and firefly luciferase 
spectra; and (C) plot of the attenuation coefficients used in the simulations as a function of wavelength.

Based on this model, the optimal time distribution among eight 20 nm bandpass filters 

ranging from 560 to 720 nm, was determined assuming either Cerenkov or firefly 

luciferase spectra and either MLEM or LSQ reconstructions, four optimizations of this 

type in all. A similar set of optimizations was again run for these four conditions, 

however, this time the algorithm was allowed to optimally combine filters together 

mimicking an acquisition of the same overall duration but involving some filters having a 
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larger bandpass. The results of these optimizations are summarized in figures 4.10A 

(firefly) and 4.10B (Cerenkov).  

From this data it is clear that the optimal acquisition protocol depends on what image 

reconstruction algorithm is to be used. This is not something that was considered in 

previous time optimization efforts [31, 32, 118]. It is also interesting to note that the filter 

selection process tended to prefer the additional count efficiency provided by the wide 

bandpass filters over the additional information provided by more wavelengths, in the 

MLEM case reducing the number of filters down to just two. Indeed, as we’ll see below, 

quite accurate reconstructions can be generated using just the two wavelengths 

indicated. 

  

Figure 4.10  Plots of the optimal time distributions and filter choices for firefly luciferase (A) and Cerenkov 
(B) light sources. 

Each of the optimized image acquisition protocols was then simulated assuming the 

PET derived source distribution described previously. A naïve uniform time acquisition 

protocol was also simulated. The total acquisition time was taken to be one hour. 

Coronal cross sectional images based on MLEM reconstructions of data acquired using 



102 

these acquisition protocols for the firefly luciferase source spectrum are shown in figure 

4.11A-C for the uniform, optimal all filter, and optimal reduced filter protocols, 

respectively. The corresponding RMSLE values were 3.55, 3.27 and 0.71, respectively. 

Significant improvement in image quality is readily apparent when using the optimized 

data acquisition protocols. 

 

Figure 4.11  MLEM reconstructions for datasets assuming firefly (A-C) and Cerenkov (D-F) source 
spectra and acquired using a uniform time distribution (A and D), optimally distributed time (B and E), and 
optimally selected filters (C and F). 

An equivalent set of images, this time simulated using the Cerenkov source spectrum 

but again using MLEM reconstruction, is shown in figures 4.11D-F. The corresponding 

RMSLE values in this case were 4.40, 4.06 and 0.98. As can be appreciated when 

viewing these images, there is some improvement when using the all-filter optimally 

distributed acquisition time protocol relative to a naïve uniform time protocol, but this 

improvement is small, largely because uniform time is already close to optimal for these 

filters. A much larger improvement is gained when the number of filters is reduced and 

the bandwidths are extended. 

At this same overall acquisition duration, the LSQ reconstructed image sets are so noisy 

as to be rendered useless (see figure 4.12A-C). The improvement gains for the 
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optimized protocols, never-the-less, can still be appreciated from the reductions in 

RMSE: 17598, 12805 and 11983 for the uniform, optimal full and optimal reduced filter 

sets, respectively. 

 

Figure 4.12  Sequence of images similar to that shown in figure 4.11 except here all are recontructed 
using the Moore-Penrose psuedoinverse and all assumed the light emitted was consistent with a firefly 
luciferase source. In this case (A-C) assumed one hour total acquisition time, while (D-F) assumed 100 
million hours. 

In order to actually visually perceive an improvement in LSQ reconstructed images, it 

was necessary to simulate an acquisition that is on the order of 100 million times longer 

(see figure 4.12D-F). Even here the improvement is subtle at best but is confirmed by 

the RMSE values which in this case were 1.66, 1.42 and 1.13. Of particular note in 

these images is the extreme heterogeneity in the spatial distribution of the noise, 

wherein the center of the mouse is all but obliterated by noise but voxels near the 

surface are well resolved. In the next section, we will explore this further. 

4.13. Guidance for improved conditioning and SNR through optimized 
sampling 

As described previously, in luminescence tomography each column of the system 

matrix W specifies the surface profile of a given voxel and each row reflects the voxel 
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domain contributing to a given pixel on the skin surface. Reducing the number of 

columns is in effect a constraint on the solution space (i.e. domain). It can also be 

considered a type of preconditioning in that the intent is to transform matrix W into a 

new matrix having more favorable properties for iterative solution.  

When seeking to optimize the time distributions, the target function that was minimized 

was the overall uncertainty in the image, summing the uncertainties in the individual 

voxels in quadrature. If instead we leave the voxel uncertainties separate, these values 

can be used to guide a variety of decisions including whether a given pair or group of 

voxels should be combined into a cluster and treated as a single large voxel. Combining 

voxels entails combining columns of the system matrix W and thus is a type of 

conditioning, wherein the condition number is improved (reduced). 

The image in figure 4.13A shows a coronal cross-section through an image of these 

voxel uncertainties, in this case for an LSQ solution assuming a uniform source 

distribution. Given some estimate of the absolute intensity of a light source placed within 

a given voxel within this image, this information could be used to ask the very 

reasonable question, will it be possible to distinguish this voxel from its neighbors? And 

when the answer is no, this voxel and one or more of its neighbors can be combined. 

A constraint of this type differs from other previously proposed domain constraint 

approaches in two major ways:  1) the changes to matrix W proposed here would be 

limited to spatially adjacent voxels, whereas most preconditioners manipulate the matrix 

without regard to this physical spatial context;  2) these matrix manipulations take into 
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consideration a noise model and thus they are guided based on statistical 

considerations.  

In solving the inverse problem, a single source intensity would be calculated for each 

cluster (i.e. the voxels of a cluster are assigned the same source intensity). The net 

effect is that the spatial domain within the animal is sampled non-uniformly in a manner 

that reflects the depth dependent variation in achievable resolution. 

Clustering voxels based on this information could be handled in a number of differing 

ways, including algorithms that would place topographical constraints on the clusters. 

For the purposes here, I have implemented just one very simple approach but others 

are possible. The algorithm that I implemented (see Appendix for details) starts by 

assigning each voxel to its own cluster, determines the associated predicted noise level 

to that cluster and identifies the initial 26 neighboring clusters. It then makes multiple 

passes through the cluster data, each time selecting the cluster with the greatest 

uncertainty. And if that uncertainty is greater than a specified threshold (chosen based 

on the aforementioned statistical considerations), the algorithm combines that cluster 

with all of its immediate neighbors. When voxels are clustered together, their 

corresponding columns in W are averaged together. 

The results from the application of this algorithm can be seen in figure 4.13.  Figure 

4.13B shows the cluster uncertainties for same cross-section as in 4.13A but after 

applying the clustering algorithm. Figure 4.13C is an image of the cluster sizes. Blue 

depicts voxels belonging to clusters having a single voxel member and red depicts 

voxels belonging to clusters having 27 voxel members (although in principle clusters 



106 

having other numbers of voxels are also possible). The original system matrix, W, had a 

condition number (as calculated by Matlab’s cond function) of 9.7e6. After combining 

the columns as directed by the clustering algorithm, the condition number was reduced 

over three-fold to 3.0e6. The images in figures 4.13D and E show the resultant 

reconstructions when using the original and the post clustering system matrices, 

respectively. Here it can be appreciated that the noise within the central region of the 

mouse has been greatly reduced by the clustering, albeit at a loss of resolution in this 

region. 

 

Figure 4.13  All images depict same coronal cross-section through a mouse. (A) Moore-Penrose 
determined uncertainty image based on original W matrix, (B) based upon reduced W matrix, (C) cluster 
size image; (D) 100 million hour image reconstructed from original W matrix; (D) 100 million hour image 
reconstructed from reduced W matrix. 

Reducing the rows of W could follow a similar process but for somewhat different 

purposes. Generally speaking, reductions in the rows of W would not be expected to 

improve (and in fact could worsen) the condition number. However, changes in the row 

sampling can also improve the overall noise characteristics of the system, resulting in 

improved solutions in addition to reduced computational burden. For example, for some 

CCD cameras using a reduced resolution mode (i.e. charge binning) can improve the 
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signal to noise ratio beyond what one would expect from a simple averaging of pixel 

groups. However, demonstrations of the improvement that might be gained from these 

types of manipulation will not be pursued here. 

4.14. Discussion 

Through a series of simulations, I have demonstrated a novel means by which it is 

possible to make accurate predictions of the optimal acquisition time distribution for a 

multispectral bioluminescence tomography measurement. Moreover I show for the first 

time that this optimal distribution is dependent, not only upon the source spectrum, but 

also upon the algorithm that will be used to reconstruct the images. These simulations 

also suggest, however, that optimally distributing the acquisition time (in most cases) 

will not result in dramatic noise reductions relative a uniform time distribution protocol, at 

least not for filter sets that constitute reasonable samplings of the source spectrum (i.e. 

when all filters are within the spectral peak). The reason for this can best be appreciated 

by noting the broad shallow basin in the brute-force determined uncertainty curves of 

figures 4.4 and 4.8. In these and in the other simulated systems not shown, the fold 

change in uncertainty when going from the optimal to uniform time is quite small. 

However, I also show that by making use of the same calculations to optimally select 

the filters and their bandwidths, significant reductions in noise can be achieved. And, 

once again, the optimal filter selection is shown to be dependent upon both the source 

spectrum and the choice of reconstruction algorithm. I also argue that this same basic 

approach can be used to guide other acquisition protocol design choices, including 

specifically the distribution of the sampling frequency of both the solution space within 

the animal and of the measurements made of the light emanating from the animal 



108 

surface. And finally I demonstrate that in the former case, such guided decisions can 

lead to improved image quality. 
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5. OVERALL SUMMARY AND CONCLUSIONS 

From the outset of this work it has been my intent to make progress on what I perceived 

to be the major problems limiting the successful implementation of bioluminescence 

tomography in the preclinical small animal imaging setting. Specifically, I felt that the 

lack of a gold standard reference against which improvements could be gauged and 

poor data quality/system conditioning issues, were the major problems hampering 

progress in BLT. Moreover, I recognized that there was a degree of synergy between 

these two problems. Establishing a gold standard reference of the 3D source 

distribution would require registrations, projective transforms, corrections and 

quantitative calibrations that were all requisite components of the platform upon which 

optimizations to reduce noise-levels and methodologies to guide system conditioning 

could be based. For example, the projective transform and registration to CT 3D space 

determined in Aim 1, are also steps used in the image reconstructions of Aim 3. The 

corrections for the luciferin time-course and light falloff as a function of the angle of the 

surface normal, are critical in maintaining the consistency of the measurements that 

would otherwise introduce artifacts into the reconstructed images independent of the 

noise in the data. Similarly, the calibration, filter sensitivity and source to camera 

distance corrections described in Aim 2, improve the accuracy and integrity of the data. 

It is only after the data is made accurate and consistent by correcting for all confounds 

(steps pursued in Aims 1 and 2), that it then it becomes meaningful to try to address 

questions regarding the precision of the data and how the resultant uncertainty 

propagates through the reconstruction process (the topic of Aim 3). 
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Corrections for confounds in most imaging systems would typically be expected to be 

applied automatically by the camera’s hardware and associated reconstruction software 

(though I’ve identified several that are not). However, choices impacting precision are 

often left to the user. This perhaps is especially true of BLT, where the user needs to 

decide how long to image, what filters to use, how to distribute the acquisition time 

among the chosen filters, what resolution the CCD images should be acquired at and 

what voxel sizes to use (or what smoothing parameter values to apply) during the 

reconstruction. To-date, there has been little-to-no guidance for the user to help them 

make these decisions. Although there is certainly more to be done, this was one of the 

main purposes behind the work in Aim 3. 

In Aim 3, I demonstrated that it is possible to determine in advance the optimal filter 

selection and acquisition time distribution to minimize the uncertainty in the 

reconstructed images. The equations derived to make these calculations showed, 

somewhat counter intuitively, that (roughly speaking) less time should be spent 

acquiring weaker signals and more time spent acquiring stronger signals. I’ve also 

demonstrated (to my knowledge, for the first time) that the optimal filter and time 

selections depend upon what reconstruction algorithm will be used to generate the 

images.  Previous efforts had not considered the potential impact of this choice. 

Many of the 3D tomographic imaging modalities have difficulty getting measurement 

data from locations deep within the subject being imaged. However, I think it is safe to 

say that for BLT this problem is extreme. Based on the data in figures 4.2A and 4.9C it 

can be readily seen that of the photons emanating from a depth of just 1 cm, only 5% of 
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the 660 nm (red) photons will make it out of the animal (much less being detected), 

while virtually none of the blue or green photons will make it out. This coupled with the 

greater degree of scatter experienced by the more deeply sourced photons, means that 

the achievable resolution at depth is greatly limited. One can conclude therefore, that 

while it may be reasonable in many 3D imaging modalities to use a uniform grid to 

sample the solution space (i.e. the same voxel spacing for both deep and shallow 

locations), this is not at all the case for BLT. Within Aim 3 I describe what I think could 

be the paradigm upon which these and related decisions can be made, whether it’s the 

choice of voxel size, or selection of an appropriate basis function, the optimization of a 

regularization parameter value. 

In future work, I hope to build upon the intermodality registration capabilities described 

here, to address what I believe to be the most important remaining problem in BLT 

image reconstruction, that of incorporating organ location information (potentially 

gleaned from MR images) so that the forward models may accurately reflect the 

heterogeneity in photon transport within the animal. 
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7. APPENDIX 

CODE ASSOCIATED WITH AIM 1 

function movie= alphablendIVISimages(IVISrootname,imgSTRUCT,IVISrange,IMGrange) 

 

 green= [zeros(64,1),(0:63)'/63,zeros(64,1)]; 

 red= [(0:63)'/63,zeros(64,1),zeros(64,1)]; 

 yellow= [(0:63)'/63,(0:63)'/63,zeros(64,1),]; 

 gray= [(0:63)'/63,(0:63)'/63,(0:63)'/63]; 

 hotmap= hot(64); 

 hotmap(1:10,:)= 0; 

 map= hsv(64); 

 map(1,:)=0; 

 

 [angles,dirLST]= getIVISangles(IVISrootname); 

 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  [r1,c1]= size(imgSTRUCT(i).image); 

  fprintf(1,'Reference image max is %f and its size is %d x 

%d\n',max(max(imgSTRUCT(i).image)),r1,c1); 

  f= [deblank(dirLST(i,:)),'\luminescent.tif']; 

  luminIMG= my_tiffread2(f); 

  luminIMG= double(luminIMG); 

  [r2,c2]= size(luminIMG); 

  fprintf(1,'IVIS lumin image min is %f and max is %f and its size is %d x 

%d\n',min(min(luminIMG)),max(max(luminIMG)),r2,c2); 

  if r1 ~= r2 | c1 ~= c2 

   luminIMG= interp2(luminIMG,(1:r1)'*(r2/r1),(1:c1)*(c2/c1)); 

  end  composite= 

alphablend(ind2rgb(floor(scale(imgSTRUCT(i).image,IMGrange(1),IMGrange(2),0,63)),gray), ... 

                          

ind2rgb(floor(scale(lowclip(luminIMG,IVISrange(1),0),0,IVISrange(2),0,63)),map),.3);  figure; 

  imshow(composite); 

  outfile= ['composite',num2str(i),'.jpg']; 

  imwrite(composite,outfile); 

 end 

 

 movie=1; 

Published with MATLAB® R2017a 

% define_geometry - takes a segmented imageset and identifies the boundary voxels 

% segmented file is a series of unsigned bytes where OUTSIDE voxels are coded as 0's 
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% and INSIDE voxels have values other than 0 

 

function m = define_geometry(segmented_fname,X,Y,Z) 

 

DEBUG= 0; 

 

%---------------- read segmented data --------------------------------------- 

 

fp= fopen(segmented_fname,'rb'); 

segimg= fread(fp,[X*Y*Z],'uchar'); 

segimg= reshape(segimg,X,Y,Z); 

fclose(fp); 

 

%---------------- pad by two voxels all around ------------------------------ 

 

padsegimg= zeros(X+4,Y+4,Z+4); 

padsegimg(3:(X+2),3:(Y+2),3:(Z+2))= segimg; 

 

dZ= (X+4)*(Y+4); 

dY= X+4; 

dX= 1; 

inside= padsegimg ~= 0;   % inside is same size as padsegimg but contains only 0's and 1's where 

1's indicate INSIDE 

i_inside= find(inside);   % get indices of all INSIDE voxels in this slice 

% first pass edges have face-neighbors that are outside 

i_edge1= find((inside(i_inside-dX) == 0) | (inside(i_inside+dX) == 0) | (inside(i_inside-dY) == 

0) | (inside(i_inside+dY) == 0) | (inside(i_inside-dZ) == 0) | (inside(i_inside+dZ) == 0)); 

i_edge1= i_inside(i_edge1);   % adjust indices to refer to "inside" matrix 

inside(i_edge1)= 2;       % code first pass edge voxels as 2's 

% second pass edges must also have face-neighbors that are inside (i.e. not other edges) 

i_edge2= find((inside(i_edge1-dX) == 1) | (inside(i_edge1+dX) == 1) | (inside(i_edge1-dY) == 1) | 

(inside(i_edge1+dY) == 1) | (inside(i_edge1-dZ) == 1) | (inside(i_edge1+dZ) == 1)); 

i_edge2= i_edge1(i_edge2);   % adjust indices to refer to "inside" matrix 

inside(i_edge2)= 3;       % code second pass edge voxels as 3's 

 

if DEBUG 

 for i=3:(Z+2) 

  figure; imshowsc(inside(:,:,i)); colormap('gray'); 

 end 

end 

 

[ex,ey,ez]= ind2sub([X+4,Y+4,Z+4],i_edge2); 

e= [ex,ey,ez]; 

 

% add vectors pointing inside 

nx= (inside(i_edge2+dX) == 1) - (inside(i_edge2-dX) == 1); 

nx= nx + (inside(i_edge2+dX+dY) == 1) - (inside(i_edge2-dX+dY) == 1); 

nx= nx + (inside(i_edge2+dX-dY) == 1) - (inside(i_edge2-dX-dY) == 1); 

nx= nx + (inside(i_edge2+dX+dZ) == 1) - (inside(i_edge2-dX+dZ) == 1); 

nx= nx + (inside(i_edge2+dX-dZ) == 1) - (inside(i_edge2-dX-dZ) == 1); 

nx= nx + (inside(i_edge2+dX+dY+dZ) == 1) - (inside(i_edge2-dX+dY+dZ) == 1); 

nx= nx + (inside(i_edge2+dX-dY-dZ) == 1) - (inside(i_edge2-dX-dY-dZ) == 1); 

nx= nx + (inside(i_edge2+dX+dY-dZ) == 1) - (inside(i_edge2-dX+dY-dZ) == 1); 
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nx= nx + (inside(i_edge2+dX-dY+dZ) == 1) - (inside(i_edge2-dX-dY+dZ) == 1); 

 

ny= (inside(i_edge2+dY) == 1) - (inside(i_edge2-dY) == 1); 

ny= ny + (inside(i_edge2+dY+dX) == 1) - (inside(i_edge2-dY+dX) == 1); 

ny= ny + (inside(i_edge2+dY-dX) == 1) - (inside(i_edge2-dY-dX) == 1); 

ny= ny + (inside(i_edge2+dY+dZ) == 1) - (inside(i_edge2-dY+dZ) == 1); 

ny= ny + (inside(i_edge2+dY-dZ) == 1) - (inside(i_edge2-dY-dZ) == 1); 

ny= ny + (inside(i_edge2+dY+dX+dZ) == 1) - (inside(i_edge2-dY+dX+dZ) == 1); 

ny= ny + (inside(i_edge2+dY-dX-dZ) == 1) - (inside(i_edge2-dY-dX-dZ) == 1); 

ny= ny + (inside(i_edge2+dY+dX-dZ) == 1) - (inside(i_edge2-dY+dX-dZ) == 1); 

ny= ny + (inside(i_edge2+dY-dX+dZ) == 1) - (inside(i_edge2-dY-dX+dZ) == 1); 

 

nz= (inside(i_edge2+dZ) == 1) - (inside(i_edge2-dZ) == 1); 

nz= nz + (inside(i_edge2+dZ+dX) == 1) - (inside(i_edge2-dZ+dX) == 1); 

nz= nz + (inside(i_edge2+dZ-dX) == 1) - (inside(i_edge2-dZ-dX) == 1); 

nz= nz + (inside(i_edge2+dZ+dY) == 1) - (inside(i_edge2-dZ+dY) == 1); 

nz= nz + (inside(i_edge2+dZ-dY) == 1) - (inside(i_edge2-dZ-dY) == 1); 

nz= nz + (inside(i_edge2+dZ+dX+dY) == 1) - (inside(i_edge2-dZ+dX+dY) == 1); 

nz= nz + (inside(i_edge2+dZ-dX-dY) == 1) - (inside(i_edge2-dZ-dX-dY) == 1); 

nz= nz + (inside(i_edge2+dZ+dX-dY) == 1) - (inside(i_edge2-dZ+dX-dY) == 1); 

nz= nz + (inside(i_edge2+dZ-dX+dY) == 1) - (inside(i_edge2-dZ-dX+dY) == 1); 

 

% normal points out (therefore minus) 

n= -[nx,ny,nz]; 

normlength= sqrt(sum(n.^2,2)); 

% for any zero length norms use vectors pointing OUTSIDE 

if any(normlength == 0) 

 i_zero_edge= find(normlength==0); 

 i_zero= i_edge2(i_zero_edge);         % adjust indices to refer to "inside" matrix 

 % add vectors pointing outside 

 nx= (inside(i_zero+dX) == 0) - (inside(i_zero-dX) == 0); 

 ny= (inside(i_zero+dY) == 0) - (inside(i_zero-dY) == 0); 

 nz= (inside(i_zero+dZ) == 0) - (inside(i_zero-dZ) == 0); 

 n(i_zero_edge,:)= [nx,ny,nz]; 

end 

normlength= sqrt(sum(n.^2,2)); 

if any(normlength == 0) 

 i_zero_edge= find(normlength==0); 

 fprintf(1,'Encountered %d zero lengthed normals\n',length(i_zero_edge)); 

 inside(ex(i_zero_edge(1))-1:ex(i_zero_edge(1))+1,ey(i_zero_edge(1))-

1:ey(i_zero_edge(1))+1,ez(i_zero_edge(1))-1:ez(i_zero_edge(1))+1) 

 n(i_zero_edge(1),:) 

% error('stop'); 

end 

n= n ./ [normlength,normlength,normlength];  % force unit length 

m= [e-3,n];  % subtract three from edge coord to get rid of padding and switch to indices 

starting at 0 

 

