

Improvements in the robustness and accuracy of

bioluminescence tomographic reconstructions of distributed

sources within small animals

Bradley J. Beattie

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Engineering Science

in the Fu Foundation School of Engineering
and Applied Science

COLUMBIA UNIVERSITY

2018

© 2018
Bradley J. Beattie
All rights reserved

ABSTRACT

Improvements in the robustness and accuracy of bioluminescence tomographic

reconstructions of distributed sources within small animals

Bradley J. Beattie

High quality three-dimensional bioluminescence tomographic (BLT) images, if available,

would constitute a major advance and provide much more useful information than the

two-dimensional bioluminescence images that are frequently used today. To-date, high

quality BLT images have not been available, largely because of the poor quality of the

data being input into the reconstruction process. Many significant confounds are not

routinely corrected for and the noise in this data is unnecessarily large and poorly

distributed. Moreover, many of the design choices affecting image quality are not well

considered, including choices regarding the number and type of filters used when

making multispectral measurements and choices regarding the frequency and

uniformity of the sampling of both the range and domain of the BLT inverse problem.

Finally, progress in BLT image quality is difficult to gauge owing to a lack of realistic

gold-standard references that engage the full complexity and uncertainty within a small

animal BLT imaging experiment.

Within this dissertation, I address all of these issues. I develop a Cerenkov-based gold-

standard wherein a Positron Emission Tomography (PET) image can be used to gauge

improvements in the accuracy of BLT reconstruction algorithms. In the process of

creating this reference, I discover and describe corrections for several confounds that if

left uncorrected would introduce artifacts into the BLT images. This includes corrections

for the angle of the animal’s skin surface relative to the camera, for the height of each

point on the skin surface relative to the focal plane, and for the variation in

bioluminescence intensity as a function of luciferin concentration over time. Once

applied, I go on to derive equations and algorithms that when employed are able to

minimize the noise in the final images under the constraints of a multispectral BLT data

acquisition. These equations and algorithms allow for an optimal choice of filters to be

made and for the acquisition time to be optimally distributed among those filtered

measurements. These optimizations make use of Barrett’s and Moore-Penrose

pseudoinverse matrices which also come into play in a paradigm I describe that can be

used to guide choices regarding sampling of the domain and range.