%---------------- write output file ----------------------------------------- 

 

fp= fopen('normalvector.ini','w'); 

if fp == -1 

 error('Cannot create normalvector.ini'); 
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end 

 

fprintf(fp,'%%NUMBER_OF_BOUNDARY_POINTS '); 

fprintf(fp,'%d\n\n',length(i_edge2)); 

fprintf(fp,'\n\ngrid point in cartesian coordinates\n'); 

fprintf(fp,'(x,y,z)\n\n\n'); 

fprintf(fp,'normal vector in cartesian coordinates \n'); 

fprintf(fp,'n_x,n_y,n_z) = (sin a cos b, sin a sin b, cos a) \n\n'); 

fprintf(fp,'a and b are spherical coordinates\n'); 

fprintf(fp,'x  y  z  n_x  n_y  n_z\n\n'); 

fprintf(fp,'%%NORMAL_VECTOR\n'); 

 

% Write surface points and normals. 

for i=1:length(i_edge2) 

  fprintf(fp,'%d %d %d %f %f %f\n',m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6)); 

end 

 

% Attention! This line is necessary! 

fprintf(fp,'\n'); 

fclose(fp); 

 

fprintf(1,'wrote normalvector.ini\n'); 

 

fp= fopen('segmentation.txt','w'); 

if fp == -1 

 error('Cannot create segmentation.txt'); 

end 

 

for z=1:Z 

 for y=1:Y 

  fprintf(fp,'%c ',segimg(:,y,z)+'0'); 

 end 

end 

fprintf(fp,'\n'); 

fclose(fp); 

 

fprintf(1,'wrote segmentation.txt\n'); 

 

 

dimensions=[X,Y,Z]; 

all_surface_coordinates= m(:,1:3); 

all_surface_normals= m(:,4:6); 

[i,j,k]= ind2sub(size(segimg),find(segimg>0)); 

all_interior_coordinates= [i,j,k] - 1; 

 

save geometry all_surface_coordinates all_surface_normals all_interior_coordinates dimensions 

 

fprintf(1,'wrote geometry.mat\n'); 

Published with MATLAB® R2017a 
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function 

forwardmodel2image(nvFile,subSampleFactor,crops,parameterSTRUCT,window,angles,n_freq,forwardmodel

,fmssf) 

 nv= read_nvf(nvFile); 

 

 [r,c]= size(nv); 

 % the following assumes that the image was cropped first, then subsampled 

 surfPTS= [nv(:,1:3)' * subSampleFactor; ones(1,r)]; 

 surfPTS(1,:)= surfPTS(1,:) + crops(1);        % add what was cropped off the image left side 

 surfPTS(2,:)= surfPTS(2,:) + crops(2);        % add what was cropped off the image top (when 

displayed top to bottom) 

 surfPTS(3,:)= surfPTS(3,:) + crops(3);        % add what was cropped off the front (i.e. first 

images) 

 

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is 

flipped 

 tmp= surfPTS(3,:); 

 surfPTS(3,:)= surfPTS(2,:);          % CT Y becomes Z 

 surfPTS(1,:)= 191 - surfPTS(1,:);    % CT X becomes flipped X 

 surfPTS(2,:)= tmp;                   % CT Z becomes Y 

 

 % similar dimension reordering for norms 

 norms= nv(:,4:6)'; 

 tmp= norms(3,:); 

 norms(3,:)= norms(2,:); 

 norms(1,:)= -norms(1,:); 

 norms(2,:)= tmp; 

 

 dimX= parameterSTRUCT.dims(1);                                            % IVIS image size 

 dimY= parameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                   % principal point 

offset fixed at center of image 

 f= parameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= parameterSTRUCT.aor2yRPY;                                       % roll, pitch and 

yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)];        % X and Z shift to 

align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich and 

yaw to align world coordinate system to camera coordinate system 

 Ctilde= parameterSTRUCT.Ctilde;                                           % coordinates of the 

camera center in the world coordinate system 

 rdfs= parameterSTRUCT.rdfs;                                               % radial distortion 

factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 
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 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 k= 1; 

 n= length(angles); 

 for j=1:n_freq 

  for i=1:n 

   angle= angles(i);                           % rotation of the bed in degrees 

   x= [0 0 0 1 0 angle*pi/180 0 0]; 

   P2= x2t(x','rpy');                          % transformation matrix describing rotation 

of the bed 

   P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

   imgPTS= P * surfPTS; 

   imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1); 

   P2R= P2 * R; 

   P2R= P2R(1:3,1:3); 

   imgNRMS= P2R * norms; 

   rotSurfPTS= P2R * surfPTS(1:3,:); 

   x= round(imgPTS(1,:)); 

   y= round(imgPTS(2,:)); 

   % must be in the window and pointing in the negative Z direction (i.e. towards the 

camera) 

   i_inWindow= find(x>window(1) & x<window(3) & y>window(2) & y<window(4) & imgNRMS(3,:)<0 

& abs(imgNRMS(3,:))>abs(imgNRMS(2,:)) & abs(imgNRMS(3,:))>abs(imgNRMS(1,:))); 

   if i==1, si=1; end 

   ssi= si:fmssf:length(i_inWindow); 

   si=  fmssf - (length(i_inWindow) - ssi(end)); 

   fprintf(1,'angle %d, in window %d, ss %d\n',angle,length(i_inWindow),length(ssi)); 

   x= x(i_inWindow(ssi)); 

   y= y(i_inWindow(ssi)); 

   sampleSites= zeros(dimX,dimY); 

   sampleSites(sub2ind([dimX,dimY],x,y))= forwardmodel(k:(k+length(x)-1)); 

   k= k + length(x); 

   figure; imshowsc(sampleSites); colormap('gray'); 

  end 

 end 

Published with MATLAB® R2017a 

function distortSTRUCT= get_distortion_data(distortIMG) 

  [xdim,ydim]= size(distortIMG); 

 imshowsc(distortIMG); 

 colormap('gray'); 

 hold on; 

 xi= zeros(200,1); 

 yi= zeros(200,1); 

 j= 1; 
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 while (1) 

  [xl,yl,b]= ginput(2); 

  if b(1) ~= 1, break; end 

  plot(xl,yl); 

  i= 1; 

  while (1) 

   [x,y,b]= ginput(1); 

   if b ~= 1, break; end 

   plot(x,y,'rx'); 

   xi(i)= x; 

   yi(i)= y; 

   i= i + 1; 

  end 

  distortSTRUCT(j).line= [xl,yl]; 

  distortSTRUCT(j).points= [xi(1:(i-1)),yi(1:(i-1))]; 

  distortSTRUCT(j).xdim= xdim; 

  distortSTRUCT(j).ydim= ydim; 

  j= j + 1; 

 end 
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function calpts= getcalpts(tif) 

t= my_imread(tif);     % 

mn= 0; 

mx= overall_max(t)/4; 

h= figure; 

imshowsc(t,[mn,mx]); 

colormap('gray'); 

set(h,'Position',[100,100,1000,1000]); 

i= 0; 

while (1) 

 [x,y,but]= ginput(1); 

 if but == 1 

  i= i + 1; 

  calpts(i,1)= x; 

  calpts(i,2)= y; 

 end 

 if but == 2 

  a= input('adjust zoom and hit return: '); 

  if strcmp(a,'q') == 1 

   break; 

  end 

 end 

 if but == 3 & i > 1 

  i= i - 1; 

 end 

 if i > 0 

  calpts= calpts(1:i,:); 

  hold off; 
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  imshowsc(t,[mn,mx]); 

  hold on; 

  plot(calpts(:,1),calpts(:,2),'r-x'); 

  set(h,'Position',[100,100,1000,1000]); 

 end 

end 

hold on; plot(calpts(:,1),calpts(:,2),'r-x'); 

set(h,'Position',[100,100,1000,1000]); 

Published with MATLAB® R2017a 

% getIVISangles - gets list of directories containing IVIS data rotated at various angles 

% directory names must follow convention of having a common root followed by 'm', 'p' or 

% nothing followed by the angle number. 'm' is for minus and 'p' and nothing are for plus 

function [angles,dirLST] = getIVISangles(rootname) 

 d= dir([rootname,'*']); 

 s= length(rootname) + 1; 

 angleCNT= 0; 

 dirLST= []; 

 for i=1:length(d) 

%  disp(d(i).name); 

  if d(i).isdir == 1 

   dirLST= strvcat(dirLST,d(i).name); 

   angleCNT= angleCNT + 1; 

   angleID= d(i).name(s:end); 

   if angleID(1) == 'm' 

    angles(angleCNT)= -str2num(angleID(2:end)); 

   elseif angleID(1) == 'p' 

    angles(angleCNT)= str2num(angleID(2:end)); 

   else 

    angles(angleCNT)= str2num(angleID(1:end)); 

   end 

  end 

 end 

  [angles,i]= sort(angles); 

  dirLST= dirLST(i,:); 

Published with MATLAB® R2017a 

% getIVIScalangles - gets list of txt files containing IVIS calibration points at various angles 

% txt file names must follow convention of having a common root followed by 'm', 'p' or 

% nothing followed by the angle number, followed by '.txt'. 'm' is for minus and 'p' and nothing 

is for plus 

function [angles,calfileLST] = getIVIScalangles(rootname) 

 d= dir([rootname,'*.txt']); 

 s= length(rootname) + 1; 
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 angleCNT= 0; 

 calfileLST= []; 

 angles= []; 

 for i=1:length(d) 

  if d(i).isdir == 0 

   calfileLST= strvcat(calfileLST,deblank(d(i).name)); 

   angleCNT= angleCNT + 1; 

   angleID= d(i).name(s:end-4); 

   if angleID(1) == 'm' 

    angles(angleCNT)= -str2num(angleID(2:end)); 

   elseif angleID(1) == 'p' 

    angles(angleCNT)= str2num(angleID(2:end)); 

   else 

    angles(angleCNT)= str2num(angleID(1:end)); 

   end 

  end 

 end 

  [angles,i]= sort(angles); 

  calfileLST= calfileLST(i,:); 

Published with MATLAB® R2017a 

% getIVISspectra - gets list of directories containing IVIS data taken with various filters 

% directory names must be in the form 0dd where dd is a two digit number 

function [frequencies,dirLST] = getIVISspectra(dirname) 

 frequencies= []; 

 d= dir(dirname); 

 freqCNT= 0; 

 dirLST= []; 

 for i=1:length(d) 

  if d(i).isdir == 1 

   [freqNUM,c]= sscanf(d(i).name,'%d',1); 

   if c > 0 

    dirLST= strvcat(dirLST,d(i).name); 

    freqCNT= freqCNT + 1; 

    frequencies(freqCNT)= freqNUM; 

   end 

  end 

 end 

  [frequencies,i]= sort(frequencies); 

  dirLST= dirLST(i,:); 

Published with MATLAB® R2017a 

function [refIntensities,refCoordinates,sampleSites]= 

mapIVIS(nvFile,subSampleFactor,crops,parameterSTRUCT,IVISrootname,window,csc_factors) 



130 

 nv= read_nvf(nvFile); 

 

 [r,c]= size(nv); 

 % the following assumes that the image was cropped first, then subsampled 

 surfPTS= [nv(:,1:3)' * subSampleFactor; ones(1,r)]; 

 surfPTS(1,:)= surfPTS(1,:) + crops(1);        % add what was cropped off the image left side 

 surfPTS(2,:)= surfPTS(2,:) + crops(2);        % add what was cropped off the image top (when 

displayed top to bottom) 

 surfPTS(3,:)= surfPTS(3,:) + crops(3);        % add what was cropped off the front (i.e. first 

images) 

 

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is 

flipped 

 tmp= surfPTS(3,:); 

 surfPTS(3,:)= surfPTS(2,:);          % CT Y becomes Z 

 surfPTS(1,:)= 191 - surfPTS(1,:);    % CT X becomes flipped X 

 surfPTS(2,:)= tmp;                   % CT Z becomes Y 

 

 % similar dimension reordering for norms 

 norms= nv(:,4:6)'; 

 tmp= norms(3,:); 

 norms(3,:)= norms(2,:); 

 norms(1,:)= -norms(1,:); 

 norms(2,:)= tmp; 

 

 dimX= parameterSTRUCT.dims(1);                                            % IVIS image size 

 dimY= parameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                   % principal point 

offset fixed at center of image 

 f= parameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= parameterSTRUCT.aor2yRPY;                                       % roll, pitch and 

yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)];        % X and Z shift to 

align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich and 

yaw to align world coordinate system to camera coordinate system 

 Ctilde= parameterSTRUCT.Ctilde;                                           % coordinates of the 

camera center in the world coordinate system 

 rdfs= parameterSTRUCT.rdfs;                                               % radial distortion 

factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 
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 [angles,dirLST]= getIVISangles(IVISrootname); 

 

 k= 1; 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                          % transformation matrix describing rotation of 

the bed 

  P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

  [frequencies,freqLST]= getIVISspectra(dirLST(i,:)); 

  m1= length(frequencies); 

  if m1 == 0, m2= 1; else m2= m1; end 

  for j=1:m2 

   if m1 == 0 

    f= sprintf('%s\\luminescentFLoatCorrected.tif',dirLST(i,:)); 

   else 

    f= sprintf('%s\\%s\\luminescentFLoatCorrected.tif',dirLST(i,:),freqLST(j,:)); 

   end 

   luminIMG= double(my_tiffread2(f)); 

   [lm_dimX,lm_dimY]= size(luminIMG); 

   if lm_dimX ~= dimX | lm_dimY ~= dimY 

    dx= lm_dimX / dimX; 

    dy= lm_dimY / dimY; 

    [xi,yi]= meshgrid(dx:dx:lm_dimX,dy:dy:lm_dimY); 

    luminIMG= interp2(luminIMG,xi,yi); 

   end 

   figure; imshowsc(luminIMG); 

   hold on; 

  

 plot([window(1),window(3),window(3),window(1),window(1)],[window(2),window(2),window(4),window

(4),window(2)],'r'); 

   imgPTS= P * surfPTS; 

   imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1); 

   P2R= P2 * R; 

   P2R= P2R(1:3,1:3); 

   imgNRMS= P2R * norms; 

   rotSurfPTS= P2R * surfPTS(1:3,:); 

   sampleSites= zeros(dimX,dimY); 

   x= round(imgPTS(1,:)); 

   y= round(imgPTS(2,:)); 

   % must be in the window and pointing in the negative Z direction (i.e. towards the 

camera) 

   i_inWindow= find(x>window(1) & x<window(3) & y>window(2) & y<window(4) & imgNRMS(3,:)<0 

& abs(imgNRMS(3,:))>abs(imgNRMS(2,:)) & abs(imgNRMS(3,:))>abs(imgNRMS(1,:))); 

   x= x(i_inWindow); 

   y= y(i_inWindow); 

   sampleSites(sub2ind([dimX,dimY],x,y))= -imgNRMS(3,i_inWindow); 

   figure; imshowsc(sampleSites); colormap('gray'); 

   refIntensities= luminIMG(sub2ind([dimX,dimY],x,y))';     %  divide by the following to 

get cos adjustment ./ -imgNRMS(3,i_inWindow)'; 
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   if nargin == 7 

    refIntensities= refIntensities * csc_factors(k); 

   end 

   k= k + 1; 

   fp= fopen(sprintf('%s_%s_Intensities.txt',dirLST(i,:),freqLST(j,:)),'w'); 

   fprintf(fp,'%f ',refIntensities); 

   fclose(fp); 

  end 

  refCoordinates= nv(i_inWindow,1:3); 

  fp= fopen(sprintf('%s_IntensityCoordinates.txt',dirLST(i,:)),'w'); 

  fprintf(fp,'%f %f %f\n',refCoordinates'); 

  fclose(fp); 

  q= [rotSurfPTS',imgNRMS']; 

  figure; quiver3(q(:,1),q(:,2),q(:,3),q(:,4),q(:,5),q(:,6)); xlabel('X'); ylabel('Y'); 

zlabel('Z'); 

  axis image 

  figure; 

  plot3(nv(:,1),nv(:,2),nv(:,3),'b.'); 

  hold on; 

  plot3(refCoordinates(:,1),refCoordinates(:,2),refCoordinates(:,3),'rh'); 

  xlabel('X'); ylabel('Y'); zlabel('Z'); 

  axis image 

 end 

Published with MATLAB® R2017a 

function plot_nvf(nvf_fname) 

 quivers= read_nvf(nvf_fname); 

 figure; 

 quiver3(quivers(:,1),quivers(:,2),quivers(:,3),quivers(:,4),quivers(:,5),quivers(:,6)); 

% b= min(quivers(:,3)); 

% e= max(quivers(:,3)); 

% for i=b:e 

%  si= find(quivers(:,3)==i); 

%  figure; hold on; 

%  for j=1:length(si) 

%  

 plot([quivers(si(j),1),quivers(si(j),1)+quivers(si(j),4)],[quivers(si(j),2),quivers(si(j),2)+q

uivers(si(j),5)]); 

%   plot(quivers(si(j),1)+quivers(si(j),4),quivers(si(j),2)+quivers(si(j),5),'x'); 

%  end 

%  axis equal; 

% end 

Published with MATLAB® R2017a 
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function projections= 

project_currentdiffusion(cd_fname,subSampleFactor,crops,parameterSTRUCT,angles) 

 cd_data= load(cd_fname); 

 [r,c]= size(cd_data); 

 intensities= cd_data(:,7); 

 % the following assumes that the image was cropped first, then subsampled 

 surfPTS= [cd_data(:,1:3)' * subSampleFactor; ones(1,r)]; 

 surfPTS(1,:)= surfPTS(1,:) + crops(1);        % add what was cropped off the left 

 surfPTS(2,:)= surfPTS(2,:) + crops(2);        % add what was cropped off the top 

 surfPTS(3,:)= surfPTS(3,:) + crops(3);        % add what was cropped off the front 

 

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is 

flipped 

 tmp= surfPTS(3,:); 

 surfPTS(3,:)= surfPTS(2,:);          % CT Y becomes Z 

 surfPTS(1,:)= 191 - surfPTS(1,:);    % CT X becomes flipped X 

 surfPTS(2,:)= tmp;                   % CT Z becomes Y 

 

 % similar dimension reordering for norms 

 norms= cd_data(:,4:6)'; 

 tmp= norms(3,:); 

 norms(3,:)= norms(2,:); 

 norms(1,:)= -norms(1,:); 

 norms(2,:)= tmp; 

 

 dimX= parameterSTRUCT.dims(1);                                            % IVIS image size 

 dimY= parameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                   % principal point 

offset fixed at center of image 

 f= parameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= parameterSTRUCT.aor2yRPY;                                       % roll, pitch and 

yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)];        % X and Z shift to 

align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich and 

yaw to align world coordinate system to camera coordinate system 

 Ctilde= parameterSTRUCT.Ctilde;                                           % coordinates of the 

camera center in the world coordinate system 

 rdfs= parameterSTRUCT.rdfs;                                               % radial distortion 

factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 
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 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 projections= []; 

 [xi,yi]= meshgrid(1:dimX,1:dimY); 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                          % transformation matrix describing rotation of 

the bed 

  P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

  [K, R, S] = perspective_transform_decompose(P); 

  imgPTS= P * surfPTS; 

  imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1); 

  imgNRMS= R * norms; 

  rotSurfPTS= R * surfPTS(1:3,:); 

  x= imgPTS(1,:); 

  y= imgPTS(2,:); 

  up= find(imgNRMS(3,:)<0.0);                 % negative Z points up toward camera 

  projection= griddata(x(up),y(up),intensities(up),xi,yi)'; 

  projection(isnan(projection))= 0; 

%  figure; imshowsc(projection); 

  projections= [projections; projection]; 

 end 

  projections= reshape(projections,dimX,dimY,n); 
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function nv= read_nvf(nvf_fname) 

 fp= fopen(nvf_fname,'r'); 

 if fp == -1, error(sprintf('Cannot open %s',nvf_fname)); end 

 while 1 

  s= fgetl(fp); 

  if strncmpi(s,'%NORMAL_VECTOR',14), break; end 

 end 

 nv= fscanf(fp,'%f %f %f %f %f %f',[6,inf])'; 

Published with MATLAB® R2017a 

function imgSTRUCT= registerCT_to_IVIS(CTrootname, IVISrootname, IVISparameterSTRUCT, thres, typ, 

multifile, ext, start, machineformat) 

 if nargin < 5 

  typ= 'int16'; 

  multifile= 3; 

  ext= 'ct'; 
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  start= 0; 

  machineformat= 'ieee-le'; 

 end 

 ct= read_raw(CTrootname,typ,[192,192,384],multifile,ext,start,machineformat); 

 fv= isosurface(ct,thres); 

 norms= isonormals(ct,fv.vertices); 

 tmp= fv.vertices(:,3); 

 fv.vertices(:,3)= fv.vertices(:,1);         % original X becomes Z 

 fv.vertices(:,1)= 191 - fv.vertices(:,2);   % original Y becomes flipped X 

 fv.vertices(:,2)= tmp;                      % original Z becomes Y 

 tmp= norms(:,3); 

 norms(:,3)= norms(:,1); 

 norms(:,1)= -norms(:,2); 

 norms(:,2)= tmp; 

 

 dimX= IVISparameterSTRUCT.dims(1);                                            % IVIS image 

size 

 dimY= IVISparameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                       % principal 

point offset fixed at center of image 

 f= IVISparameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY;                                       % roll, pitch 

and yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)];    % X and Z shift 

to align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich 

and yaw to align world coordinate system to camera coordinate system 

 Ctilde= IVISparameterSTRUCT.Ctilde;                                           % coordinates of 

the camera center in the world coordinate system 

 rdfs= IVISparameterSTRUCT.rdfs;                                               % radial 

distortion factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 [angles,dirLST]= getIVISangles(IVISrootname); 

 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                          % transformation matrix describing rotation of 

the bed 
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  P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

   [img,zbuf]= zbuffer(fv,norms,dimX,dimY,P); 

   img= distort2D(img,[rdfs,1]); 

   imgSTRUCT(i).image= img; 

   imgSTRUCT(i).angle= angle; 

   figure; 

   imshowsc(img,[0 1]); 

  colormap('gray'); 

  drawnow; 

 end 
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function imgSTRUCT= renderSurface(surface_points,surface_normals,IVISparameterSTRUCT,angles) 

 dimX= IVISparameterSTRUCT.dims(1);                                            % IVIS image 

size 

 dimY= IVISparameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                       % principal 

point offset fixed at center of image 

 f= IVISparameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY;                                       % roll, pitch 

and yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)];    % X and Z shift 

to align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich 

and yaw to align world coordinate system to camera coordinate system 

 Ctilde= IVISparameterSTRUCT.Ctilde;                                           % coordinates of 

the camera center in the world coordinate system 

 rdfs= IVISparameterSTRUCT.rdfs;                                               % radial 

distortion factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                          % transformation matrix describing rotation of 
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the bed 

  P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

   [img,zbuf]= zbuffer(fv,norms,dimX,dimY,P); 

   img= distort2D(img,[rdfs,1]); 

   imgSTRUCT(i).image= img; 

   imgSTRUCT(i).angle= angle; 

   figure; 

   imshowsc(img,[0 1]); 

  colormap('gray'); 

  drawnow; 

 end 

Published with MATLAB® R2017a 

function img= show_currentdiffusion(fname,X,Z,ythres) 

 data= load(fname); 

 img= zeros(X+2,Z+2); 

 [r,c]= size(data); 

 for i=1:r 

  if data(i,2)>ythres, 

   img(data(i,1)+1,data(i,3)+1)= data(i,7); 

  end 

 end 

 figure; imagesc(img); axis image; 

 img= zeros(X+2,Z+2); 

 [r,c]= size(data); 

 for i=1:r 

  if data(i,2)<ythres, 

   img(data(i,1)+1,data(i,3)+1)= data(i,7); 

  end 

 end 

 figure; imagesc(img); axis image; 

Published with MATLAB® R2017a 

function m= vox2surfdist(segfname,dims,nvfname,shift,skip) 

dims= [dims(2),dims(1),dims(3)];   % dims originally x,y,z but Alex reorders to y,x,z 

ncol= prod(dims); 

[y,x,z]= ind2sub(dims,1:ncol); 

v= load(segfname); 

v=reshape(v,48,23,48); 

v=permute(v,[2,1,3]); 

v= reshape(v,48*23*48,1); 

nv= length(v); 

s= read_nvf(nvfname); 



138 

ns= length(s); 

i= shift:skip:ns; 

s= s(i,1:3); 

ns= length(s); 

s= s'; 

i= find(v > 0); 

ni= length(i); 

m= zeros(ns,ni); 

for j=1:ns 

 m(j,:)= sqrt(sum(([x(i)',y(i)',z(i)']' - repmat(s(:,j),1,ni)).^2)); 

 fprintf(1,'%d\n',j); 

end 

 

CODE ASSOCIATED WITH AIM 2 

% returns dE/dx for a given electron energy in a medium of specified atomic mass and number 

function dEdx = bethe_bloch(electronEnergy,A,Z) 

% theta is scattering angle in radians, 0 begin no scatter and pi being 180 degree back scatter 

% thickness is the pathlegth that the electron travels through the media. the units are 

grams/cm^2 (ie density normalized cm) 

% electronEnergy is the initial energy of the electron in MeV 

% A is the atomic weight of media in grams per mole 

% Z is the effective atomic number of the media 

c = 299792458;                     % speed of light in a 

vacuum in meters per second 

me= 9.1093821545e-31;                  % electron rest mass 

in kg 

re= 2.817940289458e-15;                 % electron radius in 

meters 

N0= 6.0221417930e23;                  % Avogadro's number 

MeVperJoule= 6.241506363e+12; 

 

velocity= beta_velocity(electronEnergy);            % the electron 

velocity in meters per second 

beta= velocity / c;                    % electron velocity 

fraction of the speed of light 

lorentz_factor= 1 ./ sqrt(1-beta.^2);              % Lorentz factor 

 

I=1.201632998e-17;                   % 75 eV in Joules 

Atmp= log(beta.*lorentz_factor.*sqrt(lorentz_factor-1)*me*c^2/I);   % interim calculation 

(unitless) 

Btmp= (1./(2*lorentz_factor.^2)) .* ((lorentz_factor-1).^2/8 + 1 - 

(2*lorentz_factor.^2+2*lorentz_factor-1)*log(2));  % interim calculation (unitless) 

dEdx= MeVperJoule*4e4*pi*re^2*me*c^2*N0*Z.*(Atmp+Btmp)./(A*beta.^2);  % energy lost in MeV per 

cm 
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Published with MATLAB® R2017a 

% interpolates Bethe's Table II from paper "Moliere's Theory of Multiple Scattering"  Physical 

Review, vol 89, No 6, Mar 15, 1953 

function [f1, f2] = Bethe_table(nu) 

tab= [ 

 0.0 0.8456  2.4929 

 0.2 0.7038  2.0694 

 0.4 0.3437  1.0488 

 0.6 -0.0777  -0.0044 

 0.8 -0.3981  -0.6068 

 1.0 -0.5285  -0.6359 

 1.2 -0.4770  -0.3086 

 1.4 -0.3183  0.0525 

 1.6 -0.1396  0.2423 

 1.8 -0.0006  0.2386 

 2.0 0.0782  0.1316 

 2.2 0.1054  0.0196 

 2.4 0.1008  -0.0467 

 2.6 0.08262 -0.0649 

 2.8 0.06247 -0.0546 

 3.0 0.04550 -0.03568 

 3.2 0.03288 -0.01923 

 3.4 0.02402 -0.00847 

 3.6 0.01791 -0.00264 

 3.8 0.01366 0.00005 

 4.0 0.010638 0.0010741 

]; 

f1n2= interp1(tab(:,1),tab(:,[2,3]),nu); 

f1= f1n2(:,1); 

f2= f1n2(:,2); 

Published with MATLAB® R2017a 

function [distortPARAMS,y,ci,resnorm,varb,corrb]= 

calc_distortion_parameters(distortSTRUCT,nparams) 

 n= length(distortSTRUCT); 

 npts= 0; 

 for i=1:n 

  npts= npts + size(distortSTRUCT(i).points,1); 

 end 

 p0= zeros(1,nparams); 

 plb= zeros(1,nparams); 

 pub= ones(1,nparams); 

 options= optimset('Diagnostics','on','MaxFunEvals',100000); 

 

 disp('Starting fit'); 
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 [distortPARAMS,y,ci,resnorm,varb,corrb] = 

fit_model('poly_distortion_mdl',p0,distortSTRUCT,zeros(npts,1),plb,pub,[],options); 

 disp('Finished fitting'); 

Published with MATLAB® R2017a 

function parameterSTRUCT= calIVIScam(worldptsfname,camptsfroot,dimX,dimY,rdfs) 

% worldptsfname - is the name of the file containing the calibration points (in 3D) as measured 

by Amira, 

% where the first column contains the X-values, etc 

% camptsfroot - is the root of the filename for the .txt files containing the calbration points 

visible at 

% the given angle. The angle is specfied in the filename as mX or pX where the X specifies the 

angle in degrees 

% and 'm' is for minus and 'p' for plus. The first column contains the index number identifying 

the calbration 

% point according to its order of appearance in the worldptsfname file. Columns 2 and 3 are the X 

and Y values 

% respectively. 

% dimX and dimY are the dimensions of the IVIS images 

% rdfs - is a vector of radial distortion factors (see Hartley and Zisserman's "Multiple View 

Geometry" p 191) 

 

 if nargin < 3 

  dimX= 480; 

 end 

 if nargin < 4 

  dimY= dimX; 

 end 

 if nargin < 5 

  rdfs= []; 

 end 

 

 worldpts= load(worldptsfname);    % reads worldpts measured using Amira 

 

 % re-arrange axes to match the coordinate system used in Hartley and Zisserman's "Multiple 

View Geometry" p 154 

 

 worldpts(:,1)= 192 - worldpts(:,1);          % new X is flipped old X 

 tmp= worldpts(:,2);                          % save Y 

 worldpts(:,2)= 384 - worldpts(:,3);          % new Y is flipped old Z 

 worldpts(:,3)= tmp;                          % new Z is old Y 

 

 [angles,calfileLST]= getIVIScalangles(camptsfroot); 

 

 campts_all= []; 

 n= length(angles); 

 for i=1:n 

  campts= load(deblank(calfileLST(i,:)));       % reads campts matrix 

  worldpts_indices= campts(:,1);                % extract indices of worldpts visible at 
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current angle 

  campts= campts(:,2:3)';                       % campts without indices transposed to column 

vectors 

  wpts= worldpts(worldpts_indices,:)';          % select worldpts visible at given angle 

transposed to column vectors 

  wpts= [wpts;ones(1,size(wpts,2))];            % add row of ones 

  worldptsSTRUCT(i).worldpts= wpts;             % accumulate worldpts in structure 

  worldptsSTRUCT(i).angle= angles(i);           % along with associated angle 

  P= perspective_transform_estimate(wpts,campts); 

  campts_all= [campts_all,campts];              % accumulate campts 

 end 

 campts_all= reshape(campts_all,prod(size(campts_all)),1);    % reshape to a single column 

vector 

 

 f= 3318; 

 aor2yRPY= [0,0,0]; 

 xzshft= [-mean(worldpts(:,1)),-mean(worldpts(:,3))]; 

 wcs2ccsRPY= [0,0,0]; 

 Ctilde= [0,mean(worldpts(:,2))*2,-4000]; 

 p0= [f,aor2yRPY,xzshft,wcs2ccsRPY,Ctilde]; 

 plb= [f-1000,[-pi/4 -pi/4 -pi/4],[-192 -192],[-pi/4 -pi/4 -pi/4],[-1000 -1000 -8000]]; 

 pub= [f+1000,[pi/4 pi/4 pi/4],[192 192],[pi/4 pi/4 pi/4],[1000 1000 2000]]; 

 options= optimset('Diagnostics','on','MaxFunEvals',100000,'MaxIter',100000); 

 

 disp('Starting fit'); 

 [p,y,ci,resnorm,varb,corrb] = 

fit_model('IVIScam_mdl',p0,worldptsSTRUCT,campts_all,plb,pub,[],options,dimX,dimY,rdfs); 

 disp('Finished fitting'); 

 

 parameterSTRUCT.f= p(1); 

 parameterSTRUCT.aor2yRPY= p(2:4); 

 parameterSTRUCT.xzshft= p(5:6); 

 parameterSTRUCT.wcs2ccsRPY= p(7:9); 

 parameterSTRUCT.Ctilde= p(10:12); 

 parameterSTRUCT.rdfs= rdfs; 

 parameterSTRUCT.dims= [dimX,dimY]; 

Published with MATLAB® R2017a 

function world= cam2world(pts1,A1,pts2,A2) 

  x1= pts1(:,1); 

  y1= pts1(:,2); 

  x2= pts2(:,1); 

  y2= pts2(:,2); 

  [r,c]= size(pts1); 

  world= []; 

  for i=1:r 

    b11=A1(1)-(x1(i)*A1(9)); 

    b12=A1(2)-(x1(i)*A1(10)); 

    b13=A1(3)-(x1(i)*A1(11)); 
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    b21=A1(5)-(y1(i)*A1(9)); 

    b22=A1(6)-(y1(i)*A1(10)); 

    b23=A1(7)-(y1(i)*A1(11)); 

    c1=x1(i)-A1(4); 

    c2=y1(i)-A1(8); 

    b31=A2(1)-(x2(i)*A2(9)); 

    b32=A2(2)-(x2(i)*A2(10)); 

    b33=A2(3)-(x2(i)*A2(11)); 

    b41=A2(5)-(y2(i)*A2(9)); 

    b42=A2(6)-(y2(i)*A2(10)); 

    b43=A2(7)-(y2(i)*A2(11)); 

    c3=x2(i)-A2(4); 

    c4=y2(i)-A2(8); 

    B=[b11 b12 b13;b21 b22 b23;b31 b32 b33;b41 b42 b43]; 

    C=[c1;c2;c3;c4]; 

    R= pinv(B) * C; 

    world= [world; R']; 

  end 

Published with MATLAB® R2017a 

function [A1,A2]= camera_calibration(world,cam1,cam2) 

  [r,c]= size(world); 

  M=[]; 

  b=[]; 

  for i=1:r 

%    M= [M;[0 0 0 0 -world(i,:) -1 (cam1(i,2) * world(i,:))]]; 

%    M= [M;[world(i,:) 1 0 0 0 0 (-cam1(i,1) * world(i,:))]]; 

    M= [M;[world(i,:) 1 0 0 0 0 (-cam1(i,1) * world(i,:))]]; 

    M= [M;[0 0 0 0 world(i,:) 1 (-cam1(i,2) * world(i,:))]]; 

    b= [b;cam1(i,1);cam1(i,2)]; 

  end 

%  [U,S,V]= svd(M); 

%  A1= V(:,end); 

  A1= pinv(M) * b; 

  M=[]; 

  b=[]; 

  for i=1:r 

%    M= [M;[0 0 0 0 -world(i,:) 1 (cam2(i,2) * world(i,:))]]; 

%    M= [M;[world(i,:) 1 0 0 0 0 (-cam2(i,1) * world(i,:))]]; 

    M= [M;[world(i,:) 1 0 0 0 0 (-cam2(i,1) * world(i,:))]]; 

    M= [M;[0 0 0 0 world(i,:) 1 (-cam2(i,2) * world(i,:))]]; 

    b= [b;cam2(i,1);cam2(i,2)]; 

  end 

%  [U,S,V]= svd(M); 

%  A2= V(:,end); 

  A2= pinv(M) * b; 

Published with MATLAB® R2017a 
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function [psf,distance] = 

cerenkov_beta_psf(betaSpectrum,estar,N,mediumRefractiveIndex,A,Z,MAXDIST,NDIVS,FROM_SLOT_FLG) 

 

if nargin < 9, FROM_SLOT_FLG=0; end         % default manner in which distance is 

determined is NOT from slot 

if nargin < 8, NDIVS=25; end             % default number of divisions 

if nargin < 7, MAXDIST=0.2; end            % default spatial extent of psf 

output in cm 

if nargin < 6, Z= 7.22; end              % default Z effective of the 

medium (this value is used by Estar and is in Levin's paper) - acrylic is 6.7 according to Levin 

and formula in Cherry's book 

if nargin < 5, A= 18; end               % default atomic mass (this 

value is for water) 

 

psf= zeros(NDIVS,1);                % allocate result vector 

 

me= 0.51099891013;                % electron rest mass in MeV 

 

betaSpectrum(:,2)= betaSpectrum(:,2) / sum(betaSpectrum(:,2)); 

cur_beta_energy= bsxfun(@repvals,betaSpectrum(:,1),round(betaSpectrum(:,2)*N));  % generate ~N 

betas according to spectrum 

N= numel(cur_beta_energy);             % count number actually generated 

 

cur_loc_x= zeros(N,1);               % start N betas at the origin 

cur_loc_y= zeros(N,1);               % ... 

cur_loc_z= zeros(N,1);               % ... 

d0= zeros(N,1);                  % distances start at zero 

id0= ones(N,1);                  % distance indices start at 

one 

 

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);                  

   %%%%%%%%%%%%%%% 

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1); 

end  %%%%%%%%%%%%%%% 

Norig= N; 

 

rel_theta= acos(1-2*rand(N,1));            % choose random isotropic 

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi) 

rel_phi= 2 * pi * rand(N,1);              % and phi uniformly over 

(0:2pi) --- see Rajon 

sin_theta= sin(rel_theta);              % avoid calculating twice (see 

next two lines) 

 

cur_dir_x= sin_theta .* cos(rel_phi);          % calculate current direction 

as Cartesian vector (note - "rel" angles treated as absolute angles) 

cur_dir_y= sin_theta .* sin(rel_phi);           % ... 

cur_dir_z= cos(rel_theta);              % ... 

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2);      % length of direction vector 

cur_dir_x= cur_dir_x ./ d;              % normalize to unit length 

cur_dir_y= cur_dir_y ./ d;              % ... 

cur_dir_z= cur_dir_z ./ d;              % ... 
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i_left= 1:N;                   % initially, everyone is in 

n_left= numel(i_left);                % count number in 

 

Estep= 0.030;                  % each beta will loose Estep 

MeV per step 

delta_rayThreshold= 0.050;              % set threshold for delta ray 

production in MeV 

stopThreshold= 0.01;                % set threshold energy at which 

we will stop following a given beta in MeV 

 

Norig= N;                    % save starting number of 

betas (because deltas will be added to N) 

 

while n_left > 0 

 dEdx=estar(cur_beta_energy(i_left));          % given current beta energy, 

determine rate of energy loss in MeV per cm - 1st column is collisional loss rate 

 r= Estep ./ dEdx(:,1);                % distance beta travels 

(in cm) when loosing Estep keV 

 

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left);   % determine new location 

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left);   % ... 

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left);   % ... 

 

 photons_per_cm = 

frank_tamm_wavelength_integral(560,580,beta_velocity(cur_beta_energy(i_left)),mediumRefractiveInd

ex) / 100;  % rate of Cerenkov production per cm 

 photons_per_cm= colvectorize(photons_per_cm);                

        % make sure it's a column vector 

 if FROM_SLOT_FLG==1 

  d= abs(cur_loc_x(i_left));                      

         % distance from slot along x-axis 

 else 

  d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2);      

          % current distance from origin in cm 

 end 

 id= ceil(d*NDIVS/MAXDIST);                       

        % convert distance to indexs 

 id(id > NDIVS)= NDIVS;                        

         % anything over the max goes into the last element 

 distincindx(psf, id0(i_left), id, photons_per_cm .* r);             

          % update psf 

 id0(i_left)= id;                          

          % new id now old 

 

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)]; 

paths_z{i}= [paths_z{i},cur_loc_z(i,1)];  end %%%%%%%%%%% 

 

 Pdelta= delta_ray_cdf(repvals(delta_rayThreshold,n_left),cur_beta_energy(i_left)) - 

delta_ray_cdf(cur_beta_energy(i_left),cur_beta_energy(i_left));  % area under delta_ray PDF 

between threshold and incident beta energy 

 Pdelta= Pdelta .* r;                % multiply number of deltas 

per cm by distance beta traveled in last step 
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 tmp= rand(n_left,1); 

 i_delta= find(tmp <= Pdelta);             % randomly select which 

betas have deltas 

 Ndelta= numel(i_delta);               % count number of deltas 

% fprintf(1,'%d deltas created\n',Ndelta); 

 i_not_delta= find(tmp > Pdelta);            % and identify which betas 

which do not have deltas 

 

 if Ndelta > 0 

  delta_ray_energies= rand_delta_ray(cur_beta_energy(i_left(i_delta)),delta_rayThreshold); 

  % randomly select energy for each delta 

  incident_energies= cur_beta_energy(i_left(i_delta));             

   % select incident energies 

 

  delta_phi= 2*pi*rand(Ndelta,1);                    

   % randomly select azimuthal angle for delta ray to be uniformly distributed between 0 

and 2pi 

  exiting_phi= mod(delta_phi+pi,2*pi);                  

   % the exiting beta is 180 away from this, still between 0 and 2 pi 

 

  % zenith angles for delta and exiting beta conserve momentum - formulas from 

http://www.irs.inms.nrc.ca/EGSnrc/pirs701/node43.html 

  delta_theta= 

acos(sqrt(delta_ray_energies./incident_energies.*(incident_energies+2*me)./(delta_ray_energies+2*

me))); 

  exiting_theta= acos(sqrt((incident_energies-

delta_ray_energies)./incident_energies.*(incident_energies+2*me)./(incident_energies-

delta_ray_energies+2*me))); 

 

%  for j=1:Ndelta, fprintf(1,'incident energy %f produces delta of energy %f traveling with 

phi of %f and %f and theta of %f and 

%f\n',incident_energies(j),delta_ray_energies(j),exiting_phi(j),delta_phi(j),exiting_theta(j),del

ta_theta(j)); end 

 

  cur_beta_energy(i_left(i_delta))= incident_energies - delta_ray_energies;      

  % decrease energy of incident betas 

  cur_beta_energy= [cur_beta_energy;delta_ray_energies];            

  % append delta energies to end of list 

  id0= [id0;ceil(d(i_delta)*NDIVS/MAXDIST)];                

   % append starting id to end of list 

 

  cur_loc_x= [cur_loc_x;cur_loc_x(i_left(i_delta))];              

   % append delta locations to end of list (same location as incident) 

  cur_loc_y= [cur_loc_y;cur_loc_y(i_left(i_delta))];              

   % ... 

  cur_loc_z= [cur_loc_z;cur_loc_z(i_left(i_delta))];              

   % ... 

 

  for i=N+1:N+Ndelta, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= 

cur_loc_z(i,1);  end %%%%%%%%%%% 

 

  cur_dir_x= [cur_dir_x;cur_dir_x(i_left(i_delta))];              

    % append delta directions to end of list (initially same direction as incident) 



146 

  cur_dir_y= [cur_dir_y;cur_dir_y(i_left(i_delta))];              

    % .. 

  cur_dir_z= [cur_dir_z;cur_dir_z(i_left(i_delta))];              

    % ... 