i

Table of Contents

List of Figures v

List of Tables vi

1. INTRODUCTION 1

1.1. Background and motivation 1

1.2. The BLT inverse problem 5

1.3. Multispectral vs. hyperspectral 6

1.4. Overall Goals and Specific Aims 12

2. SPECIFIC AIM 1: MULTIMODALITY REGISTRATION 14

2.1. Overview 14

2.2. Scanners. 18

2.3. Overview of the registration procedure. 18

2.4. Registration of a 2D image to a 3D image set. 21

2.5. BLI camera model. 22

2.6. BLI camera calibration. 23

ii

2.7. Registration accuracy. 24

2.8. Animals and imaging procedures. 26

2.9. Imaging protocols. 28

2.10. Registration accuracy. 29

2.11. Experiments 30

2.12. Light Fall-off Correction. 34

2.13. Discussion 36

3. SPECIFIC AIM 2: CERENKOV QUANTITATION 38

3.1. Overview 38

3.2. Modeling. 41

3.3. Experimental Cerenkov measurements. 49

3.4. Spectral measurements. 52

3.5. Cerenkov efficiency as a function of refractive index. 53

3.6. Cerenkov efficiency as a function of volume. 53

3.7. Region of interest measurements and profiles. 54

iii

3.8. Corrections 55

3.9. Comparisons 60

3.10. Modeled Cerenkov production efficiencies as a function of refractive index. 67

3.11. Modeled Cerenkov point spread functions. 69

3.12. Discussion 69

4. SPECIFIC AIM 3: OPTIMIZED ACQUISITION PROTOCOL 73

4.1. Overview 73

4.2. Camera noise model 75

4.3. Digital mouse phantom 76

4.4. Solving the forward model 77

4.5 Image Reconstruction Methods 80

4.6. Derivation of the optimization expression 84

4.7. Algorithm to select optimal filters 90

4.8. Testing the optimization expression 92

4.9. Two-wavelength LSQ simulation results 94

iv

4.10. Three-wavelength LSQ simulation 97

4.11. Two-wavelength MLEM simulation 98

4.12. Mouse simulations 99

4.13. Guidance for improved conditioning and SNR through optimized sampling 103

4.14. Discussion 107

5. OVERALL SUMMARY AND CONCLUSIONS 109

 REFERENCES 112

 APPENDIX 121

v

List of Figures

1.1 Artifacts in BLT ... 1

2.1 Mouse Bed ... 19

2.2 Transgenic Mouse ... 26

2.3 Light Fall-off with Angle in Animal .. 31

2.4 Registered CT, Reflectance and BLI Images .. 32

2.5 Light Flux versus Time Curve .. 33

2.6 Parameter Defining Diagram ... 34

2.7 Light Fall-off with Angle in Phantom .. 35

3.1 Cerenkov versus Wavelength, Radioactivity and Height 56

3.2 Experimental Setup and Radionuclide Cerenkov Results 61

3.3 Cerenkov Point Spread Function ... 65

3.4 Secondary Electron Point Spread Function ... 66

3.5 Cerenkov versus Refractive Index ... 68

4.1 Pathlength Histogram .. 78

4.2 Log-mean and Log-standard-deviation of Pathlength Distribution 79

4.3 Importance of Politte’s Correction .. 84

4.4 Optimal Time Distribution for 2-Wavelength Moore-Penrose Solution 95

4.5 Uncertainty for 2-Wavelength Moore-Penrose Solution 96

4.6 Optimal Time Distribution for 3-Wavelengths Moore-Penrose Solution 97

4.7 Uncertainty for 2-Wavelength MLEM Solution ... 98

4.8 Optimal Time Distribution for 2-Wavelength MLEM Solution 99

vi

4.9 Reference Image, Source Spectra and Attenuation .. 100

4.10 Firefly and Cerenkov Optimal Time Distributions ... 101

4.11 Improved MLEM Images from Optimally Sampled Data 102

4.12 Improved Moore-Penrose Images from Optimally Sampled Data 103

4.13 Optimized Domain Sampling ... 106

List of Tables

2.1 Registration Error .. 30

3.1 Radionuclide Abundances ... 43

3.2 Ac-225 Daughter Abundances ... 44

3.3 Experiment Overview .. 50

3.4 Cerenkov Efficiencies .. 68

3.5 Cerenkov Point Spread Function Widths ... 69

1

1. INTRODUCTION

1.1. Background and motivation

Bioluminescence tomography (BLT) reconstruction algorithms have been available to

researchers since Wang first described their theoretical basis in 2004 [1]. Today, BLT

reconstruction capabilities are included as standard software accompanying the

ubiquitous IVIS bioluminescence imaging systems (Perkin Elmer). However, these

algorithms have seen relatively little use, as evidenced in the literature by the relative

dearth of articles published that actually make use of BLT.

BLT has not been well embraced, I believe, because of the generally poor quality of the

BLT reconstructed images (suffering from clear artifacts, see figure 1.1, and because

they are often noisy and unstable) and because the accuracy of these images has not

been validated under realistic conditions (i.e. researchers don’t trust them to be

accurate).

It is well recognized that the BLT image

reconstruction problem is ill-posed, requiring

multispectral measurements to avoid

degeneracy and often remains ill-conditioned

even when multispectral measurements are

made [2-4]. Thus it is typical for even small

amounts of noise in the measured data to be

greatly amplified during the reconstruction

Figure 1.1 Although the bioluminescent
tumor implanted in the brain of this mouse is
roughly spherical, the source distribution
shown here, reconstructed by Chaudhari et
al. clearly is not.

2

process, producing images with a large degree of uncertainty, high noise levels and/or

artifacts [5].

Methods of improving image quality can be roughly categorized into three different

classes: 1) improvements in the precision and accuracy of the data being input into the

image reconstruction algorithms, for example, the uncertainty in the measured data can

be reduced by increasing the duration of the acquisition (i.e. counting more photons) [6];

2) the condition number of the system matrix itself can be improved through design

choices, for example, by reducing the number of unknowns (i.e. voxels) or increasing

the information content of the measurements ‡; and 3) images can be improved

through the application of advanced reconstruction algorithms [7-12].

Most efforts aimed at improving BLT image quality to date have fallen into this third

category and generally speaking these involve some means of applying a priori

information to constrain the solution space [13]. These constraints can reflect the

realities of the physical system (e.g. allowing only positive solutions, i.e. photon

intensities ≥ 0) or they can come in the form of biases reflecting expectations regarding,

for example, the smoothness of the image, its sparsity, or limits on the source location.

Generally this will involve a tradeoff between noise and bias and will only be successful

to the extent that the a priori information that is being applied, whether implicitly or

explicitly, is itself accurate [14]. In avoidance of imposing these sorts of biases, I will

‡ This can readily be appreciated by considering the extremes. A system in which we seek to determine
the intensity of a single large homogeneous voxel (i.e. reducing the number of unknowns to 1), clearly
has a low condition number. Similarly, increasing the number of unknowns to the point where they exceed
the number of measurements, creates an ill-posed problem with multiple solutions.

3

instead focus on improving image quality through the approaches within the first two

categories.