 

  i_new_deltas= (N+1):N+Ndelta;                     

  % specify indices that point to these deltas 

  [cur_dir_x,cur_dir_y,cur_dir_z] = 

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_delta),exiting_theta,exiting_phi);  % 

update direction of incident betas 

  [cur_dir_x,cur_dir_y,cur_dir_z] = 

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_new_deltas,delta_theta,delta_phi);   % update 

direction of deltas 

 

  N= N + Ndelta;                          

   % and count them 

 end 

 

 % next four lines only for betas that did NOT produce deltas 

 rel_theta= rand_moliere(r(i_not_delta),cur_beta_energy(i_left(i_not_delta)),A,Z);    % 

randomly select angles distributed according to Moliere 

 rel_phi= 2 * pi * rand(n_left-Ndelta,1);                  

 % randomly sample n_left phi angles distributed uniformly over 0:2pi 

 [cur_dir_x,cur_dir_y,cur_dir_z] = 

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_not_delta),rel_theta,rel_phi); % update 

direction 

% [std(cur_dir_x),std(cur_dir_y),std(cur_dir_z)] 

 cur_beta_energy(i_left(i_not_delta))= cur_beta_energy(i_left(i_not_delta)) - Estep;   % 

reduce energy 

 

 i_left= find(cur_beta_energy > stopThreshold);       % determine which betas are 

left 

 n_left= numel(i_left);                % count number left 

end 

 

distance= ((1:NDIVS)-0.5)*MAXDIST/NDIVS;   % PSF x-axis 

psf=psf/(2*trapz(distance,psf));        % normalize so psf from 0 to Inf is 0.5 

 

PLOT=0; 

if PLOT==1 

 figure; for i=1:Norig, plot3(paths_x{i},paths_y{i},paths_z{i},'LineWidth',1); hold on; end 

  % plot beta paths in blue 

 for i=Norig+1:N, plot3(paths_x{i},paths_y{i},paths_z{i},'r','LineWidth',1); hold on; end  

 % plot delta paths in red 

 axis equal; 

 xlabel('X'); ylabel('Y'); zlabel('Z'); 

 set(gcf,'Color',[1,1,1]); 

 set(gca,'XGrid','on','YGrid','on','ZGrid','on'); 

 keyboard 

 figure; plot(distance,psf,'-x');  % plot Cerenkov PSF 

 ppsf= zeros(NDIVS,1); 

 d= sqrt(cur_loc_x(1:Norig).^2+cur_loc_y(1:Norig).^2+cur_loc_z(1:Norig).^2);      

        % final distance from origin in cm 
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 id= ceil(d*NDIVS/MAXDIST);                       

        % convert distance to indexs 

 id(id > NDIVS)= NDIVS;                        

         % anything over the max goes into the last element 

 incindx(ppsf, id);                         

          % positron update psf 

 figure; plot(distance,ppsf,'-x');  % plot positron PSF 

end 

Published with MATLAB® R2017a 

% cerenkov_secondary_electron_box- given a specified number of gammas of a given energy spectrum 

traveling in isotropic directions uniformly distributed in a box filled with a medium of 

specified photon and beta cross-sections and refractive index 

%   determine the number of Cerenkov photons produced within specified wavelength ranges 

%   note - the location of the Cerenkov production is taken to be the location where the gamma 

knocks off the electron 

 

% photonStartWavelength - vector of lower wavelength thresholds 

% photonEndWavelength - vector of upper wavelength thresholds 

% gammaSpectrum - two column matrix, 1st column is energy in MeV, 2nd column is abundance (0.511 

gammas are taken to be positrons and abundance is that of positron not of 0.511 photons) 

% xcom - function handle to photon cross-section function 

% estar - function handle to beta cross-section function 

% N - desired number of disintegrations 

% mediumRefractiveIndex - refractive index of the medium 

% boxDims - three element vector specifying box length, width and height 

% returns number of Cerenkov photons per wavelength range 

 

function nPhotons = 

cerenkov_secondary_electron_box(photonStartWavelength,photonEndWavelength,gammaSpectrum,xcom,esta

r,N,mediumRefractiveIndex,boxDims) 

 

nPhotons= zeros(numel(photonStartWavelength),1);     % allocate space for results 

stopThreshold= 0.01;                % set threshold energy at which 

we will stop following a given gamma 

 

cur_gamma_energy= bsxfun(@repvals,gammaSpectrum(:,1),round(gammaSpectrum(:,2)*N));  % generate 

~N*abundance gammas according to spectrum 

 

normalizer= N;                  % keep this number to be used 

to normalize 

N= numel(cur_gamma_energy);            % count total number of gammas 

actually generated 

 

rel_theta= acos(1-2*rand(N,1));            % choose random isotropic 

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi) 

rel_phi= 2 * pi * rand(N,1);              % and phi uniformly over 

(0:2pi) --- see Rajon 
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i_511= find(cur_gamma_energy==0.511);         % find annihilation photons 

cur_gamma_energy= [cur_gamma_energy;cur_gamma_energy(i_511)];  % duplicate gamma and add onto 

end 

rel_phi= [rel_phi;rel_phi(i_511)];            % within same plane 

rel_theta= [rel_theta;rel_theta(i_511)+pi];         % but going in the opposite 

direction 

 

fprintf(1,'added %d 511 keV photons\n',numel(cur_gamma_energy)-N); 

N= numel(cur_gamma_energy);            % recount total number of gammas 

actually generated 

 

sin_theta= sin(rel_theta);              % avoid calculating twice (see 

next two lines) 

cur_dir_x= sin_theta .* cos(rel_phi);          % calculate current direction 

as Cartesian vector (note - "rel" angles treated as absolute angles) 

cur_dir_y= sin_theta .* sin(rel_phi);           % ... 

cur_dir_z= cos(rel_theta);              % ... 

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2);      % length of direction vector 

cur_dir_x= cur_dir_x ./ d;              % normalize to unit length 

cur_dir_y= cur_dir_y ./ d;              % ... 

cur_dir_z= cur_dir_z ./ d;              % ... 

 

cur_loc_x= rand(N,1)*boxDims(1);           % start N gammas uniformly sampled 

within the box 

cur_loc_y= rand(N,1)*boxDims(2);           % ... 

cur_loc_z= rand(N,1)*boxDims(3);           % ... 

 

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);                  

   %%%%%%%%%%%%%%% 

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1); 

end  %%%%%%%%%%%%%%% 

 

i_left= 1:N;                   % initially, everyone is in 

n_left= numel(i_left);                % count number in 

 

ONCE=0; 

 

while n_left > 0 

 muvCompton= xcom(cur_gamma_energy(i_left),'Compton');    % Compton cross-section 

 muvPhotoelectric= xcom(cur_gamma_energy(i_left),'Photoelectric'); % photoelectric cross-

section 

 muv= muvCompton+muvPhotoelectric;            % sum of Compton 

scattering and photoelectric cross-sections 

 mean_free_path = 1 ./ muv;               % inverse is mean free 

path 

 r= mean_free_path .* rande(n_left,1);            % randomly choose 

distance traveled by each of the photons before interacting 

 

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left);     % determine new 

location 

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left);     % ... 

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left);     % ... 
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 i_in= find(cur_loc_x(i_left)>0 & cur_loc_x(i_left)<boxDims(1) & ...       % 

determine which gammas are still in the box 

      cur_loc_y(i_left)>0 & cur_loc_y(i_left)<boxDims(2) & ... 

      cur_loc_z(i_left)>0 & cur_loc_z(i_left)<boxDims(3)); 

 

 i_left= i_left(i_in);                   % throw out all 

gammas that are outside the box 

 n_left= numel(i_left);                  % update count of 

number in 

 

 fprintf(1,'fraction left= %f\n',n_left / N); 

 

 if n_left==0, break; end                 % escape if none 

left 

 

 d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2); % current distance 

from origin in cm 

 

 i_compton= rand(n_left,1) < (muvCompton(i_in) ./ (muvCompton(i_in)+muvPhotoelectric(i_in))); 

  % flag those undergoing Compton (ie incoherent) scatter 

 i_photoelectric= i_compton == 0;             % assume the rest have 

undergone photoelectric interactions 

 

 fprintf(1,'of %d, %d compton, %d photoelectric\n',n_left,sum(i_compton),sum(i_photoelectric)); 

 

 if any(i_compton) 

  [rel_theta,ce_energy,cp_energy] = rand_compton(cur_gamma_energy(i_left(i_compton))); % 

randomly sample thetas and corresponding electron and photon energies from Klein Nishina 

  cur_gamma_energy(i_left(i_compton))= cp_energy;      % update gamma energies 

  rel_phi= 2 * pi * rand(sum(i_compton),1);          % randomly sample 

n_left phi angles distributed uniformly over 0:2pi 

  [cur_dir_x,cur_dir_y,cur_dir_z] = 

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_compton),rel_theta,rel_phi); % update 

direction 

  nPhotons = nPhotons + 

sum(frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,ce_energy,estar,mediumRe

fractiveIndex),2);  % determine Cerenkov produced by secondary electrons 

 end 

 

 if any(i_photoelectric) 

  pe_energy= cur_gamma_energy(i_left(i_photoelectric));     % all energy goes to 

secondary electron 

  cur_gamma_energy(i_left(i_photoelectric))= 0;        % ... 

  nPhotons = nPhotons + 

sum(frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,pe_energy,estar,mediumRe

fractiveIndex),2);  % determine Cerenkov produced by secondary electrons 

 end 

 

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)]; 

paths_z{i}= [paths_z{i},cur_loc_z(i,1)];  end %%%%%%%%%%% 

 

 i_left= i_left(i_compton & (cur_gamma_energy(i_left) > stopThreshold));   % determine 

which gammas are left 
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 n_left= numel(i_left);                     % count 

number left 

 

% if ONCE==0 

%  ONCE=1; 

%  figure; for i=1:n_left, plot3(paths_x{i_left(i)},paths_y{i_left(i)},paths_z{i_left(i)}); 

hold on; end   % plot gamma paths in blue 

%  axis equal; 

%  xlabel('X'); ylabel('Y'); zlabel('Z'); 

% end 

end 

 

nPhotons= nPhotons / normalizer;               % adjust to Cerenkov 

photons per disintegration 

 

PLOT=0; 

if PLOT==1 

 figure; for i=1:N, plot3(paths_x{i},paths_y{i},paths_z{i}); hold on; end   % plot gamma 

paths in blue 

 axis equal; 

 xlabel('X'); ylabel('Y'); zlabel('Z'); 

end 

Published with MATLAB® R2017a 

% cerenkov_secondary_electron_psf - given a specified number of gammas of a given energy spectrum 

traveling in isotropic directions from the center of an infinite medium of specified photon and 

beta cross-sections and refractive index 

%   determine the number of Cerenkov photons produced within 560 to 580 nm as a function of 

distance from the source 

%   note - the location of the Cerenkov production is taken to be the location where the gamma 

knocks off the electron 

 

% gammaSpectrum - two column matrix, 1st column is energy in MeV, 2nd column is relative 

frequency (frequencies should sum to 1) 

% xcom - function handle to photon cross-section function 

% estar - function handle to beta cross-section function 

% N - desired number of photons 

% mediumRefractiveIndex - refractive index of the medium 

% MAXDIST - maximum range over which PSF will be tablulated 

% NDIVS - number of elements in PSF 

 

% returns PSF and associated distance scale 

 

function [psf,distance] = 

cerenkov_secondary_electron_psf(gammaSpectrum,xcom,estar,N,mediumRefractiveIndex,MAXDIST,NDIVS,FR

OM_LINE_FLG) 

 

if nargin < 7, FROM_LINE_FLG=0; end 

if nargin < 6, NDIVS=25; end             % default number of divisions 
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if nargin < 5, MAXDIST=0.2; end            % default spatial extent of psf 

output in cm 

 

psf= zeros(NDIVS,1);                % allocate PSF result vector 

nrm= zeros(NDIVS,1);               % allocate space for normalizer 

distance= ((1:NDIVS)-0.5)*MAXDIST/NDIVS;       % PSF x-axis 

stopThreshold= 0.01;                % set threshold energy at which 

we will stop following a given gamma 

 

cur_gamma_energy= bsxfun(@repvals,gammaSpectrum(:,1),round(gammaSpectrum(:,2)*N));  % generate 

~N gammas according to spectrum 

 

rel_theta= acos(1-2*rand(N,1));            % choose random isotropic 

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi) 

rel_phi= 2 * pi * rand(N,1);              % and phi uniformly over 

(0:2pi) --- see Rajon 

 

i_511= find(cur_gamma_energy==0.511);         % find annihilation photons 

cur_gamma_energy= [cur_gamma_energy;cur_gamma_energy(i_511)];  % duplicate gamma and add onto 

end 

rel_phi= [rel_phi;rel_phi(i_511)];            % within same plane 

rel_theta= [rel_theta;rel_theta(i_511)+pi];         % but going in the opposite 

direction 

 

N= numel(cur_gamma_energy);            % count total number of gammas 

actually generated 

 

sin_theta= sin(rel_theta);              % avoid calculating twice (see 

next two lines) 

cur_dir_x= sin_theta .* cos(rel_phi);          % calculate current direction 

as Cartesian vector (note - "rel" angles treated as absolute angles) 

cur_dir_y= sin_theta .* sin(rel_phi);           % ... 

cur_dir_z= cos(rel_theta);              % ... 

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2);      % length of direction vector 

cur_dir_x= cur_dir_x ./ d;              % normalize to unit length 

cur_dir_y= cur_dir_y ./ d;              % ... 

cur_dir_z= cur_dir_z ./ d;              % ... 

 

cur_loc_x= zeros(N,1);               % start N gammas at the origin 

cur_loc_y= zeros(N,1);               % ... 

cur_loc_z= zeros(N,1);               % ... 

 

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);                  

   %%%%%%%%%%%%%%% 

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1); 

end  %%%%%%%%%%%%%%% 

 

i_left= 1:N;                   % initially, everyone is in 

n_left= numel(i_left);                % count number in 

 

while n_left > 0 

 muvCompton= xcom(cur_gamma_energy(i_left),'Compton');    % Compton cross-section 

 muvPhotoelectric= xcom(cur_gamma_energy(i_left),'Photoelectric'); % photoelectric cross-
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section 

 muv= muvCompton+muvPhotoelectric;            % sum of Compton 

scattering and photoelectric cross-sections 

 mean_free_path = 1 ./ muv;               % inverse is mean free 

path 

 r= mean_free_path .* rande(n_left,1);            % randomly choose 

distance traveled by each of the photons before interacting 

 

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left);     % determine new 

location 

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left);     % ... 

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left);     % ... 

 

 if FROM_LINE_FLG==0 

  d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2); % current 

distance from origin in cm 

 else 

  d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2); % current distance from line in cm 

(ie ignoring z) 

 end 

 

 i_compton= rand(n_left,1) < (muvCompton ./ (muvCompton+muvPhotoelectric));   % flag those 

undergoing Compton (ie incoherent) scatter 

 i_photoelectric= i_compton == 0;             % assume the rest have 

undergone photoelectric interactions 

 

 if any(i_compton) 

  [rel_theta,ce_energy,cp_energy] = rand_compton(cur_gamma_energy(i_left(i_compton))); % 

randomly sample thetas and corresponding electron and photon energies from Klein Nishina 

  cur_gamma_energy(i_left(i_compton))= cp_energy;      % update gamma energies 

  rel_phi= 2 * pi * rand(sum(i_compton),1);          % randomly sample 

n_left phi angles distributed uniformly over 0:2pi 

  [cur_dir_x,cur_dir_y,cur_dir_z] = 

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_compton),rel_theta,rel_phi); % update 

direction 

  photons = frank_tamm_double_integral(560,580,ce_energy,estar,mediumRefractiveIndex);  % 

determine Cerenkov produced by secondary electrons 

  id= ceil(d(i_compton)*NDIVS/MAXDIST);          % convert distance to 

indices 

  id(id > NDIVS)= NDIVS;                % anything over the 

max goes into the last element 

  incindx(psf,id,photons);                 % update PSF 

  incindx(nrm,id);                   % update normalizer 

 end 

 

 if any(i_photoelectric) 

  ce_energy= cur_gamma_energy(i_left(i_photoelectric));     % all energy goes to 

secondary electron 

  photons = frank_tamm_double_integral(560,580,ce_energy,estar,mediumRefractiveIndex);  % 

determine Cerenkov produced by secondary electrons 

  id= ceil(d(i_photoelectric)*NDIVS/MAXDIST);        % convert distance to 

indices 

  id(id > NDIVS)= NDIVS;                % anything over the 
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max goes into the last element 

  incindx(psf,id,photons);                 % update PSF 

  incindx(nrm,id);                   % update normalizer 

 end 

 

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)]; 

paths_z{i}= [paths_z{i},cur_loc_z(i,1)];  end %%%%%%%%%%% 

 

 i_left= i_left(i_compton & cur_gamma_energy(i_left) > stopThreshold);   % determine 

which gammas are left 

 n_left= numel(i_left);                  % count number left 

end 

 

psf= psf ./ nrm; 

 

PLOT=0; 

if PLOT==1 

 figure; for i=1:N, plot3(paths_x{i},paths_y{i},paths_z{i}); hold on; end   % plot gamma 

paths in blue 

 axis equal; 

 xlabel('X'); ylabel('Y'); zlabel('Z'); 

 figure; plot(distance,psf,'-x');  % plot Cerenkov PSF 

end 

Published with MATLAB® R2017a 

function E= cerenkov_threshold(mediumRefractiveIndex) 

c = 299792458;          % c is the speed of light in a vacuum in meters per 

second 

E0= 0.511;           % rest mass-energy in MeV 

v=c./mediumRefractiveIndex;     % threshold beta velocity 

E= sqrt(E0.^2./(1-(v/c).^2))-E0;    % threshold beta energy 

Published with MATLAB® R2017a 

function checkIVIScamcal(worldptsfname,camptsfroot,IVISrootname,IVISparameterSTRUCT) 

 

 worldpts= load(worldptsfname);    % reads worldpts measured using Amira 

 

 % re-arrange axes to match the coordinate system used in Hartley and Zisserman's "Multiple 

View Geometry" p 154 

 

 worldpts(:,1)= 192 - worldpts(:,1);          % new X is flipped old X 

 tmp= worldpts(:,2);                          % save Y 

 worldpts(:,2)= 384 - worldpts(:,3);          % new Y is flipped old Z 

 worldpts(:,3)= tmp;                          % new Z is old Y 
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 dimX= IVISparameterSTRUCT.dims(1);                                            % IVIS image 

size 

 dimY= IVISparameterSTRUCT.dims(2); 

 px= dimX/2; py= dimY/2;                                                       % principal 

point offset fixed at center of image 

 f= IVISparameterSTRUCT.f;                                                     % focal length 

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY;                                       % roll, pitch 

and yaw to align axis of rotation of the mousebed to the Y-axis 

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)];    % X and Z shift 

to align axis of rotation of the mousebed to the Y-axis 

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY;                                   % roll, ptich 

and yaw to align world coordinate system to camera coordinate system 

 Ctilde= IVISparameterSTRUCT.Ctilde;                                           % coordinates of 

the camera center in the world coordinate system 

 rdfs= IVISparameterSTRUCT.rdfs;                                               % radial 

distortion factors 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 

 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 [angles,calfileLST]= getIVIScalangles(camptsfroot); 

 [angles,dirLST]= getIVISangles(IVISrootname); 

 

 n= length(angles); 

 for i=1:n 

  angle= angles(i);                           % rotation of the bed in degrees 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                          % transformation matrix describing rotation of 

the bed 

  P= P3 * P2 * P1;                            % align bed, rotate bed, project to camera 

coordinate frame 

 

  campts= load(deblank(calfileLST(i,:)));       % reads campts matrix 

  worldpts_indices= campts(:,1);                % extract indices of worldpts visible at 

current angle 

  campts= campts(:,2:3)';                       % campts without indices transposed to column 

vectors 

 

  wpts= [worldpts';ones(1,size(worldpts,1))];    % transpose worldpts and add row of ones 

 

  campts_est= P * wpts;                 % apply Ps 

  campts_est= campts_est(1:2,:) ./ repmat(campts_est(3,:),2,1); 
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  if ~isempty(rdfs) 

   % add camera distortion 

   r= sqrt((campts_est(1,:)-px).^2+(campts_est(1,:)-py).^2); 

   Lr= polyval([rdfs,1],r); 

   campts_est(1,:)= (campts_est(1,:)-px).*Lr+px; 

   campts_est(2,:)= (campts_est(2,:)-py).*Lr+py; 

  end 

  figure; 

  t=my_imread([deblank(dirLST(i,:)) '\photograph.tif']); 

  imshowsc(t,[0,2000]); 

  colormap('gray'); 

  hold on; 

  plot(campts_est(1,:),campts_est(2,:),'r-x'); 

  plot(campts_est(1,1),campts_est(2,1),'ro'); 

  plot(campts(1,:),campts(2,:),'b-x'); 

  plot(campts(1,1),campts(2,1),'bo'); 

  drawnow; 

 end 

Published with MATLAB® R2017a 

function [histo_c,histo_s] = coincidence_path_length_histogram(mask3d,density,nbins) 

 

 if nargin < 2, density= 100; end 

 if nargin < 3, nbins= 100; end 

 

 histo= zeros(nbins,1);      % allocate space for result 

 dims= size(mask3d);       % mask dimensions 

 maxlength= sqrt(sum(dims.^2));   % maximum possible pathlength through object is between 

diagonal corners 

 l2dims= ceil(log2(dims));     % log2 of dimensions rounded up 

 newdims= 2.^l2dims;       % next largest power of two for each dimension 

 nlevels= min(l2dims);       % number of subsamplings before one of the 

dimensions goes to 1 

 

 % calculate series of subsampled masks 

 m{1}= zeros(newdims); 

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d; 

 mask3d= m{1}; 

 for level=2:nlevels 

  m{level}= zoomout3(m{level-1});  % averages groups of 2x2x2 voxels 

  m{level}(m{level}~=1)= 0;    % zero out all non-ones 

 end 

 

 % at each level, remove voxels corresponding to regions that were entirely within the object 

at the lower levels 

 tmp1= zoomin3(m{nlevels}); 

 for level=(nlevels-1):-1:1  % working from the bottom up 

  tmp2= m{level};      % save current level 

  m{level}(tmp1==1) = 0;   % zero out voxels correspnding to ones in the lower level 
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  tmp1= zoomin3(tmp2);   % use blow up of copy in next round 

 end 

 % at this point, each level contains only the 1's that are "new" to that level 

 

 % initialize photon starting points, final locations and directions 

 locations= []; 

 starts= []; 

 directions= []; 

 

 % work from the bottom level up 

 for level=nlevels:-1:1 

  curdims= size(m{level});     % get dimensions of the current level 

  indices= find(m{level}==1);    % find the 1's 

  nIndices= numel(indices);    % count them 

  if nIndices > 0 

   [x,y,z]= ind2sub(curdims,indices);               % convert 

to coordinate indices 

   [new_locations,new_directions]= init_lines(x,y,z,density,level);     % fill 

each with photons 

   locations= [locations,new_locations];              % add to 

list of current locations 

   starts= [starts,new_locations];                % add to 

list of starting locations 

   directions= [directions,new_directions];             % keep 

full list of directions 

   locations= update_lines(locations,directions,m{level}); 

  end 

  if level > 1 

   locations= locations * 2; 

   starts= starts * 2; 

  end 

 end 

 stopflg= 0; 

 while ~stopflg 

  [locations,stopflg]= update_lines(locations,directions,mask3d); 

 end 

 

 R= 45*0.327;   % scanner radius 

 cylinder= [0.327*dims(1)/2,0.327*dims(2)/2,1,0.327*dims(1)/2,0.327*dims(2)/2,dims(3),R];  % 

points at either end of axis followed by the radius 

 nlines= size(locations,2); 

 hitflg= zeros(1,nlines); 

 hitlocs= zeros(3,nlines,2); 

 for i=1:nlines 

  points= intersectLineCylinder([locations(:,i,1)', locations(:,i,1)'-locations(:,i,2)'], 

cylinder); 

  if size(points,1) == 1 

   hitflg(1,i)= 1; 

   hitlocs(:,i,1)= points(1,:)'; 

  end 

  if size(points,1) == 2 

   hitflg(1,i)= 2; 

   hitlocs(:,i,1)= points(1,:)'; 
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   hitlocs(:,i,2)= points(2,:)'; 

  end 

 end 

 coinc_hitflg= (hitflg == 2); 

 singl_hitflg= (hitflg >= 1); 

 d= sqrt(sum( (locations(:,coinc_hitflg,1)-locations(:,coinc_hitflg,2)).^2 )); 

 [h,x]= hist(d,nbins); 

 histo_c= [x;h]; 

 d= sqrt(sum( cat(2,(locations(:,singl_hitflg,1)-starts(:,singl_hitflg,2)).^2, 

(locations(:,singl_hitflg,2)-starts(:,singl_hitflg,2)).^2) )); 

 [h,x]= hist(d,nbins); 

 histo_s= [x;h]; 

 p_coinc= sum(histo_c(2,:).*exp(-0.096*0.327*histo_c(1,:))) / nlines;   % total coincident 

events (ie total activity) times this number estimates the number of trues 

 p_sngl= sum(histo_s(2,:).*exp(-0.096*0.327*histo_s(1,:))) / nlines;    % total singles 

events (ie total activity * 2) times this number estimates the number of singles 

 keyboard 

end 

 

function [locations,directions] = init_lines(x,y,z,density,level) 

 n= density * 8^(level-1) * numel(x);    % the total number of new rays is the density 

times the voxel volume times the number of voxels 

 x= rowvectorize(x);          % make sure all are row vectors 

 y= rowvectorize(y);          % ... 

 z= rowvectorize(z);          % ... 