These improvements will come in the form of precise corrections for confounds

encountered in the measurement process, including corrections for the varying heights

and surface normals of the CCD measurements, improvements in the accuracy of

camera and filter calibrations, and corrections accounting for the luciferin concentration

dependent fluctuations in source intensity over time. The noise reduction and

conditioning improvements that I propose, will make use of either the Moore-Penrose

pseudoinverse [15, 16] of the system matrix, or of Barrett’s error matrix [17, 18]. I will

show that it is possible to use these matrices to predict the uncertainty in images

reconstructed with least-squares and maximum-likelihood expectation maximization

(MLEM) algorithms, respectively. I will then demonstrate how this capability can be

leveraged in a paradigm that will, among other things, allow the optimization of the

choice of filters to be used in a multispectral measurement, the distribution of time

among those acquisitions and also to make improvements in the system matrix

conditioning through rational choices regarding the spatial distribution of the unknowns

(i.e. voxels) within the solution space.

In the context of making these improvements, I note that it is relatively straight forward

to demonstrate through numerical simulations or simple phantoms that image quality

can be improved using either the approaches I am proposing or through advanced

image reconstruction algorithms. However, there remains the potential that other

sources of uncertainty (for example, in the precise locations of the animal’s internal

4

organs or in the light propagation properties of these tissues) will continue to dominate,

resulting in severe artifacts that may render the reconstructed images useless for many

purposes. Therefore, some means of gauging the accuracy of the images is needed.

To date, attempts to validate BLT results have generally used reference standards that

are either overly simplistic or imprecise [19, 20]. The photon transport properties used in

digital and physical phantoms generally do not portray the complexity or uncertainty of

the in vivo setting. Light sources embedded within animals typically involve simple point-

like geometries whereas in preclinical practice, source geometries tend to be more

distributed, and while phantoms having distributed sources can be devised, in these

cases the photon transport properties of the phantom are both simplistic and

unrealistically well known. More realistic in vivo experiments using positron emission

tomography (PET) and single photon computed tomography (SPECT) image sets as

surrogates for the bioluminescence distribution have been tried [19, 21] but in the

manner in which this was done, the radionuclide distribution was not identical to the

bioluminescence distribution.

A more accurate reference image can be created by taking advantage of the Cerenkov

light produced by the positron emissions of some radionuclides. Through a model of the

Cerenkov light production process that I have developed, I will show that it is possible to

make use of a PET image to precisely predict the Cerenkov light distribution, thus

allowing the validation of the accuracy of a given reconstructed BLT image acquired

under realistic conditions.

5

In summary, within this dissertation, I will address both the noise and the validation

issues that I believe are currently hampering the adoption of BLT in the preclinical

research setting. Through an understanding of the noise properties of the image

acquisition and reconstruction processes and by making reasonable estimates of the

source signal intensities, I will show that it is possible to both estimate the overall

magnitude of the noise in the reconstructed images as well as to optimize the choice of

wavelengths and the distribution of imaging times so as to minimize this noise.

Moreover, by devising a gold reference standard within a live animal based upon PET,

Cerenkov radiation and an accurate means of coregistering the PET-based reference

with the reconstructed image sets, it will be possible to validate the improvement in

accuracy made possible by these and other manipulations.

1.2. The BLT inverse problem

The recovery of three-dimensional (3D) images of the bioluminescence source

distribution can be mathematically posed as a linear inverse source problem. In this

model of the system, a vector Y of the measurements of the light emanating from the

skin surface are said to be produced by the product of the system matrix, W, and a

vector of the unknown source intensities, X [22]. In this case, each element of W

describes the probability that a photon emanating from a given source location, will be

detected by a given detector element. As such, the columns of W describe the

projection of each source location onto the detector as a whole. Conversely, the rows of

W describe the relative contributions of all of the voxels within the domain of the

animal's interior to a given detector element (generally a CCD pixel viewing a location

on the skin surface of the animal). While some investigators make use of somewhat

6

different definition of the problem, in these cases they are generally seeking a

somewhat different solution, for example Han et. al. [23] takes a different approach but

they are seeking to solve for both the source distribution and optical tissue properties

simultaneously. Most investigators in BLT source reconstruction make use of essentially

the same linear system I’ve described above [24-28].

For typical samplings of the surface and interior spaces, the number of interior space

unknowns greatly exceeds the number of surface measurement locations; therefore

nominally the problem is severely ill-posed [1]. Because of the Lambertian-like nature of

the surface flux, imaging from additional angles around the animal does not add

significant additional information (except to the extent that they visualize additional skin

surface). And owing to the high degree of scatter, particularly for deeply placed sources,

the spatial frequency content of the surface images is low and therefore increasing the

spatial sampling frequency of these images likewise does not lead to significant

improvements in the posedness of the system.

1.3. Multispectral vs. hyperspectral

Increasing the spectral sampling of the light, however, does have the potential to add

independent new information [22], this primarily because the attenuation differs as a

function of the color of the light. For hemoglobin, the predominant chromophore in

mammalian tissues, the attenuation decreases monotonically over the range between

about 560 and 660 nm. Thus the deeper the source, the greater the red shift in the

spectrum of the light measured at the surface.

7

With a sufficient number of spectral measurements the system, in principle, will have a

unique solution for any given spatial sampling frequency of the interior. This can best be

appreciated by considering a case where the light is constrained to transit along a single

depth-dimension (or equivalently, when there is no scatter) but attenuation remains. The

sum of the light along this single dimension measured at N different wavelengths would

allow for the determination of the intensity of N source locations along that length, this

because the attenuation factor profiles for the different wavelengths are linearly

independent. Moreover, without scatter the position of the source in the dimensions

perpendicular to the depth dimension would be readily discernible at the resolution of

the surface measurements. When scatter is present, however, the surface profiles co-

vary greatly, especially for deep sources. In summary, attenuation in effect improves the

posedness of the problem, but high scatter causes it to remain ill-conditioned.

In practice, the number of spectral measurements made, for example, on an IVIS 200

bioluminescence imager is six, each using a 20 nm band-pass filter centered at 560,

580, 600, 620, 640 and 660 nm. For an object the size of a mouse with typical spatial

sampling, this results in a system matrix that is roughly square. Increasing the number

of wavelengths measured has the potential to improve the conditioning of the system

matrix if the tissue attenuation of each new wavelength is sufficiently different from that

of the others. In this case, each additional wavelength will add a new set of rows to the

system matrix. This additional information has the potential to increase the

independence of the columns within the system matrix.

8

However, the emission spectrum of any given luciferase has a limited range, so there is

no point measuring wavelengths beyond this range. Moreover, for wavelengths within

the near-infrared, attenuation tends to flatten out and become roughly constant in the

tissues of a mouse. Thus, no new information is gained by subdividing this range into

multiple measurements. Similarly, there is little point in making measurements at the

short (i.e. blue-green) wavelength end of the spectrum owing to similar redundancies in

attenuation but also perhaps more importantly because the attenuation is so high at

these wavelengths that no signal is detectable, except perhaps for the shallowest of

sources [29].

The only remaining way to increase the number of wavelengths measured is to divide

the spectrum over the luciferase emission peak more finely. If measuring with a filter

this means using a narrower band-pass and throwing away more photons, reducing the

signal to noise ratio. Methods have been proposed to make spectral bioluminescence

measurements without filters [30], but without this specialized hardware there exists a

tradeoff between adding new information (which improves conditioning) and reducing

signal to noise (which exacerbates the effect of ill-conditioning).

Relatively little work has been done to determine the optimal number of spectral

measurements, the range of wavelengths, or the requisite relative exposure times for

BLT image reconstruction. Taylor et al. in 2015 [31] sought to optimize acquisition time

and wavelength selection based on simulations comparing three sets of wavelengths

([560,580,600], [600,620,640] and [560,580,600,620,640]) and just two bandwidths (10

and 20 nm). Only acquisition times equally distributed among these wavelengths were

9

considered. Their conclusion was that using the three longer wavelengths was as good

as using all five and that a 20 nm bandwidth was best. However, members of this same

group led by Dehghani and Styles had earlier published an information-theoretic method

of selecting wavelengths [32] which concluded that the 580 nm measurement contained

the most information and that when imaging with two wavelengths (note - larger

numbers of wavelengths were not considered), the combination 570 and 580 nm was

optimal. This earlier result did not consider the noise in the measurements, so perhaps

this explains these contradictory results, however, this explanation was not offered by

the authors.

Although I will not pursue it here, a similar tradeoff exists when it comes to choices

regarding the spatial sampling frequency of the surface measurements. Increasing the

sampling frequency has the potential to improve conditioning, but for CCD cameras

having variable charge binning (like those used on most bioluminescence imagers), the

loss in signal to noise is greater than from a simple dividing of the photon counts among

additional bins [33].

Lacking an easy means of adding directly measured information to improve the

conditioning (though some attempts have been made [34-36]), investigators have

proposed various means of adding a priori information (or assumptions) in the form of

constraints on the solution space. These constraints can come in the form of restrictions

on the number of spatial locations at which a solution is sought or constraints on the

source intensities, or on the relationships among the source intensities at the solution

sites. These constraints come in a variety of forms including pre-conditioners,

10

regularization/penalty-functions and basis functions among others. Adding constraints

limits the degree to which potential solutions can co-vary with one another. This

improves robustness and decreases noise, effectively trading noise for bias.

The degree to which this works depends upon the accuracy of the assumptions

employed. Some constraints are clearly applicable to all source distributions, for

example, limiting source intensities to R≥0. Other constraints, however, are less

generally applicable, for example, Wang et. al. [37] proposed the use of a permissible

source region, which essentially assumed that at least the gross location of the source

was known a priori. Feng et. al. [38] later proposed a means of optimally defining this

region. A related constraint first applied in BLT by Lu et. al [39], uses a compressed

sensing approach that makes use of an L1-norm penalty to bias the results towards

sparse solutions. Cong et. al. [40] proposed placing a limit on the total number of

bioluminescent sources. Numerous other variants on these proposals all in some way

promote sparsity in their solutions [10, 27, 41-52].