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n);  % random starting points within boxes 

 locations= cat(3,locations,locations);   % make into pair of locations that will travel in 

opposite directions 

 dir_theta= acos(1-2*rand(1,n));     % choose random isotropic initial directions 

specified in polar coordinates with theta distributed uniformly over cos(0:2pi) 

 dir_phi= 2 * pi * rand(1,n);       % and phi uniformly over (0:2pi) --- see Rajon 

 directions= cat(1,dir_theta,dir_phi);    % concatenate theta and phi to make a two row 

direction matrix 

end 

 

function [locations,stopflg]= update_lines(locations,directions,mask) 

 curdims= size(mask);                 % get current dimensions 

 sin_theta= sin(directions(1,:));               % avoid calculating 

twice (see next two lines) 

 dir_x= sin_theta .* cos(directions(2,:));           % calculate current 

direction as Cartesian vector 

 dir_y= sin_theta .* sin(directions(2,:));            % ... 

 dir_z= cos(directions(1,:));                % ... 

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2); 

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm; 

 

 stopflg= 1;                      % start by assuming 

all are out 

 

 left= locations(:,:,1); 

 head= left + cat(1,dir_x,dir_y,dir_z);            % specify head of ray 

as being unit distance away along line in specified direction 

 ijk= ceil(left);                     % determine 
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indices of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 

indicating for each ray if it is in or out of the grid 

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                       % don't 

signal stop until all rays are out of object 

  box_corner= floor(left); 

  [p,t]= ray_box_intersect(left(:,in),head(:,in),box_corner(:,in));     % determine 

intersection with sides of bounding box 

  left(:,in)= p;                      % this is the 

new location 

  left(:,in)= left(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;   % 

keep going just a little further to avoid being right on the face 

 end 

 

 right= locations(:,:,2); 

 head= right - cat(1,dir_x,dir_y,dir_z);            % specify head of 

ray as being unit distance away along line in specified direction 

 ijk= ceil(right);                    % determine indices 

of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 

indicating for each ray if it is in or out of the grid 

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                       % don't 

signal stop until all rays are out of object 

  box_corner= floor(right); 

  [p,t]= ray_box_intersect(right(:,in),head(:,in),box_corner(:,in));    % determine 

intersection with sides of bounding box 

  right(:,in)= p;                      % this is 

the new location 

  right(:,in)= right(:,in) - cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;  % keep 

going just a little further to avoid being right on the face 

 end 

 

 locations= cat(3,left,right);                % re-pair 

end 
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Published with MATLAB® R2017a 

function [locations,starts] = coincidence_paths(mask3d,density) 

 

 if nargin < 2, density= 100; end 

 

 dims= size(mask3d);       % mask dimensions 

 l2dims= ceil(log2(dims));     % log2 of dimensions rounded up 

 newdims= 2.^l2dims;       % next largest power of two for each dimension 

 nlevels= min(l2dims);       % number of subsamplings before one of the 

dimensions goes to 1 

 

 % calculate series of subsampled masks 

 m{1}= zeros(newdims); 

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d; 

 mask3d= m{1}; 

 for level=2:nlevels 

  m{level}= zoomout3(m{level-1});  % averages groups of 2x2x2 voxels 

  m{level}(m{level}~=1)= 0;    % zero out all non-ones 

 end 

 

 % at each level, remove voxels corresponding to regions that were entirely within the object 

at the lower levels 

 tmp1= zoomin3(m{nlevels}); 

 for level=(nlevels-1):-1:1  % working from the bottom up 

  tmp2= m{level};      % save current level 

  m{level}(tmp1==1) = 0;   % zero out voxels correspnding to ones in the lower level 

  tmp1= zoomin3(tmp2);   % use blow up of copy in next round 

 end 

 % at this point, each level contains only the 1's that are "new" to that level 

 

 % initialize photon starting points, final locations and directions 

 locations= []; 

 starts= []; 

 directions= []; 

 

 % work from the bottom level up 

 for level=nlevels:-1:1 

  curdims= size(m{level});     % get dimensions of the current level 

  indices= find(m{level}==1);    % find the 1's 

  nIndices= numel(indices);    % count them 

  if nIndices > 0 

   [x,y,z]= ind2sub(curdims,indices);               % convert 

to coordinate indices 

   [new_locations,new_directions]= init_lines(x,y,z,density,level);     % fill 

each with photons 

   locations= [locations,new_locations];              % add to 

list of current locations 

   starts= [starts,new_locations];                % add to 

list of starting locations 

   directions= [directions,new_directions];             % keep 
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full list of directions 

   locations= update_lines(locations,directions,m{level}); 

  end 

  if level > 1           % when deeper than the 1st level 

   locations= locations * 2;      % scale doubles in anticipation of moving up 

   starts= starts * 2;        % ... 

  end 

 end 

 stopflg= 0;        % assume no stop 

 while ~stopflg      % loop until stopflg is set 

  [locations,stopflg]= update_lines(locations,directions,mask3d);  % update lines until 

all are out 

 end 

end 

 

function [locations,directions] = init_lines(x,y,z,density,level) 

 n= density * 8^(level-1) * numel(x);    % the total number of new rays is the density 

times the voxel volume times the number of voxels 

 x= rowvectorize(x);          % make sure all are row vectors 

 y= rowvectorize(y);          % ... 

 z= rowvectorize(z);          % ... 

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n);  % random starting points within boxes 

 locations= cat(3,locations,locations);   % make into pair of locations that will travel in 

opposite directions 

 dir_theta= acos(1-2*rand(1,n));     % choose random isotropic initial directions 

specified in polar coordinates with theta distributed uniformly over cos(0:2pi) 

 dir_phi= 2 * pi * rand(1,n);       % and phi uniformly over (0:2pi) --- see Rajon 

 directions= cat(1,dir_theta,dir_phi);    % concatenate theta and phi to make a two row 

direction matrix 

end 

 

function [locations,stopflg]= update_lines(locations,directions,mask) 

 curdims= size(mask);                 % get current dimensions 

 sin_theta= sin(directions(1,:));               % avoid calculating 

twice (see next two lines) 

 dir_x= sin_theta .* cos(directions(2,:));           % calculate current 

direction as Cartesian vector 

 dir_y= sin_theta .* sin(directions(2,:));            % ... 

 dir_z= cos(directions(1,:));                % ... 

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2); 

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm; 

 

 stopflg= 1;                      % start by assuming 

all are out 

 

 left= locations(:,:,1); 

 head= left + cat(1,dir_x,dir_y,dir_z);            % specify head of ray 

as being unit distance away along line in specified direction 

 ijk= ceil(left);                     % determine 

indices of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 

indicating for each ray if it is in or out of the grid 
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 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                       % don't 

signal stop until all rays are out of object 

  box_corner= floor(left); 

  [p,t]= ray_box_intersect(left(:,in),head(:,in),box_corner(:,in));     % determine 

intersection with sides of bounding box 

  left(:,in)= p;                      % this is the 

new location 

  left(:,in)= left(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;   % 

keep going just a little further to avoid being right on the face 

 end 

 

 right= locations(:,:,2); 

 head= right - cat(1,dir_x,dir_y,dir_z);            % specify head of 

ray as being unit distance away along line in specified direction 

 ijk= ceil(right);                    % determine indices 

of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 

indicating for each ray if it is in or out of the grid 

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                       % don't 

signal stop until all rays are out of object 

  box_corner= floor(right); 

  [p,t]= ray_box_intersect(right(:,in),head(:,in),box_corner(:,in));    % determine 

intersection with sides of bounding box 

  right(:,in)= p;                      % this is 

the new location 

  right(:,in)= right(:,in) - cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;  % keep 

going just a little further to avoid being right on the face 

 end 

 

 locations= cat(3,left,right);                % re-pair 

end 

Published with MATLAB® R2017a 
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function pdf = 

compton_electron_energy_spectrum_per_gamma_in_h2o(gammaInitialEnergy,nSteps,nGammas) 

eHist=zeros(nSteps,1); 

for i=1:nGammas 

 e= gammaInitialEnergy; 

 while e > (gammaInitialEnergy / (nSteps*0.1)) 

  [photon_angle,ce_energy,e] = rand_compton(e); 

  index= ceil(nSteps*ce_energy/gammaInitialEnergy); 

  eHist(index)= eHist(index) + 1; 

  fprintf(1,'energy=%f\n',e); 

 end 

 fprintf(1,'gamma %d\n',i); 

end 

energies= gammaInitialEnergy*(1:nSteps)/nSteps - 0.5 * gammaInitialEnergy / nSteps; 

pdf= [energies',eHist/sum(eHist)]; 

Published with MATLAB® R2017a 

function [T,dedT,nu]= compton_energy_spectrum(hv) 

% eq references refer to "The Atomic Nucleus" by Robley Evans 1955 

% nu is the scattered photon angle relative to incident photon 

% hv is the energy of the incident photon 

r0= 2.818e-13;     % classical electron radius pg 822 

m0c2= 0.511;       % MeV 

alpha= hv / m0c2; 

nu= (1:179) * pi / 180; 

phi= acot((1+alpha)*tan(nu/2)); 

cos_sq_phi= cos(phi).^2; 

one_minus_cos_nu= 1 - cos(nu); 

one_plus_alpha_sq= (1 + alpha)^2; 

% eq 1.10 on pg 676 

T= (hv*alpha*one_minus_cos_nu) ./ (1+alpha*one_minus_cos_nu); 

hv_prime= hv - T; 

hv_prime_over_hv= hv_prime / hv; 

% eq 2.8 on pg 683 

part1= (r0^2/2) * (hv_prime_over_hv .^ 2) .* ((1 ./ hv_prime_over_hv) + hv_prime_over_hv - 

(sin(nu).^2)); 

% 2nd half of eq 5.2 on pg 692 

part2= (2*pi/(alpha^2*m0c2)) * ((one_plus_alpha_sq - alpha^2 * cos_sq_phi) ./ (one_plus_alpha_sq 

- alpha * (2+alpha) * cos_sq_phi)) .^ 2; 

% eq 5.2 on pg 692 

dedT= part1 .* part2; 

%dedT= part1; 

Published with MATLAB® R2017a 
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function cdf = delta_ray_cdf(delta_rayEnergy,betaEnergy) 

% delta_rayEnergy - vector of pssoble delta ray energies in MeV 

% betaEnergy - energy of the beta particle in MeV 

c = 299792458;                     % speed of light in a 

vacuum in meters per second 

me= 9.1093821545e-31;                  % electron rest mass 

in kg 

re= 2.817940289458e-15;                 % electron radius in 

meters 

N0= 6.0221417930e23;                  % Avogadro's number 

 

MeVperJoule= 6.241506363e+12;              % Joules to MeV conversion 

factor 

velocity= beta_velocity(betaEnergy);             % the beta particle 

velocity in meters per second 

beta= velocity / c;                    % electron velocity 

fraction of the speed of light 

 

re= re * 100;                      % convert from 

meters to cm 

me= me * c^2;                     % convert from kg to 

Joules 

me= me * MeVperJoule;                  % convert from Joules 

to MeV 

 

cdf= 2*pi*re^2*me*N0 ./ (beta.^2.*delta_rayEnergy);        % result is number of 

delta rays per cm 

Published with MATLAB® R2017a 

function pdf = delta_ray_pdf(delta_rayEnergy,betaEnergy) 

% delta_rayEnergy - vector of pssoble delta ray energies in MeV 

% betaEnergy - energy of the beta particle in MeV 

c = 299792458;                     % speed of light in a 

vacuum in meters per second 

me= 9.1093821545e-31;                  % electron rest mass 

in kg 

re= 2.817940289458e-15;                 % electron radius in 

meters 

N0= 6.0221417930e23;                  % Avogadro's number 

 

MeVperJoule= 6.241506363e+12;              % Joules to MeV conversion 

factor 

velocity= beta_velocity(betaEnergy);             % the beta particle 

velocity in meters per second 

beta= velocity / c;                    % electron velocity 

fraction of the speed of light 

 

re= re * 100;                      % convert from 
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meters to cm 

me= me * c^2;                     % convert from kg to 

Joules 

me= me * MeVperJoule;                  % convert from Joules 

to MeV 

 

pdf= 2*pi*re^2*me*N0 ./ (beta.^2.*delta_rayEnergy.^2);       % result is number of 

delta rays per cm per MeV 

Published with MATLAB® R2017a 

% calculates mean relative sensitivity of IVIS 200 camera over range distances from focal point 

(1.5 cm below up to depth cm above that) 

function factor = depth_adjustment_factor(depth,refindx) 

% depth - depth of the fluid in cm 

factor = quad(@(x)height_adjustment_factor(x,refindx,depth),-1.5,depth-1.5) / depth; 

Published with MATLAB® R2017a 

% calculates expansion terms for determination of electron scattering pdf as a function of 

normalized angle nu according to Moliere's theory 

% see Bethe, "Moliere's Theory of Multiple Scattering",  Physical Review, vol 89, No 6, Mar 15, 

1953 

% and Levin and Hoffman, "Calculation of positron range and its effect on the fundamental limit 

of positron emission tomography system spatial resolution", PMB, vol 44, 1999 

function [f0,f1,f2] = f_of_nu(nu) 

x= nu.^2;                        % see Bethe eqn 

24a 

x=nu; 

f0= 2*exp(-x);                     % see Bethe eqn 27  

(Levin eqn 8 is wrong) 

f1= zeros(size(f0));                     % allocate space 

f2= zeros(size(f0));                     % ... 

i= find(nu >= 4);                      % select large 

nu 

if numel(i) > 0                      % for large nu - 

use eqns 

 f1(i)= 2*(1-5*x(i).^(-2)).^(-4/5) ./ x(i).^4;             % see 

Levin eqn 8 

 f2(i)= 16*(log(x(i))+log(0.4)) ./ (x(i).^6 .* (1-9*x(i).^(-2)-24*x(i).^(-4)));   % ... 

end 

j= find(nu < 4);                      % select small 

nu 

if numel(j) > 0                      % for small nu - 

use table 

 [tf1,tf2]= Bethe_table(nu(j));                 % interpolate 
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Bethe's data 

 f1(j)= tf1;                        % transcribe 

entries 

 f2(j)= tf2;                        % ... 

end 

Published with MATLAB® R2017a 

function photonSecondsPerMeter = 

frank_tamm(photonFrequency,particleVelocity,particleCharge,mediumRelativePermeability,mediumRefra

ctiveIndex) 

% photonFrequency is the frequency of the Cerenkov photon in (1/seconds) 

% particleVelocity - is the speed of the particle (meters/sec) 

% particleCharge is the electric charge of the particle (elementary charge i.e. # of protons) 

% mediumRelativePermeability - is the permeability of the medium relative to that of free space 

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function 

of lambda 

% returns photonSecondsPerMeter 

 

c = 299792458 ;                                                                              % c 

is the speed of light in a vacuum in meters per second 

h = 6.62606896e-34;                                                                        % 

Planks constant in Joules*seconds 

mu0= 4*pi*1e-7;                                                                              % 

the permeability of free space in Joules*seconds^2/(Coulombs^2*meters) 

CoulombsPerElementaryCharge= 1.602176487e-19;                           % the number of Coulombs 

per proton 

mediumPermeability= mediumRelativePermeability * mu0;                  % mediumPermeability in 

Joules*seconds^2/(Coulombs^2*meters) 

betasq= c^2 ./ (particleVelocity.^2 .* mediumRefractiveIndex.^2);             % beta is the ratio 

of the speed of light in the medium to the speed of the particle 

JouleSecondsPerMeter = (pi * mediumPermeability .* 

(CoulombsPerElementaryCharge*particleCharge).^2) .* photonFrequency .* (1 - betasq);      % 

Cerenkov energy at specified wavelength 

JouleSecondsPerMeter(JouleSecondsPerMeter<0)= 0;                       % Cerenkov radiation only 

produced when beta > 1 so zero out negatives 

photonEnergy= photonFrequency * h;                                               % energy in 

Joules of a single photon of specified wavelength 

photonSecondsPerMeter= JouleSecondsPerMeter ./ photonEnergy;    % convert to number of photon-

seconds per meter 

Published with MATLAB® R2017a 

% frank_tamm_double_integral - integrates Frank-Tamm formula over wavelength range(s) and over 

full path length of beta 

function photons = 
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frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,initialBetaEnergy,estar,medi

umRefractiveIndex) 

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% initialBetaEnergy - starting energy of the beta particle in MeV 

% estar - handle to function determining energy loss in MeV per cm for a given beta energy 

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function 

of lambda 

% returns matrix of size (number of wavelengths,number of betas) containing the total number of 

Cerenkov photons within range of wavelengths produced by betas of given initial energies and 

parameters of the medium 

 

c = 299792458;                    % c is the speed of light 

in a vacuum in meters per second 

 

nw= numel(photonStartWavelength);            % the number of start 

wavelengths 

if numel(photonEndWavelength) ~= nw           % must match the number of end 

wavelengths 

 error('number of start and end wavelengths must match'); 

end 

nv= numel(initialBetaEnergy);               % the number of betas 

 

photons= zeros(nw,nv);                 % initialize photon 

accumulator 

betaEnergy= colvectorize(initialBetaEnergy);         % initialize beta energy and 

force to be a column vector 

betaVelocity= beta_velocity(betaEnergy);           % initialize beta 

velocities 

 

while any( (mediumRefractiveIndex*betaVelocity/c) > 1 )     % keep looping so long as at 

least one beta velocity is superluminal 

 Estep= betaEnergy * 1e-3; Estep(Estep<0.0001)= 0.0001;   % specify energy step in MeV as 

0.1% of betaEnergy but bottoming out at 0.1 keV 

 photonsPerMeter = 

frank_tamm_wavelength_integral(photonStartWavelength,photonEndWavelength,betaVelocity,mediumRefra

ctiveIndex); % determine Cerenkov production rate in photons per meter 

 dEdx= estar(betaEnergy,'Total');                     

                  % determine beta energy loss rate MeV per 

cm 

 distance= rowvectorize(1e-2 * Estep ./ dEdx);                

                  % determine distance in meters that beta 

moves in losing Estep 

 distance(isnan(distance))= 0;                      

                  % zero out NaN's (i.e. Estep/dEdx = 0/0) 

 distance(isinf(distance))= 0;                      

                  % zero out inf's (i.e. Estep/dEdx = ?/0) 

 photons= photons + repmat(distance,nw,1) .* photonsPerMeter;           

                % accumulate Cerenkov photons generated in that 

distance 

 betaEnergy= betaEnergy - Estep;                     
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                 % loose Estep energy 

 betaEnergy(betaEnergy<0)= 0;                      

                 % careful not to go below zero 

 betaVelocity= beta_velocity(betaEnergy);                  

                  % recalc beta velocities 

end 

Published with MATLAB® R2017a 

% frank_tamm_triple_integral - integrates Frank-Tamm formula over wavelength range(s), over full 

path length of beta and over a given beta spectrum 

function photons = 

frank_tamm_triple_integral(photonStartWavelength,photonEndWavelength,betaSpectrum,estar,mediumRef

ractiveIndex) 

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% betaSpectrum - table with two columns, energy in MeV and probability 

% estar - handle to function determining energy loss in MeV per cm for a given beta energy 

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function 

of lambda 

% returns vector of size equal to the number of wavelengths, containing the total number of 

Cerenkov photons within each range of wavelengths produced by betas of given beta spectrum and 

parameters of the medium 

 

c = 299792458;                    % c is the speed of light 

in a vacuum in meters per second 

 

[ne,two]= size(betaSpectrum);              % get beta spectrum table 

dimensions 

if two ~= 2 

 error('beta spectrum must be two columns: energy and probability'); 

end 

betaSpectrum(:,2)= betaSpectrum(:,2) / sum(betaSpectrum(:,2));  % force probabilities to sum to 

1 

 

nw= numel(photonStartWavelength);            % the number of start 

wavelengths 

if numel(photonEndWavelength) ~= nw           % must match the number of end 

wavelengths 

 error('number of start and end wavelengths must match'); 

end 

 

% photons= zeros(nw,1);                 % initialize photon 

accumulator 

 

% for i=1:ne 

%  photons = photons + betaSpectrum(i,2) * 

frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,betaSpectrum(i,1),estar,medi
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umRefractiveIndex); 

% end 

 

photons = sum(repmat(rowvectorize(betaSpectrum(:,2)),nw,1) .* 

frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,betaSpectrum(:,1),estar,medi

umRefractiveIndex),2); 

Published with MATLAB® R2017a 

% frank_tamm_wavelength_integral - calculates integral of Frank Tamm assuming charge of +/- 1 

(i.e. a beta)  and relative permeability of 1 

function photonsPerMeter = 

frank_tamm_wavelength_integral(photonStartWavelength,photonEndWavelength,particleVelocity,mediumR

efractiveIndex) 

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in 

nanometers 

% particleVelocity - is the speed of the particle (meters/sec) 

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function 

of lambda 

% returns photonsPerMeter 

 

c = 299792458;                    % c is the speed of light 

in a vacuum in meters per second 

alpha= 7.297352537650e-3;               % the fine structure 

constant (unitless) 