A bias towards sparseness, however, can lead to overly sparse solutions and not all

bioluminescence source distributions are in fact sparse. A relatively shallow tumor of a

given size will produce a surface signal similar to that of a smaller (i.e. more sparse)

deeper tumor. As can be appreciated by a careful review of the experiments by Lu et.

al. [39], a bias towards sparseness will tend to select the latter solution (i.e. deeper

sources). Experiments involving metastatic tumors or animals genetically engineered to

express luciferase in specific tissues often will have distributed (i.e. non-sparse) source

11

distributions. For these situations, other types of constraints that don’t promote or

assume sparsity may be superior.

Penalties placed on the gradients of the solution do not promote sparsity but they do

limit the resolution of the images. Moreover, these penalties tend to apply this

smoothing uniformly without regard to the depth-dependent resolution inherent to BLT.

Constraints in the form of basis functions proposed by some investigators [53, 54]

likewise don’t promote sparsity and have the potential to address the depth-dependent

resolution issue but to my knowledge basis functions specifically chosen to deal with

this depth-dependence have not yet been pursued.

The intent of the constraint methods described thus far has been to compensate for the

ill-conditioning of the system matrix. This contrasts with rank reductions employed with

the goal of speeding up the image reconstruction or making it more computationally

manageable [55-58]. In general, rank reductions for speed up will tend to exacerbate ill-

conditioning in that some information (ideally information of little importance) is being

thrown away. An exception to this rule is encountered when the discarding of

information simultaneously involves a reduction in the signal to noise ratio of the

measurements sufficient to overcome the reduction in the conditioning. This can occur

when reducing the spatial sampling frequency of the surface measurements or when

increasing the band-pass of spectral measurements. Some investigations of the latter

have been made by Taylor et. al. [31, 59] but without regard to the tradeoff in the

conditioning.

12

1.4. Overall Goals and Specific Aims

The overall goal of this dissertation is to address two major factors that are limiting the

acceptance of BLT by the cancer research community. First, I will develop a realistic,

complex reference standard against which the accuracy of the BLT reconstruction can

be judged. And second, I will implement algorithms that will guide the data acquisition in

order to increase in the robustness and accuracy of BLT reconstructions. These goals

will be accomplished by pursuing 3 specific aims:

Specific aim 1. Construct a multimodality registration system consisting of a

bed capable of maintaining a mouse in a rigid pose under isoflurane

anesthesia while it is transported between BLT, CT, PET and MR imaging

systems, along with mechanisms to co-register the datasets acquired from

each. In the context of this work I will also describe corrections for various

confounds affecting the accuracy of the measurements.

Specific aim 2. Develop and validate a quantitative model of Cerenkov light

production for 18F and other beta emitting radionuclides. This model will allow

conversion of activity concentration as measured by PET to photon flux as a

function of wavelength, thus enabling a PET image to be used as a

reference standard in assessing the accuracy of a luminescence tomography

reconstruction. In the context of this work I will also describe improvements

to the calibration of the IVIS imaging device.

Specific aim 3. Develop algorithms and procedures to improve the quality

of the data used to reconstruct images. This will be achieved by optimizing

13

the data sampling in a manner which takes into consideration the strength

and spectrum of the light source, the choice of filters and the noise in the

camera system.

Further background on these efforts will be provided in later sections of this document.

14

2. SPECIFIC AIM 1: MULTIMODALITY REGISTRATION

2.1. Overview

The overall objective of the first specific aim is to co-register the datasets acquired on

optical (e.g. IVIS 200), PET (e.g. Siemens Focus 120), CT (e.g. microCAT) and MR

(e.g. Bruker) scanners based on a calibrated positioning of the animal within each

scanner’s field of view. Accurate co-registration is a pre-requisite enabling the

comparison of BLT reconstruction results to complex reference standards against which

the accuracy of the BLT reconstruction can be judged.

In vivo planar optical bioluminescence imaging (BLI) of small animals provides a high

sensitivity, low background, non-invasive means of monitoring gene and protein

expression and other cellular events at low cost [60-65]. However, the information that

BLI provides is severely limited in terms of its ability to determine either the

concentration or precise location of the bioluminescence source. These limits stem from

the manner in which light propagates through biological tissues [66]. Unlike the high

energy X-ray and gamma-ray photons used in radiographic and nuclear imaging,

photons at the wavelengths typical in BLI (400-800nm) do not predominantly travel in a

straight line from their source to the detector. Instead, bioluminescent light is highly

scattered and attenuated, processes that obscure and dissemble the location and

intensity of the true source distribution. The region on the skin surface of the animal

from which light is seen to emanate (in rough terms) is the surface point closest to light

source and the magnitude of the light flux at the surface is heavily dependent upon this

distance.

15

Bioluminescence tomography (BLT) has the potential to remove these limitations,

providing both quantitative accuracy and information regarding the precise location and

3D distribution of the bioluminescence sources [67]. Recovering this information from

the surface flux measurements however is difficult with results that are sensitive to the

chosen light propagation model and the assigned tissue parameters [68]. Although it is

known that the organs and tissues within an animal vary considerably in their light

attenuating and scattering properties, BLT reconstruction algorithms often assume

homogeneous tissue having composite attenuation and scatter parameters, this largely

because knowledge of the internal anatomy is not available.

Precise knowledge of the shapes and locations of the major organs within an animal

therefore has the potential to significantly improve the accuracy of BLT reconstructions.

This knowledge could be garnered from, for example, magnetic resonance (MR) and/or

X-ray computed tomography (CT) scans that have been spatially registered to the

bioluminescence images. These anatomical datasets could be segmented according to

tissue type and to each a different set of light propagation properties assigned.

To my knowledge, there have been just two previously published attempts to apply

information regarding organ shapes and locations to assist in modeling the propagation

of light through the tissues of a live mouse. The first of these estimated the shapes and

positions of the major organs of the mouse using a generic segmented digital mouse

atlas. This model was rotated, shifted, scaled and warped so that its exterior surface

contours matched those of a CT taken of the animal after it had been frozen with liquid

nitrogen in the pose it was in within the BLI imager [37]. The use of a generic mouse

16

atlas to estimate the mouse anatomy does not allow for abnormal anatomy (e.g. tumors)

within the mouse. This particular deficiency was addressed in a study by another

investigator, which applied similar methodology but this time to an MR image of the

same animal from which the BLI images were obtained [69]. In spite of attempts to

maintain the animal’s pose, it was again necessary to spatially warp the 3D dataset to

get the MRI surface contours (in this case) to match those of a surface determined

using photogrammetric techniques within the BLI imager. Warping in this manner is

problematic because there are no measurements to guide the internal deformations of

the organs and thus can lead to significant errors in the light propagation estimate.

Furthermore, the accuracy of this type of retrospective fitting procedure is data

dependent, having potentially large errors when the contours are smooth.

In the approach I propose here, the animal is maintained in a fixed rigid pose across

imaging sessions and thus I avoid the need for warping transforms. By using

specialized hardware that allows precise positioning of the animal within each of the

scanners, it is possible to use fixed a priori determined spatial transformations to

register the image information among all modalities. The registration of the 3D data (CT

and MR) to the 2D optical images is accomplished using a projective transformation that

models the relative position, focal length, and field of view of the camera within the BLI

system. Corrections are also made for the spatial distortions introduced by the BLI

camera lens. This model of the BLI camera system can be used to transfer information

in both directions between the anatomical and optical imaging spaces. For example, it

can be used to map the BLI image data onto a skin surface determined from the 3D

17

anatomical data. Likewise, the skin or other surfaces can be mapped to a 2D image

onto which the bioluminescence light signal can be superimposed.

Registration of the image spaces at this stage prior to BLT reconstruction allows for the

use of information derived from the anatomical datasets regarding the location and

spatial distribution of various organs to be used within the BLT reconstruction algorithm.

BLT reconstructions based on this mapping are effectively pre-registered to the

anatomical data. This registration provides important anatomical context to assist in the

interpretation of the reconstructed luminescent distribution. Perhaps more importantly,

given the questionable accuracy of current BLT reconstruction algorithms in vivo, by

using sources visible on both the optical and anatomical modalities, the MR (or CT)

determined source distributions can be used as a gold standard against which the

results of the BLT reconstructions can be assessed and validated.

In this manuscript, I’ll describe procedures to register MR and CT image sets of a

mouse to a set of optical bioluminescence planar images, allowing each animal’s own

anatomy to define the spatial distribution of the attenuation and scatter parameters. By

placing artificial light sources of known intensity within the animal that can be readily

detected via CT and by using transgenic animals genetically engineered to have

specific organs (visible on MR) express luciferase, I’ll demonstrate a means by which

the accuracy of a given BLT reconstruction can be assessed. In addition, by rotating a

mouse while maintaining its fixed pose within the BLI imager, I am able to accurately

determine the dependence of the measured light intensity on the angle of the surface

normal relative to the BLI camera.

18

2.2. Scanners.

Brief descriptions of the three imaging systems used for the studies described in this

manuscript are as follows. The IVIS 200 is a bioluminescence and fluorescence imaging

system utilizing a 26x26 mm back-thinned, back-illuminated CCD, cryogenically cooled

to -105º C. It has an adjustable field of view ranging from 4 to 26 cm and includes a light

source and filter sets for fluorescence and multispectral bioluminescence imaging. The

Bruker Biospec 47/40 (Bruker Biospin Inc., Karlsruhe, Germany) is a 4.7 Tesla 40 cm

horizontal bore small animal imaging spectrometer equipped for multinuclear imaging

studies and spectroscopy. The Siemens/CTI microCAT II (Siemens Medical Solutions,

Malvern, PA) is a small animal CT scanner with an 8.5 cm axial by 5.0 cm transaxial

FOV. It uses a 2048×3096 element CCD array coupled to a high-resolution phosphor

screen via a fiber-optic taper and a Tungsten anode with a 6 micron focal spot. Its

highest reconstructed resolution is about 15 microns in each dimension.