 

photonStartWavelength= colvectorize(photonStartWavelength) / 1e9; % make into column and convert 

to meters 

photonEndWavelength= colvectorize(photonEndWavelength) / 1e9; % make into column and convert to 

meters 

if any(photonStartWavelength >= photonEndWavelength)     % ensure order is correct 

 error('start wavelength must be less than end wavelength'); 

end 

particleVelocity= rowvectorize(particleVelocity);        % make into row 

 

nw= numel(photonStartWavelength);            % the number of start 

wavelengths 

if numel(photonEndWavelength) ~= nw           % must match the number of end 

wavelengths 

 error('number of start and end wavelengths must match'); 

end 

nv= numel(particleVelocity);               % the number of betas 

 

beta= particleVelocity / c;                % particle relative 

phase velocity 

% result is matrix of size nw by nv -- see Measurement of B-Emitting Nuclides Using Cerenkov 

Radiation by HH Ross in Analytical Chemistry (41) 10, Aug 1969 p 1260 

photonsPerMeter= 2*pi*alpha * ((1./photonStartWavelength)-(1./photonEndWavelength)) * (1 - (1 ./ 
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(beta.^2 * mediumRefractiveIndex^2))); 

photonsPerMeter(photonsPerMeter<0)= 0;          % zero out negatives which are 

indicative of beta*mediumRefractiveIndex < 1 

Published with MATLAB® R2017a 

function f = height_adjustment_factor(d,refindx,depth) 

% d - distance from focus point assuming 13 cm FOV on the IVIS 200 

% depth - depth of the fluid 

A= 6.35;          % aperature radius in cm 

H= 51.2;          % lens to focal point distance in cm 

C= 1-cos(atan(A/H)); 

f= (1-cos(atan(A ./ (H-d)))) / C;  % sensitivity of camera relative to sensitivity at focal 

point (i.e. relative to d=0) 

% calc magnification correction factors http://scubageek.com/articles/wwwbigr.html 

D= depth - d -1.5;       % distance d is below the surface 

L= H - depth + 1.5;          % distance from lens to the fluid surface in cm 

R= 5;           % distance from lens to CCD 

M = (D+L+R)/(D*refindx+L+R); ; % magnification factor 

f= f ./ M;          % sensitivity is inverse of magnification 

Published with MATLAB® R2017a 

% IVIScam_mdl - IVIS optical imager with rotating bed modelled as a basic pinhole camera - see 

Hartley and Zisserman p153+ 

function campts_all= IVIScam_mdl(p,worldptsSTRUCT,dimX,dimY,rdfs) 

 px= dimX/2; py= dimY/2;    % principal point offset fixed at center of image 

 f= p(1);                   % focal length 

 aor2yRPY= p(2:4);          % roll, ptich and yaw to align axis of rotation of the mousebed to 

the Y-axis 

 aor2yXYZ= [p(5);0;p(6)];   % X and Z shift to align axis of rotation of the mousebed to the Y-

axis 

 wcs2ccsRPY= p(7:9);        % roll, ptich and yaw to align world coordinate system to camera 

coordinate system 

 Ctilde= p(10:12);          % coordinates of the camera center in the world coordinate system 

 

 K= [f 0 px; 0 f py; 0 0 1];      % camera calibration matrix 

 x= [0 0 0 1 wcs2ccsRPY 0]; 

 R= x2t(x','rpy');                % rotation matrix representing the orientation of the camera 

coordinate frame 

 R= R(1:3,1:3);                   % reduce R to 3x3 

 P3= K * R * [eye(3) -Ctilde'];   % projective transform model of the camera 

 

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis 

 x= [0 0 0 1 aor2yRPY 0]; 
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 R= x2t(x','rpy'); 

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]]; 

 

 campts_all= []; 

 n= length(worldptsSTRUCT); 

 for i=1:n 

  angle= worldptsSTRUCT(i).angle;                           % rotation of the bed in degrees 

  worldpts= worldptsSTRUCT(i).worldpts; 

  x= [0 0 0 1 0 angle*pi/180 0 0]; 

  P2= x2t(x','rpy');                                        % transformation matrix 

describing rotation of the bed 

  campts= P3 * P2 * P1 * worldpts;                          % align bed, rotate bed, project 

to camera coordinate frame 

  campts= campts(1:2,:) ./ repmat(campts(3,:),2,1);         % normalize to 2D space 

  if nargin >= 5 

   % add camera distortion 

   r= sqrt((campts(1,:)-px).^2+(campts(2,:)-py).^2); 

   Lr= polyval([rdfs,1],r); 

   campts(1,:)= (campts(1,:)-px)./Lr+px; 

   campts(2,:)= (campts(2,:)-py)./Lr+py; 

  end 

    campts_all= [campts_all,campts];             % accumulate campts 

  end 

  campts_all= reshape(campts_all,prod(size(campts_all)),1);     % reshape as column vector 

Published with MATLAB® R2017a 

% returns the PDF for specified angle(s) for electrons undergoing multiple scattering events off 

nuclei as described by Moliere 

function pdf = moliere_pdf(theta,thickness,electronEnergy,A,Z) 

% theta is scattering angle in radians, 0 begin no scatter and pi being 180 degree back scatter 

% thickness is the pathlength that the electron travels through the media. the units are 

grams/cm^2 (ie density normalized cm) 

% electronEnergy is the initial energy of the electron in MeV 

% A is the atomic weight of media in grams per mole 

% Z is the effective atomic number of the media 

c = 299792458;                     % speed of light in a 

vacuum in meters per second 

h= 6.6260689633e-34;                  % Planck's constant in 

Joule*seconds = kg*meter^2/second 

me= 9.1093821545e-31;                  % electron rest mass 

in kg 

alpha=  7.297352537650e-3;                % the fine structure 

constant (unitless) 

N0= 6.0221417930e23;                  % Avogadro's number 

 

velocity= beta_velocity(electronEnergy);            % the electron 

velocity in meters per second 

hbar= h/(2*pi);                     % reduced Planck 

beta= velocity / c;                    % electron velocity 
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fraction of the speed of light 

lorentz_factor= 1 ./ sqrt(1-beta.^2);              % Lorentz factor 

momentum= lorentz_factor .* velocity * me;           % relativistic 

momentum in kg * meters / second 

lambda_bar= hbar./momentum;               % the electron DeBroglie 

wavelength in meters 

e= sqrt(alpha*c*hbar);                  % using definition of 

fine structure constant - calc e in kg^0.5*meters^1.5/second 

a0= hbar^2/(me*e^2);                   % the Bohr radius in 

meters (same as classical electron radius / square of fine structure constant 

 

zalpha= Z*e^2./(hbar*velocity);               % the alpha from 

Bethe's eqn 21a; 

 

X0= lambda_bar / (0.885*a0*Z^(-1/3));             % unitless critical 

angle -see Levin eqn 5 

Xa= sqrt(X0.^2.*(1.13+3.76*zalpha.^2));            % unitless 

characteristic screening angle - see Levin eqn 4 

C= 40000*pi*N0*0.885^2*hbar^2/(me^2*c^2*1.167*1.13); 

C= 6680; 

b = log(thickness*C*(Z+1)*Z^(1/3) ./ (beta.^2*A.*(1+(3.76/1.13)*zalpha.^2)));   % normalized 

distance parameter - see Bethe eqn 22 

Xc= sqrt(1.167*Xa.^2.*exp(b));                % unitless minimum 

scattering angle - see Levin eqn 2 

 

if any(exp(b)<17), fprintf(1,'warning - number of collisions (%f) less than 17\n',min(exp(b))); 

end 

%N= N0 / A; 

%Xc= sqrt(40000*pi*N*thickness*e^4*Z*(Z+1)/(momentum*velocity)^2) 

%b= log(Xc^2/(1.167*Xa^2)) 

 

B= Bfun(b);                      % solve for B - see 

Levin pg 784 

nu= theta./(Xc.*sqrt(B));                  % see Levin pg 784 

[f0,f1,f2]= f_of_nu(nu);                   % calc f0, f1 

and f2 according to Levin pg 784 

pdf= f0 + f1./B + f2./B.^2;                 % and the answer is 

... 

 

 

function Bat_b = Bfun(at_b) 

if any(at_b < 1) || any(at_b > 28) 

 error('at_b must be between 1 and 28'); 

end 

B=logspace(0,1.5,100); 

b=B-log(B); 

Bat_b= interp1(b,B,at_b); 

Published with MATLAB® R2017a 



172 

function histo = path_length_histogram(mask3d,density,nbins) 

 

 if nargin < 2, density= 100; end 

 if nargin < 3, nbins= 100; end 

 

 histo= zeros(nbins,1);      % allocate space for result 

 dims= size(mask3d);       % mask dimensions 

 maxlength= sqrt(sum(dims.^2));   % maximum possible pathlength through object is between 

diagonal corners 

 l2dims= ceil(log2(dims));     % log2 of dimensions rounded up 

 newdims= 2.^l2dims;       % next largest power of two for each dimension 

 nlevels= min(l2dims);       % number of subsamplings before one of the 

dimensions goes to 1 

 

 % calculate series of subsampled masks 

 m{1}= zeros(newdims); 

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d; 

 mask3d= m{1}; 

 for level=2:nlevels 

  m{level}= zoomout3(m{level-1});  % averages groups of 2x2x2 voxels 

  m{level}(m{level}~=1)= 0;    % zero out all non-ones 

 end 

 

 % at each level, remove voxels corresponding to regions that were entirely within the object 

at the lower levels 

 tmp1= zoomin3(m{nlevels}); 

 for level=(nlevels-1):-1:1  % working from the bottom up 

  tmp2= m{level};      % save current level 

  m{level}(tmp1==1) = 0;   % zero out voxels correspnding to ones in the lower level 

  tmp1= zoomin3(tmp2);   % use blow up of copy in next round 

 end 

 % at this point, each level contains only the 1's that are "new" to that level 

 

 % initialize photon starting points, final locations and directions 

 locations= []; 

 starts= []; 

 directions= []; 

 

 % work from the bottom level up 

 for level=nlevels:-1:1 

  curdims= size(m{level});     % get dimensions of the current level 

  indices= find(m{level}==1);    % find the 1's 

  nIndices= numel(indices);    % count them 

  if nIndices > 0 

   [x,y,z]= ind2sub(curdims,indices);               % convert 

to coordinate indices 

   [new_locations,new_directions]= init_rays(x,y,z,density,level);     % fill 

each with photons 

   locations= [locations,new_locations];              % add to 

list of current locations 

   starts= [starts,new_locations];                % add to 

list of starting locations 
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   directions= [directions,new_directions];             % keep 

full list of directions 

   locations= update_rays(locations,directions,m{level}); 

  end 

  if level > 1 

   locations= locations * 2; 

   starts= starts * 2; 

  end 

 end 

 stopflg= 0; 

 while ~stopflg 

  [locations,stopflg]= update_rays(locations,directions,mask3d); 

 end 

 

% need to keep updating till all rays leave the mask  -- also need to terminate based on mask 

only at the final level - instead keep rays on hold (ie don't extend but don't terminate) 

 

 d= sqrt(sum( (locations-starts).^2 )); 

 [h,x]= hist(d,nbins); 

 histo= [x,h]; 

 keyboard 

end 

 

function [locations,directions] = init_rays(x,y,z,density,level) 

 n= density * 8^(level-1) * numel(x);    % the total number of new rays is the density 

times the voxel volume times the number of voxels 

 x= rowvectorize(x);          % make sure all are row vectors 

 y= rowvectorize(y);          % ... 

 z= rowvectorize(z);          % ... 

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n);  % random starting points within boxes 

 dir_theta= acos(1-2*rand(1,n));     % choose random isotropic initial directions 

specified in polar coordinates with theta distributed uniformly over cos(0:2pi) 

 dir_phi= 2 * pi * rand(1,n);       % and phi uniformly over (0:2pi) --- see Rajon 

 directions= cat(1,dir_theta,dir_phi);    % concatenate theta and phi to make a two row 

direction matrix 

end 

 

function [locations,stopflg]= update_rays(locations,directions,mask) 

 curdims= size(mask);                 % get current dimensions 

 sin_theta= sin(directions(1,:));               % avoid calculating 

twice (see next two lines) 

 dir_x= sin_theta .* cos(directions(2,:));           % calculate current 

direction as Cartesian vector 

 dir_y= sin_theta .* sin(directions(2,:));            % ... 

 dir_z= cos(directions(1,:));                % ... 

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2); 

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm; 

 head= locations + cat(1,dir_x,dir_y,dir_z);          % specify head of ray 

as being unit distance away along line in specified direction 

 ijk= ceil(locations);                  % determine indices 

of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 
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indicating for each ray if it is in or out of the grid 

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                      % don't signal 

stop until all rays are out of object 

  box_corner= floor(locations); 

  [p,t]= ray_box_intersect(locations(:,in),head(:,in),box_corner(:,in));     % 

determine intersection with sides of bounding box 

  locations(:,in)= p;                   % this is the 

new location 

  locations(:,in)= locations(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; 

 % keep going just a little further to avoid being right on the face 

 else 

  stopflg= 1;                      % all out 

 end 

end 

Published with MATLAB® R2017a 

function pathlength_analysis(CTdirectory,PTdirectory) 

 

pix_size= 1;                      % coordinate system 

going forward will have isotropic voxels of size pix_size cm 

 

ct= MSKread3DDicom([CTdirectory, '\\*']);           % get CT data 

ct_xsize= ct.dicomHdr.PixelSpacing(1) / 10;          % get voxel sizes in cm 

ct_ysize= ct.dicomHdr.PixelSpacing(2) / 10;          % ... 

ct_zsize= ct.dicomHdr.SpacingBetweenSlices / 10;        % ... 

 

new_xdim= double(round(ct.dicomHdr.Width*ct_xsize/pix_size));   % determine new dims to get 

isotropic voxels 

new_ydim= double(round(ct.dicomHdr.Height*ct_ysize/pix_size));   % ... 

new_zdim= double(round(size(ct.data,3)*ct_zsize/pix_size));     % ... 

[xi,yi,zi]= 

meshgrid((1:new_xdim)*pix_size/ct_xsize,(1:new_ydim)*pix_size/ct_ysize,(1:new_zdim)*pix_size/ct_z

size);  % resample mesh 

tissue_distribution=interp3(ct.data,xi,yi,zi);           % 

tissue_distribution is isotropic 

tissue_distribution= (tissue_distribution>-900 & tissue_distribution<-200) + ... 

                             (tissue_distribution>=-200 & tissue_distribution<300)*2 + ... 

                             (tissue_distribution>=300)*3;         % segment 

into air, lung, water and bone (0,1,2,3) mua values are (0,0.026,0.095,0.12) 

 

pt= MSKread3DDicom([PTdirectory, '\\*']);           % get PT data 
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pt_xsize= pt.dicomHdr.PixelSpacing(1) / 10;          % get voxel sizes in cm 

pt_ysize= pt.dicomHdr.PixelSpacing(2) / 10;          % ... 

pt_zsize= pt.dicomHdr.SliceThickness / 10;           % ... 

[xi,yi,zi]= 

meshgrid((1:new_xdim)*pix_size/pt_xsize,(1:new_ydim)*pix_size/pt_ysize,(1:new_zdim)*pix_size/pt_z

size);  % resample mesh 

source_distribution=interp3(pt.data,xi,yi,zi);           % 

source_distribution sampled same as tissue distribution 

 

figure; orthosc(tissue_distribution) 

figure; orthosc(source_distribution) 

 

xcenter= pix_size*new_xdim/2;               % coordinate of image 

center 

ycenter= pix_size*new_ydim/2;               % ... 

axial_extent= 15.7;                   % PT cylinder axial 

extent in cm  -  be nice if this was in header 

R= 88 / 2;                       % PT cylinder 

radius in cm  -  be nice if this was in header 

ptcyl= [xcenter,ycenter,0,xcenter,ycenter,47*pix_size,R];      % define PT cylinder 

(points at either end of axis followed by radius 

 

if pt.dicomHdr.Units ~= 'BQML'               % be sure of units 

 error('error - data not stored in Bq/mL\n'); 

end 

% set fudge factors based upon scanner type 

if pt.dicomHdr.ManufacturersModelName == 'Discovery 690' 

 detector_efficiency_ff= 0.6061; 

 timing_window_ff= 0.9544; 

elseif pt.dicomHdr.ManufacturersModelName == 'Discovery 600' 

 detector_efficiency_ff= 0.7711; 

 timing_window_ff= 1.1171; 

elseif pt.dicomHdr.ManufacturersModelName == 'Discovery STE' 

 fprintf(1,warning - 'fudge factors for DSTE not yet established\n'); 

 detector_efficiency_ff= 1; 

 timing_window_ff= 1; 

else 

 fprintf(1,'Unknown scanner\n'); 

 detector_efficiency_ff= 1; 

 timing_window_ff= 1; 

end 

 

total_coinc= 0; 

for i=1:size(pt.data,3) 

 total_activity_Bq= overall_sum(pt.data(:,:,i)) * pt_xsize * pt_ysize * pt_zsize;   % sum 

times voxel volume to get total activity for this slice 

 total_activity_Bq= total_activity_Bq / (pt.dicomHdrVector(i).DecayFactor * 

pt.dicomHdrVector(i).DeadTimeFactor);  % adjust for dead time and decay 

 total_coinc= total_coinc + total_activity_Bq * double(pt.dicomHdrVector(i).acq_duration) * 

pt.dicomHdr.positron_fraction; % accumulate expected total number of coincident events within 

the FOV 

end 
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nEventsSimulated= 1e5; 

[locations,directions,starts,lengths] = 

pet_photon_sim(tissue_distribution,nEventsSimulated,source_distribution); 

nLines= size(locations,2);                   % total number 

of annihilation pairs simulated 

locations= locations * pix_size;                 % convert to cm 

starts= starts * pix_size;                   % ... 

lengths= lengths * pix_size;                  % ... 

 

[h,x]=hist(lengths(2,:,1)+lengths(2,:,2),100); figure; bar(x,h); 

[h,x]=hist(lengths(3,:,1)+lengths(3,:,2),100); figure; bar(x,h); 

[h,x]=hist(lengths(4,:,1)+lengths(4,:,2),100); figure; bar(x,h); 

 

nSlices= double(pt.dicomHdr.NumberOfSlices);            % get number of 

slices 

nBeds= (nSlices-5) / 42;                  % assume 47 slices 

per bed with 5 slice overlap 

begSlices= ((1:nBeds)-1) * 42 + 1;              % locations of 1st 

slice of each bed position in "slice" units 

bed_positions= begSlices * pt_zsize;             % convert to cm 

 

[hitflgs,hitlocs] = 

pet_geometry_filter(locations,[xcenter,ycenter],[axial_extent,R],bed_positions,[atan2(axial_exten

t,2*R),0]); 

 

mualengths= lengths; 

mualengths(1,:,:)= 0; 

mualengths(2,:,:)= mualengths(2,:,:) * 0.095;  % 0.026; 

mualengths(3,:,:)= mualengths(3,:,:) * 0.095; 

mualengths(4,:,:)= mualengths(4,:,:) * 0.12; 

mualengths= squeeze(sum(mualengths,1)); 

 

figure; 

for i=1:nBeds 

 j=round((i-1)*13.8462)+1; 

    s(i)=overall_sum(source_distribution(:,:,j:(j+13))); 

    t(i)=overall_sum(tissue_distribution(:,:,j:(j+13))); 

 

 % determine measured trues - note: definition of prompts is different depending up the randoms 

correction method applied 

 midSlice= (i-1) * 42 + 1;                    % location 

of middle slice of current bed position in "slice" units 

    fprintf(1,'midslice %d 

location=%f\n',pt.dicomHdrVector(midSlice).SeriesNumber,pt.dicomHdrVector(midSlice).SliceLocation

); 

 randoms_meas= pt.dicomHdrVector(midSlice).total_delays;             % 

measured randoms 

 if pt.dicomHdr.RandomsCorrectionMethod == 'SING' 

  trues_meas= pt.dicomHdrVector(midSlice).total_prompts * (1 - 

pt.dicomHdrVector(midSlice).ScatterFractionFactor) - randoms_meas;     % - 

pt.dicomHdrVector(midSlice).total_delays; 

%  trues_meas= pt.dicomHdrVector(midSlice).total_prompts;     % - 

pt.dicomHdrVector(midSlice).total_delays; 
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 else 

  fprintf(1,'warning - untested conditions using other than singles-based randoms 

correction\n'); 

  trues_meas= pt.dicomHdrVector(midSlice).total_prompts * (1 - 

pt.dicomHdrVector(midSlice).ScatterFractionFactor) - randoms_meas; 

 end 

    mtv(i)=trues_meas; 

    mrv(i)=randoms_meas; 

 

 coinc_hitflg= (sum(hitflgs(:,:,i),1) == 2);              % separate 

coincidences from singles 

 singl_hitflg= (sum(hitflgs(:,:,i),1) == 1);               % ... 

 

    a(i)= sum(sum(mualengths(coinc_hitflg,:),2)); 

    b(i)= sum(sum(squeeze(lengths(3,coinc_hitflg,:)),2)); 

 p_coinc= sum(exp(-sum(mualengths(coinc_hitflg,:),2))) / nLines;         % 

calculate the probability of a coincident pair 

 p_singl= sum(sum(exp(-mualengths(singl_hitflg,:)),2)) / nLines;          % 

calculate the probability of a single 

 trues_estimate= total_coinc * p_coinc * detector_efficiency_ff^2;     % estimate trues 

 randoms_estimate= ((total_coinc * p_singl * detector_efficiency_ff) / 

double(pt.dicomHdrVector(midSlice).acq_duration)) * timing_window_ff; 

    etv(i)=trues_estimate; 

    erv(i)=randoms_estimate; 

    yyy(i)= p_coinc * nLines; 

 

% fprintf(1,'\n\n\nBed position %d \n',i); 

% fprintf(1,'estimated trues =\t%f\nmeasured trues =\t%f\noff by factor of 

%f\n',trues_estimate,trues_meas,trues_estimate/trues_meas); 

% fprintf(1,'estimated rndms =\t%f\nmeasured rndms =\t%f\noff by factor of 

%f\n',randoms_estimate,randoms_meas,randoms_estimate/randoms_meas); 

    hold on; plot3(starts(1,coinc_hitflg),starts(2,coinc_hitflg),starts(3,coinc_hitflg),'x') 

    

plot3(hitlocs(1,coinc_hitflg,2,i),hitlocs(2,coinc_hitflg,2,i),hitlocs(3,coinc_hitflg,2,i),'rx') 

    

plot3(hitlocs(1,coinc_hitflg,1,i),hitlocs(2,coinc_hitflg,1,i),hitlocs(3,coinc_hitflg,1,i),'gx') 

    axis equal 

end 

figure; plot(mtv); hold on; plot(etv,'r'); plot(s,'g'); plot(yyy,'m'); 

figure; plot(t); 

figure; plot(a); 

figure; plot(b); 

keyboard 

Published with MATLAB® R2017a 

function P= perspective_transform_build(pos,target,up,va) 

v= target - pos;                              % v is vector describing the direction that the 

camera is pointing 

v= v / sqrt(sum(v.^2));                       % normalize to unit length 
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up= up - dot(up,v) * v;                       % up is the camera's up direction, the real up is 

perpendicular to v 

up= up / sqrt(sum(up.^2));                    % normalize up vector to unit length 

r= cross(v,up);                               % r points to the camera's right 

R= [[0;0;1],[0;1;0],[1;0;0]] \ [v',up',r'];   % R will cause v to point to +Z, up to point to +Y 

and r to point to +X 

f= cot((va/2)*(pi/180));                      % f is the focal length 

K= diag([f,f,1]);                             % K is the camera internal calibration matrix 

P= K * R * [eye(3),-pos'];           % P is the camera matrix 

Published with MATLAB® R2017a 

% PERSPECTIVE_TRANSFORM_DECOMPOSE Extract K, R from camera matrix P. 