2.3. Overview of the registration procedure.

The overall objective here is to base the registrations on a calibrated positioning of the

animal within each scanner’s field of view. Between and during the imaging sessions,

the animal is held in a rigid pose, at a fixed position relative to the animal bed. This is

accomplished by wrapping the animal with a thin 0.01 mm polyethylene wrap while it is

positioned atop a custom designed bed with a nose cone for the administration of

oxygen and gaseous anesthesia. The wrap applies a light pressure over the entire body

of the animal, gently and efficiently restricting its movement. Registration then amounts

19

to establishing a frame of reference

relative to the bed for each scanner and

calculating the rigid or projective

transforms that map between them.

In these studies, I have used several

different bed designs and many more

are possible. Here I’ll briefly describe

one such bed that is particularly apt for

use in BLT reconstruction and is the

one used in the animal experiments

described below. The bed is fashioned

from a 6 x 25 cm rectangular sheet of 1

cm thick Lucite at the center of which is

cut a 4 x 15 cm rectangular window.

Over this window is stretched a single

layer of 0.01 mm polyethylene plastic,

adhering to the Lucite with the

assistance of a restickable glue (3M

Glue Stick). This sheet of plastic forms the bed on top of which the animal is laid. The

animal is then sandwiched and pressed by a second layer of polyethylene, effectively

restraining its movement to less than 0.62 mm [70] and allowing equally clear views of

the animal from above and below (see figure 2.1) as it is suspended above the window.

Squeezing the animal in this manner has had no apparent adverse affect on the

Figure 2.1 Images of a mouse restrained on the bed.
This bed can be moved between scanners while
maintaining the animal in a fixed rigid pose. Within
the IVIS optical imager, it can be rotated allowing the
cameras to see both anterior and posterior views of
the skin surface. Flattening the mouse in this way
makes a large skin surface area visible using just two
views.

20

animal’s health in the dozens of studies conducted to date. At one end of the Lucite is

attached a block of Delrin plastic into which are drilled a set of holes sized and spaced

so as to mate with a corresponding set of pegs present on the bed mount adapters

designed for each of the imaging modalities.

For the IVIS, the bed mount includes a platform referencing two of the inside edges of

the IVIS’ light-tight box. Thus, the bed mount and the attached bed can be consistently

placed within the IVIS, thereby allowing precisely reproducible positioning of the animal

relative to the camera for any given camera to subject distance. The bed and its

mounting system were designed such that the bed can be pivoted about its long axis

(inferior to superior axis of the mouse) in precisely calibrated 15º increments, allowing

views of the animal from different vantage points.

The microCAT has a motorized bed positioning mechanism with optically encoded

position readout calibrated to a precision of 0.01 mm and a repositioning accuracy of

better than 0.1 mm. A custom adapter is used to attach the animal bed to this bed

positioning mechanism in a reproducible manner. It can then be removed for placement

on the other scanners using specialized bed mounts designed for each. The coordinate

system defined by the microCAT’s bed positioning mechanism was used as the

reference frame to which both the Bruker and IVIS images are mapped.

Positioning of an animal within the field of view of the Bruker does not easily lend itself

to such reproducibility because its field of view is located deep within its bore and thus

is remote from any potential spatial reference. Moreover, references within the bore are

generally blocked by the gradient and readout coils. Therefore, I established a set of

21

markers within the bed that are visible both on MR and CT. Using landmarks derived

from these markers it is possible to place the MR image set into the microCAT’s frame

of reference. Alternatively, retrospective mutual information based volume registration

methods work well when registering these two structural image datasets to one another.

For a detailed description of the markers, the volume and landmark point based

registration procedures and the effectiveness of the wrapping system in maintaining the

rigidity of the animal, see Beattie, et al. [70].

2.4. Registration of a 2D image to a 3D image set.

The conventional notion of what it means to register two three-dimensional (3D) image

sets is to rotate and shift a target image set, so that its resampled voxels are in

locations equivalent to those of the corresponding voxels within the reference image

set. For the purposes of this manuscript, the idea is to co-register a 3D image set with

an image that has only two dimensions. Furthermore, this two dimensional (2D) image

is generated from the summation of photons traveling along vectors entering the

camera and thus its pixels do not correspond to points in 3D space (as opposed to the

pixels of a 2D slice through 3D space). In this case, the conventional notion of 3D image

registration is ill applied, so instead I’ll make use of a paradigm more apt for the

registration of 2D photographic images.