% 

%    [K,R,Ctilde] = PERSPECTIVE_TRANSFORM_DECOMPOSE(P [,noscale]) finds K, R, t such that P = 

K*R*[eye(3) -Ctilde]. 

%    It is det(R)==1. 

%    K is scaled so that K(3,3)==1 and all diagonal elements of K are >0. 

% 

%    Works also generally for any P of size N-by-(N+1). 

%    Works also for P of size N-by-N, then t is not computed. 

 

% Brad Beattie 

 

function [K, R, Ctilde] = perspective_transform_decompose(P,noscale) 

N = size(P,1); 

H = P(:,1:N); 

[K,R] = vgg_rq(H); 

Ctilde = -P(:,1:N)\P(:,end); 

if nargin > 1 

 for i=1:3 

  R(i,:)= R(i,:) * sign(K(i,i)); 

  K(:,i)= K(:,i) * sign(K(i,i)); 

 end 

 K= K / K(3,3); 

end 

Published with MATLAB® R2017a 

%PHOTON_INTERACTION - given photon energy, material and path-length, calculates probability of 

depositing specified energies 

%  [pedei,cdei,ppdei]= photon_interaction(hv,material,pathlength,at_energies) 

%  hv - photon energy in MeV 

%  material - type of material photon is interacting with (must be supported by mu_table) 

%  pathlength - mean path-length through material 

%  at_energies - vector of energies at which probabilities/intensities are calculated 
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%  pedei - photoelectric deposited energy intensity 

%  cdei - Compton deposited energy intensity 

%  ppdei - pair production deposited energy intensity 

 

function [pedei,cdei,ppdei,nu]= photon_interaction(hv,material,pathlength,at_energies) 

% allocate result vectors 

pedei= zeros(size(at_energies));   % photelectric deposited energy intensity 

cdei= zeros(size(at_energies));    % Compton deposited energy intensity 

ppdei= zeros(size(at_energies));   % pair-production deposited energy intensity 

if hv <= 0, return; end 

% get mu's for incident photon energy 

[mu_compton,mu_photoelectric,mu_pairproduction,mu_total]= mu_table(material,hv); 

% apply mu to length to get probability of interaction 

p_total= 1 - exp(-mu_total*pathlength); 

p_compton= p_total .* mu_compton ./ mu_total; 

p_photoelectric= p_total .* mu_photoelectric ./ mu_total; 

p_pairproduction= p_total .* mu_pairproduction ./ mu_total; 

% photoelectric 

[de,i]= min(abs(hv-at_energies));  % find energy in at_energies closest to hv 

if de > 0.1, warning('Photoelectric effect deposits energy far from requested range'); end 

pedei(i)= p_photoelectric;         % assign entire photoelectric fraction to that energy 

% Compton 

[T,dedT,nu]= compton_energy_spectrum(hv);   % calculate energy spectrum for Compton electrons 

cdei= interp1(T,dedT,at_energies);       % interpolate to at_energies 

cdei(isnan(cdei))= 0;                    % zero values outside range of Compton energy table 

sum_cdei= sum(cdei); 

if sum_cdei > 0, cdei= p_compton * cdei / sum_cdei; end     % force sum to Compton probability 

if nargout == 4 

  nu= interp1(T,nu,at_energies); 

  nu(isnan(nu))= 0; 

end 

% pair production 

if hv > 1.022   % only ocurrs with energies greater than 2 * 0.511 MeV 

 [de,i]= min(abs((hv-1.022)-at_energies));  % find energy in at_energies closest to hv-1.022 

 if de > 0.1, warning('pair-production effect deposits energy far from requested range'); end 

 ppdei(i)= p_pairproduction;         % assign entire pair-production fraction to that energy 

end 

Published with MATLAB® R2017a 

function [img,zbuf]= project3Dto2D(points,intensities,xDim,yDim,P) 

% project3Dto2D 

img= zeros(xDim,yDim); 

zbuf= repmat(inf,xDim,yDim); 

 

tmp= points(:,3); 

points(:,3)= points(:,1);         % X becomes Z           (i.e. CT Y becomes Z) 

points(:,1)= 191 - points(:,2);   % Y becomes flipped X   (i.e. CT X becomes flipped X) 

points(:,2)= tmp;                 % Z becomes Y           (i.e. CT Z becomes Y) 
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points= P * ([points,ones(size(points,1),1)])'; 

points(1:2,:)= round(points(1:2,:) ./ repmat(points(3,:),2,1)); 

 

inImgIndices= find(points(1,:)>=1 & points(1,:)<=xDim & points(2,:)>=1 & points(2,:)<=yDim); 

 

nPoints= numel(inImgIndices); 

for i=1:nPoints 

    j= inImgIndices(i); 

    x= points(1,j); 

    y= points(2,j); 

    if points(3,j) < zbuf(x,y)            % if z is closer than current closest 

        zbuf(x,y)= points(3,j);           % update closest z 

        img(x,y)= intensities(j);         % assign pixel intensity based on given intensity 

    end 

end 

Published with MATLAB® R2017a 

% delta_rayEnergy - vector of random delta ray energies in MeV 

 

function delta_rayEnergy= rand_delta_ray(betaEnergy,betaThreshold) 

% betaEnergy - energy of the beta particle in MeV 

c = 299792458;                     % speed of light in a 

vacuum in meters per second 

me= 9.1093821545e-31;                  % electron rest mass 

in kg 

re= 2.817940289458e-15;                 % electron radius in 

meters 

N0= 6.0221417930e23;                  % Avogadro's number 

 

MeVperJoule= 6.241506363e+12; 

 

%MetersPerPlanckLength= 1.61625281e-35; 

%KgPerPlanckMass= 2.1764411e-8; 

%SecondsPerPlanckTime= 5.3912427e-44; 

 

 

velocity= beta_velocity(betaEnergy);             % the beta particle 

velocity in meters per second 

beta= velocity / c;                    % electron velocity 

fraction of the speed of light 

 

re= re * 100;                      % convert from 

meters to cm 

me= me * c^2;                     % convert from kg to 

Joules 

me= me * MeVperJoule;                  % convert from Joules 

to MeV 

 

% select constants B and C such that CDF starts at 0 and ends at 1 
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C= 2*pi*re^2*me*N0 ./ (beta.^2.*betaThreshold); 

B= 1 ./ (C - (2*pi*re^2*me*N0 ./ (beta.^2.*betaEnergy))); 

 

cdf= rand(size(betaEnergy));                % random number 

between 0 and 1 

delta_rayEnergy= 2*pi*re^2*me*N0 ./ (beta.^2.*(C-cdf./B));      % invert 

dellta_ray_cdf 

Published with MATLAB® R2017a 

% rand_moliere - generates random numbers according to distribution originally described by 

Moliere and as calculated by Levin 

function theta= rand_moliere(thickness,betaEnergy,A,Z); 

% thickness - path length(s) in cm traveled by one or more betas 

% betaEnergy - energy(ies) in MeV of one or more betas 

 

% uses "rejection method" described by Levin and explained in INTRODUCTION TO MONTE CARLO METHODS 

by D.J.C. MACKAY of Department of Physics, Cambridge University. 

 

Nt= numel(thickness);                   % number of path 

lengths 

Ne= numel(betaEnergy);                   % number of beta 

energies 

 

% either or both thickness and betaEnergy can be vectors, if both vectors they must be of same 

size 

% if only one is a vector, then singular value of other applies to all 

if Nt ~= Ne & Nt ~= 1 & Ne ~= 1 

 error('thickness and betaEnergy must be of the same size or equal to one'); 

end 

N=max([Nt,Ne]);                     % the length of the 

thickness/betaEnergy vector(s) determines the number of angles to return 

theta= repvals(NaN,N);                   % allocate and 

initialize thetas 

 

i_left= (1:N)';                       % start by 

needing all 

while N > 0 

 pdf_max= moliere_pdf(0,thickness(i_left),betaEnergy(i_left),A,Z);   % the max of Moliere's 

PDF is always at angle 0 

 pdf_min= moliere_pdf(pi,thickness(i_left),betaEnergy(i_left),A,Z);   % and the min is at 

the maximum deflection angle of +/- pi 

 sigmasq= -pi^2 ./ (2*log(pdf_min./pdf_max));          % calculates variance 

of bounding Gaussian reference function 

 

 x= randn(N,1) .* sqrt(sigmasq);               % randomly sample 

from Gaussian 

 i= find(x > -pi & x <= pi);                 % only consider 

those between +/- pi 

 g_ref= pdf_max(i) .* exp(-x(i).^2 ./ (2*sigmasq(i)));         % determine 
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height of Gaussian at those sample points 

 

 pdf_ref= moliere_pdf(x(i),thickness(i_left(i)),betaEnergy(i_left(i)),A,Z);  % determine 

height of Moliere PDF at those same sample points 

 y= rand(size(pdf_ref)) .* g_ref;                % for each 

sample point, randomly sample a number from a uniform distribution maxing at g_ref 

 j= find(y<=pdf_ref);                    % accept value 

for theta if random height value less than Moliere's function 

 theta(i_left(i(j)))= x(i(j));                  % assign to 

return vector 

 i_left= find(isnan(theta));                  % see who's 

left unassigned 

 N= numel(i_left); 

end 

Published with MATLAB® R2017a 

function histo = singles_path_length_histogram(mask3d,density,nbins) 

 

 if nargin < 2, density= 100; end 

 if nargin < 3, nbins= 100; end 

 

 histo= zeros(nbins,1);      % allocate space for result 

 dims= size(mask3d);       % mask dimensions 

 maxlength= sqrt(sum(dims.^2));   % maximum possible pathlength through object is between 

diagonal corners 

 l2dims= ceil(log2(dims));     % log2 of dimensions rounded up 

 newdims= 2.^l2dims;       % next largest power of two for each dimension 

 nlevels= min(l2dims);       % number of subsamplings before one of the 

dimensions goes to 1 

 

 % calculate series of subsampled masks 

 m{1}= zeros(newdims); 

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d; 

 mask3d= m{1}; 

 for level=2:nlevels 

  m{level}= zoomout3(m{level-1});  % averages groups of 2x2x2 voxels 

  m{level}(m{level}~=1)= 0;    % zero out all non-ones 

 end 

 

 % at each level, remove voxels corresponding to regions that were entirely within the object 

at the lower levels 

 tmp1= zoomin3(m{nlevels}); 

 for level=(nlevels-1):-1:1  % working from the bottom up 

  tmp2= m{level};      % save current level 

  m{level}(tmp1==1) = 0;   % zero out voxels correspnding to ones in the lower level 

  tmp1= zoomin3(tmp2);   % use blow up of copy in next round 

 end 

 % at this point, each level contains only the 1's that are "new" to that level 

 



183 

 % initialize photon starting points, final locations and directions 

 locations= []; 

 starts= []; 

 directions= []; 

 

 % work from the bottom level up 

 for level=nlevels:-1:1 

  curdims= size(m{level});     % get dimensions of the current level 

  indices= find(m{level}==1);    % find the 1's 

  nIndices= numel(indices);    % count them 

  if nIndices > 0 

   [x,y,z]= ind2sub(curdims,indices);               % convert 

to coordinate indices 

   [new_locations,new_directions]= init_rays(x,y,z,density,level);     % fill 

each with photons 

   locations= [locations,new_locations];              % add to 

list of current locations 

   starts= [starts,new_locations];                % add to 

list of starting locations 

   directions= [directions,new_directions];             % keep 

full list of directions 

   locations= update_rays(locations,directions,m{level}); 

  end 

  if level > 1 

   locations= locations * 2; 

   starts= starts * 2; 

  end 

 end 

 stopflg= 0; 

 while ~stopflg 

  [locations,stopflg]= update_rays(locations,directions,mask3d); 

 end 

 

% need to keep updating till all rays leave the mask  -- also need to terminate based on mask 

only at the final level - instead keep rays on hold (ie don't extend but don't terminate) 

 

 d= sqrt(sum( (locations-starts).^2 )); 

 [h,x]= hist(d,nbins); 

 histo= [x,h]; 

 keyboard 

end 

 

function [locations,directions] = init_rays(x,y,z,density,level) 

 n= density * 8^(level-1) * numel(x);    % the total number of new rays is the density 

times the voxel volume times the number of voxels 

 x= rowvectorize(x);          % make sure all are row vectors 

 y= rowvectorize(y);          % ... 

 z= rowvectorize(z);          % ... 

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n);  % random starting points within boxes 

 dir_theta= acos(1-2*rand(1,n));     % choose random isotropic initial directions 

specified in polar coordinates with theta distributed uniformly over cos(0:2pi) 

 dir_phi= 2 * pi * rand(1,n);       % and phi uniformly over (0:2pi) --- see Rajon 

 directions= cat(1,dir_theta,dir_phi);    % concatenate theta and phi to make a two row 



184 

direction matrix 

end 

 

function [locations,stopflg]= update_rays(locations,directions,mask) 

 curdims= size(mask);                 % get current dimensions 

 sin_theta= sin(directions(1,:));               % avoid calculating 

twice (see next two lines) 

 dir_x= sin_theta .* cos(directions(2,:));           % calculate current 

direction as Cartesian vector 

 dir_y= sin_theta .* sin(directions(2,:));            % ... 

 dir_z= cos(directions(1,:));                % ... 

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2); 

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm; 

 head= locations + cat(1,dir_x,dir_y,dir_z);          % specify head of ray 

as being unit distance away along line in specified direction 

 ijk= ceil(locations);                  % determine indices 

of new bounding box within mask for each ray 

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:) 

<= curdims(2)) & (ijk(3,:) <= curdims(3));  % vector of 1's and 0's (ie TRUES and FALSES) 

indicating for each ray if it is in or out of the grid 

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in));        % list of indices 

into mask that are not outside dimensions of mask - the length of this vector is equal to the 

number of 1's in "in" 

 in_in= (mask(indx) == 1);                % of these, which are 

also in the object defined by mask 

 in(in)= in_in;                     % now 1's indicate 

for each ray that it is both in the grid and within the object defined by the mask 

 if any(in) 

  stopflg= 0;                      % don't signal 

stop until all rays are out of object 

  box_corner= floor(locations); 

  [p,t]= ray_box_intersect(locations(:,in),head(:,in),box_corner(:,in));     % 

determine intersection with sides of bounding box 

  locations(:,in)= p;                   % this is the 

new location 

  locations(:,in)= locations(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; 

 % keep going just a little further to avoid being right on the face 

 else 

  stopflg= 1;                      % all out 

 end 

end 

Published with MATLAB® R2017a 

function factor = surface_beta_loss_factor(x,psf) 

cs_psf= cumtrapz(x,psf); 

cs_psf= cs_psf * 0.5 / cs_psf(end); 

factor= trapz(x,0.5-cs_psf); 
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Published with MATLAB® R2017a 

CODE ASSOCIATED WITH AIM 3 

function [ M ] = applyCombines( combineIndices, M ) 

    [s1,s2,s3]=size(M); 

    for k=1:numel(combineIndices) 

        j=combineIndices(k); 

        M(:,j,:)=M(:,j,:)+M(:,j+1,:); 

        i=(1:s2)~=(j+1); 

        M= M(:,i,:); 

        s2=s2-1; 

    end 

end 

Published with MATLAB® R2017a 

function W = calculateModel( interiorPoints, voxelWidth, detectorPoints, detectorWidth, mu ) 

[nVoxels,three]=size(interiorPoints); 

if three ~= 3, error('interiorPoints must be nVoxels by 3 in size'); end 

[nDetectors,three]=size(detectorPoints); 

if three ~= 3, error('detectorPoints must be nDetectors by 3 in size'); end 

nWavelengths= numel(mu); 

W= zeros(nDetectors,nWavelengths,nVoxels); 

% create attenuation lookup table 

r=(1:500)*100/500;                     % range of source to surface distances is 1/5 to 100 mm 

max_pld=-log(eps)/min(mu);             % maximum pathlength distance that needs to be considered 

is determined by the minimum attenuation 

pld=(1:500)*max_pld/500;               % range of pathlengths 

dpld= pld(1);                          % step size 

lut= zeros(500,nWavelengths);          % lookup table to contain 500 source distances by 

nWavelengths 

for i=1:nWavelengths 

    LMD= log(0.7339 * r.^1.907 + 1.66);                          % mu parameters of the lognormal 

distribution describing the pathlengths 

    LSD= 0.1973 * (1-exp(-0.5558*r)) + 0.3146 * exp(-1.403*r);   % sigma parameter of the 

lognormal distribution describing the pathlengths 

    % fill in lookup table for each source distance and wavelength integrating over the lognormal 

pathlength distribution 

    for j=1:numel(r) 

        lut(j,i)= sum(exp(-mu(i)*pld) .* lognpdf(pld,LMD(j),LSD(j)) * dpld); 

    end 

end 

for i=1:nDetectors 

    dx2= (detectorPoints(i,1) - interiorPoints(:,1)).^2;  % squared distance in x of 

detectorPoint from all interiorPoints 
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    dy2= (detectorPoints(i,2) - interiorPoints(:,2)).^2;  % same for y 

    dz2= (detectorPoints(i,3) - interiorPoints(:,3)).^2;  % same for z 

    d2= (dx2+dy2+dz2) * voxelWidth.^2;                    % squared distance in mm^2 between 

detectorPoint and all interiorPoints 

    d= sqrt(d2);                                          % distance in mm 

    for j=1:nWavelengths 

        % distribute probability over surface of a sphere, factor in detector sizes 

        W(i,j,:)= detectorWidth^2 * (1./(4*pi*d2))' .* interp1(r,lut(:,j),d)'; 

        % multiplying by W should convert photons/second/voxel to photons/second/detector 

    end 

end 

Published with MATLAB® R2017a 

function [ optimalTimes, estNoise, pinvW ] = determineOptimalTimes( W3D, X, T, D, R ) 

 

    [nDetectors,nWavelengths,nVoxels]= size(W3D); 

    W=reshape(W3D,nDetectors*nWavelengths,nVoxels);            % reshape into 2D weight matrix 

    pinvW=pinv(W);                                             % calculate pseudo inverse 

    pinvW3D=reshape(pinvW',nDetectors,nWavelengths,nVoxels);   % make it look like W3D 

 

    for j=1:nWavelengths 

        Wj=squeeze(W3D(:,j,:));          % extract W for wavelength j 

        pWj=squeeze(pinvW3D(:,j,:))';    % extract and invert pseudo inverse W for wavelength j 

        pWj2=pWj.^2;                     % uncertainties sum in quadrature so weights are squared 

        Y=Wj*X;                          % estimated measurements for specified source 

distribution 

        % calculate parameters for equations (see OptimalTimeCalculation_v9.doc) 

        Q(j)=mean(pWj2*Y); 

        QD(j)=mean(sum(pWj2*D,2)); 

        QR(j)=mean(sum(pWj2*R,2)); 

    end 

    f=sqrt(Q+QD); f=f/sum(f);                                          % initial estimate of f 

    for i=1:20                                                         % iterate 20 times (very 

likely convergent) 

        f=sqrt(Q+QD+(QR./f)); f=f/sum(f);                              % update estimate of f 

    end 

    optimalTimes= f * T;                                               % convert fractions to 

actual times 

    estNoise=sqrt(sum( (Q+QD+(QR./optimalTimes)) ./ optimalTimes ));  % estimated noise 

end 

Published with MATLAB® R2017a 

function [ optimalTimes, optimalWavelengths, optimalBandwidths, newW3D, combineIndices, 

finalUncertainty, initalUncertainty ] = determineOptimalTimesAndWavelengths( curW3D, X, T, D, R, 
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curWavelengths, curBandwidths ) 

 

[nDetectors,nWavelengths,nVoxels]=size(curW3D); 

[optimalTimes,initalUncertainty]=determineOptimalTimes(curW3D,X,T,D,R);   % start by determining 

optimal time distribution when using all wavelengths 

%initalUncertainty=initalUncertainty/sqrt(nWavelengths);  %TESTING 

finalUncertainty=initalUncertainty                                       % initialize final (i.e. 

minimum) uncertainty 

optimalWavelengths=curWavelengths;                                        % initialize final 

optimal wavelengths 

optimalBandwidths=curBandwidths;                                          % initialize bandwidths 

combineIndices=[];                                                        % initalize record or 

combinations 

while nWavelengths > 2                                                    % always have at least 

two wavelengths 

    newUncertainty=zeros(1,nWavelengths-1);                               % allocate space for 

uncertainty info 

    for j=1:(nWavelengths-1)                                              % try combining each 

adjacent pair of wavelengths in turn 

        newW3D= curW3D;                                                   % using a copy of the 

matrix ... 

        newW3D(:,j,:)= newW3D(:,j,:) + newW3D(:,j+1,:);                   % combine (sum) matrix 

for one pair of wavelengths 

        i=(1:nWavelengths)~=(j+1);                                        % identify element to 

be removed 

        newW3D= newW3D(:,i,:);                                            % remove from matrix 

        [tmp1,tmp2]= determineOptimalTimes( newW3D, X, T, D, R );         % calc uncertainty for 

new system matrix 

%        tmp2=tmp2/sqrt(nWavelengths-1);  %TESTING 

        newIntegrationTimes{j}=tmp1; 

        newUncertainty(j)=tmp2 

    end 

    [minUncertainty,j]= min(newUncertainty);                              % select reduced 

wavelength that most reduced uncertainty 

    if minUncertainty < finalUncertainty                                  % keep it only if 

better than best so far 

        combineIndices=[combineIndices,j];                                         % update 

record of combinations 

        finalUncertainty=minUncertainty                                            % update 

uncertainty 

        optimalTimes=newIntegrationTimes{j};                                       % udate 

integration times 

        curW3D(:,j,:)= curW3D(:,j,:) + curW3D(:,j+1,:);                            % combine as 

before but with current 

        i=(1:nWavelengths)~=(j+1);                                                 % identify 

element to be removed 

        curW3D= curW3D(:,i,:);                                                     % remove extra 

wavelength from matrix 

        

optimalWavelengths(j)=(optimalWavelengths(j)*optimalBandwidths(j)+optimalWavelengths(j+1)*optimal

Bandwidths(j+1))/(optimalBandwidths(j)+optimalBandwidths(j+1));   % combine wavelengths (new is 

weighted average of combined) 

        optimalBandwidths(j)=optimalBandwidths(j)+optimalBandwidths(j+1);          % sum two 
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bandwidths together 

        optimalWavelengths=optimalWavelengths(i);                                  % remove extra 

wavelength 

        optimalBandwidths=optimalBandwidths(i);                                    % remove extra 

bandwidth 

        nWavelengths=nWavelengths-1;                                               % reflect 

reduction in number of wavelengths 

    else 

        break;                                                            % if nothing better - 

stop 

    end 

end 

Published with MATLAB® R2017a 

function [ optimalTimes, optimalWavelengths, optimalBandwidths, newW3D, combineIndices, 

finalUncertainty, initalUncertainty ] = determineOptimalTimesAndWavelengthsForEM( curW3D, X, T, 

D, R, curWavelengths, curBandwidths ) 

 

[nDetectors,nWavelengths,nVoxels]=size(curW3D); 

[optimalTimes,initalUncertainty]=determineOptimalTimesForEM(curW3D,X,T,D,R);   % start by 

determining optimal time distribution when using all wavelengths 

%initalUncertainty=initalUncertainty/sqrt(nWavelengths);  %TESTING 

finalUncertainty=initalUncertainty                                        % initialize final 

(i.e. minimum) uncertainty 

optimalWavelengths=curWavelengths;                                        % initialize final 

optimal wavelengths 

optimalBandwidths=curBandwidths;                                          % initialize bandwidths 

combineIndices=[];                                                        % initalize record or 

combinations 

while nWavelengths > 2                                                    % always have at least 

two wavelengths 

    newUncertainty=zeros(1,nWavelengths-1);                               % allocate space for 

uncertainty info 

    for j=1:(nWavelengths-1)                                              % try combining each 

adjacent pair of wavelengths in turn 

        newW3D= curW3D;                                                   % using a copy of the 

matrix ... 

        newW3D(:,j,:)= newW3D(:,j,:) + newW3D(:,j+1,:);                   % combine (sum) matrix 

for one pair of wavelengths 

        i=(1:nWavelengths)~=(j+1);                                        % identify element to 

be removed 

        newW3D= newW3D(:,i,:);                                            % remove from matrix 

        [tmp1,tmp2]= determineOptimalTimesForEM( newW3D, X, T, D, R );         % calc uncertainty 

for new system matrix 

%        tmp2=tmp2/sqrt(nWavelengths-1);  %TESTING 

        newIntegrationTimes{j}=tmp1; 

        newUncertainty(j)=tmp2 

    end 

    [minUncertainty,j]= min(newUncertainty);                              % select reduced 
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wavelength that most reduced uncertainty 

    if minUncertainty < finalUncertainty                                  % keep it only if 

better than best so far 

        combineIndices=[combineIndices,j];                                         % update 

record of combinations 

        finalUncertainty=minUncertainty                                            % update 

uncertainty 

        optimalTimes=newIntegrationTimes{j};                                       % udate 

integration times 

        curW3D(:,j,:)= curW3D(:,j,:) + curW3D(:,j+1,:);                            % combine as 

before but with current 

        i=(1:nWavelengths)~=(j+1);                                                 % identify 

element to be removed 

        curW3D= curW3D(:,i,:);                                                     % remove extra 

wavelength from matrix 

        

optimalWavelengths(j)=(optimalWavelengths(j)*optimalBandwidths(j)+optimalWavelengths(j+1)*optimal

Bandwidths(j+1))/(optimalBandwidths(j)+optimalBandwidths(j+1));   % combine wavelengths (new is 

weighted average of combined) 

        optimalBandwidths(j)=optimalBandwidths(j)+optimalBandwidths(j+1);          % sum two 

bandwidths together 

        optimalWavelengths=optimalWavelengths(i);                                  % remove extra 

wavelength 

        optimalBandwidths=optimalBandwidths(i);                                    % remove extra 

bandwidth 

        nWavelengths=nWavelengths-1;                                               % reflect 

reduction in number of wavelengths 

    else 

        break;                                                            % if nothing better - 

stop 

    end 

end 

Published with MATLAB® R2017a 

function [ optimalTimes, estNoise, U ] = determineOptimalTimesForEM( W3D, X, T, D, R ) 

 

    [nDetectors,nWavelengths,nVoxels]= size(W3D); 

    W=reshape(W3D,nDetectors*nWavelengths,nVoxels);            % reshape into 2D weight matrix 

    U=EMerrorMatrix1(W,X,160);                                 % calculate Barrett's inverse 

    U3D=reshape(U',nDetectors,nWavelengths,nVoxels);           % make it look like W3D 

 

    for j=1:nWavelengths 

        Wj=squeeze(W3D(:,j,:));          % extract W for wavelength j 

        Uj=squeeze(U3D(:,j,:))';         % extract and invert Barrett's error inverse for 

wavelength j 

        Uj2=Uj.^2;                       % uncertainties sum in quadrature so weights are squared 

        Y=Wj*X;                          % estimated measurements for specified source 

distribution 

        % calculate parameters for equations (see OptimalTimeCalculation_v9.doc) 



190 

        Q(j)=mean(Uj2*Y); 

        QD(j)=mean(sum(Uj2*D,2)); 

        QR(j)=mean(sum(Uj2*R,2)); 

    end 

    f=sqrt(Q+QD); f=f/sum(f);                                          % initial estimate of f 

    for i=1:20                                                         % iterate 20 times (very 

likely convergent) 

        f=sqrt(Q+QD+(QR./f)); f=f/sum(f);                              % update estimate of f 

    end 

    optimalTimes= f * T;                                               % convert fractions to 

actual times 

    estNoise=sqrt(sum( (Q+QD+(QR./optimalTimes)) ./ optimalTimes ));  % estimated noise 

end 
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function [a,b_prime] = em_w_noise(niter,b,m,n,a) 

[r,c]= size(m); 

m_prime= bsxfun(@rdivide,m,sum(m,1))'; 

if nargin < 5 

 a= ones(c,1) * (sum(b) / c); 

end 

for i=1:niter 

 b_prime= m * a + n; 

 e= b ./ b_prime; 

 a= a .* (m_prime * e); 

end 

Published with MATLAB® R2017a 

function [U,a] = EMerrorMatrix1(W,X,niter) 

%    U= bsxfun(@rdivide,W,sum(W,1))'; 

  [M,N]= size(W); 

    a=ones(size(X))*mean(X);   % a is Nx1 

%    a=X; 

    U=zeros(N,M);      % U is NxM 

    s=sum(W)';         % s is Nx1 

 Y=W*X;             % Y is Mx1 

    WT=W';             % WT is NxM 

    for i=1:niter 

        Wa=(W*a)';         % Wa is 1xM 

        B=diag(1./s)*WT*diag(1./Wa);      % B is NxM 

        A=B*W*diag(a);    % A is NxN 

        OmA=eye(N,N)-A; 

  U=B+(OmA*U); 

        e=Y./(Wa'); 
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        a=a.*(WT*e); 

        a=a./s; 

 end 

end 
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function [ M ] = expandCombines( combineIndices, M ) 

    for k=numel(combineIndices):-1:1 

        [s1,s2,s3]=size(M); 

        newM=zeros(s1,s2+1,s3); 

        j=combineIndices(k); 

        i=(1:(s2+1))~=(j+1); 

        newM(:,i,:)= M; 

        newM(:,j+1,:)=newM(:,j,:); 

        M=newM; 

    end 

end 
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function [ sensitivity, darkCurrent, readNoise ] = IVIS200parameters( FOVsetting, pixBin, fstop, 

detectorArea ) 

    % parameters desccribing an IVIS 200 

    FOVdim_cm.A=3.9; FOVdim_cm.B=6.5; FOVdim_cm.C=13;              % FOV in cm for height 

settings A, B, C, D, E 

    FOVdim_cm.D=19.5; FOVdim_cm.E=26; 

    CCDdim_cm=2.6;                                                 % CCD dimension in cm 

    CCDdim_pix= 1920 / pixBin;                                     % CCD dimension in pixels 

(note: CCD is 2048x2048 but only 1920x1920 used) 

    darkCurrent=105.6;                                             % in counts/second/cm^2 (spec 

is 100), here the cm^2 is measured on the CCD itself 

    readNoise=6.3848;                                              % in counts/pixel RMS for 

binning=1 (spec is 5) 

    refSensitivity=6.1e-5;                                         % sensitivity in 

(counts/photon) at height C, f1, binning=1 

    refH=51.2;                                                     % height of focal point in cm 

above object when reference sensitivity was determined 

    refA=6.35;                                                     % radius of aperature in cm at 

f1 

    heightChangeFactor= FOVdim_cm.(FOVsetting) / FOVdim_cm.C;      % height change is 

proportional to FOV change, reference setting is C 

    H= refH * heightChangeFactor;                                  % new height 

    A= refA * (1.0 / fstop);                                       % new aperature radius 

    acceptanceAngleChangeFactor= atan2(A,H) / atan2(refA,refH);    % acceptance angle change 

relative to reference 
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    imagePixelArea= (10 * FOVdim_cm.(FOVsetting) / CCDdim_pix)^2;  % size of pixel in mm^2 in 

imagespace 

    sizeRatio= imagePixelArea / detectorArea;                      % pixels per virtual detector 

    % composite parameters of interest 

    sensitivity= refSensitivity * pixBin^2 * acceptanceAngleChangeFactor * sizeRatio;  % in 

(counts/photon) 

    darkCurrent= darkCurrent * CCDdim_cm^2/CCDdim_pix^2 / sizeRatio;                   % in 

counts/second/detector 

    readNoise= readNoise * sqrt(sizeRatio);                                            % 

readNoise goes down with sqrt of the increase in detector size 

end 
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classdef VoxelClusterList < handle 

    properties 

        ImageSpace   % 3D matrix of zeros and ones where the ones define the interior or 

the imaged object 

        ImageSpaceDims      % size of the original ImageSpace for which this cluster list is 

defined 

        VoxelIndices        % indices into ImageSpace of voxels within object 

        MemberList          % handle to object array of type VoxelClusterMember 

        PPlength            % projection profile length (i.e. the number of rows in W) 

    end 

    methods 

 

        function n = countValid(obj) 

            n= 0; 

            m= numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    n=n+1; 

                end 

            end 

        end 

 

        function obj = VoxelClusterList(ImageSpace,POIvalues,W) 

            % VoxelClusterList Constructor 

            % ImageSpace is a 3D matrix of zeros and ones where the ones define the interior or 

the imaged object 

           % POIvalues is a vector with elements corresponding to the 1's in ImageSpace and 

containing the POI (Parameter of Interest) 

            if nargin ~= 0 

                obj.ImageSpace= ImageSpace; 

                obj.ImageSpaceDims= size(ImageSpace); 

                obj.VoxelIndices= find(ImageSpace == 1); 

                obj.MemberList= VoxelClusterMember(ImageSpace,POIvalues,W); 

                obj.PPlength= size(W,1); 

            end 

        end 
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        function [ ValidImg ] = extractAllValid( obj ) 

         % Should regenerate ImageSpace (used for debugging) 

            ValidImg= zeros(obj.ImageSpaceDims); 

            m=numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    n= numel(obj.MemberList(i).VoxelList); 

                    if n ~= obj.MemberList(i).Volume 

                        error('VoxelList size and Volume mismatch'); 

                    end 

                    for j=1:n 

                        [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j)); 

                        ValidImg(ix,iy,iz)= ValidImg(ix,iy,iz) + 1; 

                    end 

                end 

            end 

        end 

 

        function [ POIimg ] = extractPOIimg( obj ) 

            % Creates 3D image of POI values 

            POIimg= zeros(obj.ImageSpaceDims); 

            m=numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    p= obj.MemberList(i).POI; 

                    v=obj.MemberList(i).Volume; 

                    for j=1:v 

                        [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j)); 

                        POIimg(ix,iy,iz)= p; 

                    end 

                end 

            end 

        end 

 

        % returns POI value for each cluster 

        function [ POIvalues ] = extractPOIvalues( obj ) 

            % Creates 3D image of POI values 

            n= obj.countValid(); 

            POIvalues= zeros(n,1); 

            m=numel(obj.MemberList); 

            j=1; 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    POIvalues(j)= obj.MemberList(i).POI; 

                    j=j+1; 

                end 

            end 

        end 

 

        function [ valueList ] = imageToValueList( obj, image ) 

            n= obj.countValid(); 

            valueList= zeros(n,1); 
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            j=1; 

            m=numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    v=obj.MemberList(i).Volume; 

                    for k=1:v 

                        ii= obj.MemberList(i).VoxelList(k); 

                        valueList(j)= valueList(j) + image(ii); 

                    end 

                    valueList(j)= valueList(j) / v; 

                    j=j+1; 

                end 

            end 

            if numel(valueList) ~= (j-1) 

                keyboard; 

            end 

        end 

 

        function [ image ] = valueListToImage( obj, valueList ) 

            image= zeros(obj.ImageSpaceDims); 

            j=1; 

            m=numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    v=obj.MemberList(i).Volume; 

                    for k=1:v 

                        ii= obj.MemberList(i).VoxelList(k); 

                        image(ii)= valueList(j); 

                    end 

                    j=j+1; 

                end 

            end 

            if numel(valueList) ~= (j-1) 

                keyboard; 

            end 

        end 

 

        function [ W ] = extractW( obj ) 

            % Creates W matrix 

            m=numel(obj.MemberList); 

            n=0; for i=1:m, if obj.MemberList(i).ValidFlag==1, n=n+1; end, end 

            W= zeros(obj.PPlength,n); 

            size(W) 

            j=1; 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    W(:,j)= obj.MemberList(i).ProjectionProfile; 

                    j=j+1; 

                end 

            end 

            if n ~= (j-1) 

                keyboard; 

            end 
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        end 

 

        function [ POIvalues ] = extractCompressedPOI( obj ) 

            % Predicts what each cluster's POI value will be if compressed 

            n= obj.countValid(); 

            POIvalues= zeros(n,1); 

            m=numel(obj.MemberList); 

            j=1; 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    p= obj.MemberList(i).POI; 

                    v= obj.MemberList(i).Volume; 

                    p= v * p.^2; 

                    n= numel(obj.MemberList(i).NeighborList); 

                    for k=1:n 

                        ii= obj.MemberList(i).NeighborList(k); 

                        if obj.MemberList(ii).ValidFlag 

                         tmpP= obj.MemberList(ii).POI; 

                         tmpV= obj.MemberList(ii).Volume; 

                            p= p + tmpV * tmpP.^2; 

                            v= v + tmpV; 

                        end 

                    end 

                    p= sqrt(p / v) / v; 

                    POIvalues(j)= p; 

                    j=j+1; 

                end 

            end 

        end 

 

        function compress( obj, pThreshold ) 

         % Combine clusters having a predicted POI value above the specified threshold, witgh all 

of its neighbors 

            pass= 1; 

            while 1 

                fprintf(1,'pass #%d\n',pass); 

                pass= pass + 1; 

                POIvalues= extractPOIvalues(obj); 

                [mx,iV]= max(POIvalues); 

                if mx < pThreshold 

                    break; 

                end 

                m=numel(obj.MemberList); 

                j=0; 

                for i=1:m 

                    if obj.MemberList(i).ValidFlag 

                        j=j+1; 

                    end 

                    if j==iV 

                        iM=i; 

                        break; 

                    end 

                end 
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                merge(obj,iM); 

            end 

        end 

 

        function merge( obj, memIndex ) 

         % merges cluster identified by memIndex with all of its neighboring clusters 

            if obj.MemberList(memIndex).ValidFlag == 0 

                error('something fucked up'); 

            end 

            nl= obj.MemberList(memIndex).NeighborList; 

   n= numel(nl);  % number of neighboring clusters 

            fprintf(1,'merging ID %d with %d neighbors\n',memIndex,n); 

            p= obj.MemberList(memIndex).POI; 

            v= obj.MemberList(memIndex).Volume; 

            p= v * p^2; 

            pp= obj.MemberList(memIndex).ProjectionProfile; 

            pp= v * pp; 

   for k=1:n 

                nk=nl(k);  % nk is the cluster ID of the kth neighbor 

                tmpP= obj.MemberList(nk).POI; 

                tmpV= obj.MemberList(nk).Volume; 

                v= v + tmpV; 

                p= p + tmpV * tmpP^2; 

                tmpPP= obj.MemberList(nk).ProjectionProfile; 

                if numel(pp) ~= numel(tmpPP), keyboard; end 

                pp= pp + tmpV * tmpPP; 

             obj.MemberList(memIndex).VoxelList= 

unique([obj.MemberList(memIndex).VoxelList,obj.MemberList(nk).VoxelList]);  % add neighbor's 

voxels 

                % copy over neighbor's neighbors 

             i= obj.MemberList(memIndex).NeighborList ~= nk;         % flags identifying all 

other neighbors 

             j= obj.MemberList(nk).NeighborList ~= memIndex;         % flags identifying kth 

neighbor's neighbors excluding current 

                % flags i allow removal of kth neighbor from list 

                % flags j allow addition of kth neighbor's neighbors excluding the current so it 

doesn't consider itself to be a neighbor 

             obj.MemberList(memIndex).NeighborList= 

unique([obj.MemberList(memIndex).NeighborList(i);obj.MemberList(nk).NeighborList(j)]); 

                % remove kth neighbor from list 

             obj.MemberList(nk).ValidFlag= 0;                        % mark kth neighbor as 

invalid 

                % remove references to kth neighbor from its neighbors replacing with a reference 

to the current 

                nl2= obj.MemberList(nk).NeighborList; 

             nn= numel(nl2); 

    for m=1:nn 

     i= nl2(m);          % i is mth neighbor of kth neighbor 

     j= (nl2 == nk);        % find reference to kth neighbor within mth neighbor's list 

     obj.MemberList(i).NeighborList(j)= memIndex;    % replace with reference to 

current 

    end 

            end 
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            obj.MemberList(memIndex).Volume= numel(obj.MemberList(memIndex).VoxelList); 

            obj.MemberList(memIndex).POI= sqrt( p / v) / v; 

            obj.MemberList(memIndex).ProjectionProfile= pp / v; 

        end 

 

        function hist = clusterSizeHist( obj ) 

            hist= zeros(1,1); 

            m=numel(obj.MemberList); 

            for i=1:m 

                if obj.MemberList(i).ValidFlag 

                    n= obj.MemberList(i).Volume; 

                    if n > numel(hist) 

                        hist= [hist;zeros(n-numel(hist),1)]; 

                    end 

                    hist(n)= hist(n) + 1; 

                end 

            end 

        end 

 

        function img = clusterSizeImage( obj ) 

            img= zeros(obj.ImageSpaceDims); 

            for i=1:numel(obj.MemberList) 

                if obj.MemberList(i).ValidFlag 

                    n= numel(obj.MemberList(i).VoxelList); 

                    if n ~= obj.MemberList(i).Volume 

                        error('VoxelList size and Volume mismatch'); 

                    end 

                    for j=1:n 

                        [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j)); 

                        img(ix,iy,iz)= n; 

                    end 

                end 

            end 

        end 

    end 

end 
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classdef VoxelClusterMember < handle 

 

    properties 

        ValidFlag               % flag effectively allowing cluster member deletion (e.g. during 

merger) 

        Volume                  % the volume of this cluster in voxels (i.e. the number of voxels 

in this cluster) 

        VoxelList               % list of image space indices of the voxels within this cluster 

        POI                     % the parameter of interest associated with each cluster 

        NeighborList            % list of indices into VoxelClusterList identifying clusters that 

are neighbors to this one 
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        Origin                  % 3D location of origin voxel within cluster (for debugging 

purposes) 

        ProjectionProfile       % column from W matrix corresponding to this cluster 

    end 

 

    methods 

      function obj = VoxelClusterMember(ImageSpace,POIvalues,W) 

          % ImageSpace is a 3D matrix of zeros and ones where the ones define the interior or the 

imaged object 

          % POIvalues is a vector with elements corresponding to the 1's in ImageSpace and 

containing the POI (Parameter of Interest) 

         if nargin ~= 0 

            [nX,nY,nZ] = size(ImageSpace);                  % get dimensions of the image space 

            lastN= nX*nY*nZ;                                % last index 

            Neighbors= [-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX,... 

                [0,-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX]-(nX*nY),... 

                [0,-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX]+(nX*nY)];   % determine relative 

indices within ImageSpace of 26 neighbors 

            VoxelIndices= find(ImageSpace == 1);            % get indices of all voxels within 

the imaged object 

            N= numel(VoxelIndices);                         % how many are there 

            if numel(POIvalues) ~= N 

                error('The number of POIvalues must match the number of ones in ImageSpace'); 

            end 

            if size(W,2) ~= N 

                error('The number of columns in W must match the number of ones in ImageSpace'); 

            end 

            obj(N,1) = VoxelClusterMember;                  % create one cluster member for each 

and every voxel 

            % create a cluster for each voxel within the object 

            for i = 1:N 

                obj(i,1).ValidFlag= 1;                                      % initially all 

cluster members are valid 

                obj(i,1).Volume = 1;                                        % initially just one 

voxel 

                obj(i,1).VoxelList= [VoxelIndices(i)];                      % this is the index 

of the one voxel within ImageSpace 

                tmpNeighborList= VoxelIndices(i) + Neighbors;               % get all 6 neighbor 

indices even if outside ImageSpace 

                j= find(tmpNeighborList >=1 & tmpNeighborList <= lastN);    % find those outside 

ImageSpace 

                tmpNeighborList= tmpNeighborList(j);                        % remove them 

                j= find(ImageSpace(tmpNeighborList) == 1);                  % find those outside 

the object 

                tmpNeighborList= tmpNeighborList(j);                        % remove those too 

                obj(i,1).NeighborList= find(ismember(VoxelIndices,tmpNeighborList));   % find 

corresponding indices into cluster MemberList 

                obj(i,1).POI= POIvalues(i);                                 % assign associated 

POI value 

                obj(i,1).ProjectionProfile= W(:,i);                         % assign associated 

column of W 

                [ix,iy,iz]= ind2sub([nX,nY,nZ],obj(i,1).VoxelList);         % Origin is redundant 

to the original element in VoxelList 
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                obj(i,1).Origin= [ix,iy,iz]; 

            end 

         end 

      end 

    end 

end 
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