In this paradigm, two 2D images are co-registered when through a series of

transformations applied to the target image, the position, orientation, focal length and

distortions of the reference image’s camera system are mimicked. In this way, the

vectors associated with each pixel in the two images are made to overlay. Thus, for

22

these purposes, I will create a virtual camera capable of taking 2D images of the 3D

image set information content. This virtual camera is simulated to have the same focal

length and distortions and to be in the same position and orientation relative to the

imaged object as the real 2D camera that acquired the reference (in this case

bioluminescence) images. This virtual camera system can be made to visualize the 3D

image set in a variety of ways, for example, it can slice through the 3D image set at an

arbitrary depth and angle; or it can view maximum intensity projection information; or it

can view the reflectance of virtual light sources off surfaces that have been segmented

from the 3D data.

2.5. BLI camera model.

The camera model used was that of a basic pinhole camera as described by Hartley

and Zisserman [71]. In this model, points in 3D space represented in homogenous

coordinates (X,Y,Z,T)T are mapped onto the 2D image plane by the 3×4 projective

transformation matrix which is decomposed and parameterized as follows:

 (2.1)

Here, Rxyz and Qxyz are rotation matrices having three parameters each. Point (pu,pv) is

the center of the acquired 2D image, (cx,cy,cz) is the camera center, and β describes the

rotation of the bed about its axis. Vector (tx,0,tz) defines the translation which when

combined with Qxyz moves the bed from its position in the CT or MR coordinate system

23

onto the axis of the bed-mount in the BLI coordinate system. Altogether, this system

requires 15 parameters (f, px, py, 3 for R, cx, cy, cz, β, 3 for Q, tx and tz), three of which

were fixed (px, py and the rotation angle β) leaving 12 parameters to be fit during the

calibration procedure.

Distortion within the IVIS camera images was modeled using the radial distortion model

described by Hartley and Zisserman [71]. In this model, the distortion is assumed to be

solely a function of the radial distance from some central point and is estimated by a

Taylor expansion, L(r)=1+κ1r+ κ2r2+ κ3r3+…; with r2=(x-xc)2+(y-yc)2 and where (xc,yc) is

the central point. In this implementation, I have assumed that this central point

corresponds to the principal point and image center (px, py). An image of a grid was

used to calculate three terms of the Taylor expansion of the radial distortion function by

minimizing the distance between the gridline intersections and corresponding virtual

lines formed by end points of each gridline on the image periphery (as suggested by

Hartley and Zisserman).

2.6. BLI camera calibration.

In order to cross-calibrate the IVIS and microCAT coordinate systems, a phantom for

which corresponding points can be identified on both imaging systems was devised.

Specifically, this phantom was made out of a 3x2x10 cm plastic block into which a grid

of 1 mm wide by 1 mm deep grooves were cut, spaced 5 mm apart. The grooves

themselves were painted white, while the tile surfaces of the block were painted black.

Grids were cut into all six surfaces of the block, although only three surfaces were used

in the calibration procedures described here.

24

The corners of the tiles are readily identified on both the reconstructed CT image sets

and in the reflectance images from the IVIS. Within the microCAT image sets, the 3D

coordinates of twenty-eight tile corners were manually identified. These points were

arranged in grids of 3×4 points covering the top and the two adjacent long sides of the

phantom. Note the grids all extend to the edges of the phantom, therefore the top

shares its left-most and right-most columns of points (4 points each) with each of the

respective sides (thus 3×3×4-4-4=28 points altogether).

These same tile corners were identified (again manually) in each of the 13 IVIS

distortion corrected reflectance images in which the corners could be seen. Thus at

-90º, 0º and +90º, a single face and therefore 12 points were in view and at each of the

other 10 angles, two faces and therefore 20 points were in view. All combined, 236

points within the 13 IVIS images were located. These same locations were modeled

based on the 28 microCAT points and the known bed rotation angles. The 12 variable

model parameters were adjusted to achieve a least squared error between the

measured and modeled point locations using a constrained nonlinear fitting procedure

(lsqnonlin in Matlab, The Mathworks Inc, Natick, MA).

2.7. Registration accuracy.

The accuracy of the registration was estimated by performing a number of repeat

studies involving a mouse-like phantom. The phantom was mouse-like in terms of its

size, weight and rough shape, so that the forces applied to the enclosing plastic wrap

and bed support structure would be similar to those encountered with an actual animal.

On the surface of this mouse phantom was glued four gaseous tritium light source

25

(GTLS) beads [mb-microtec ag, Niederwangen, Switzerland], two on each of what were

effectively the anterior and posterior surfaces. These small (2.3×0.9 mm) cylindrical

glass tubes emit a small, virtually constant (tritium powered fluorescence) level of light

and are readily distinguishable on both the CT and bioluminescence images.

Between each of the repeat studies, the bed was removed from its mount and the

mounting platform removed from the IVIS, thus the measured accuracy takes into

consideration the reproducibility of these bed positioning procedures. Note, errors due

to the movement of the wrapped mouse were considered in my previously published

work [70]. The bed repositioning was performed three times each time with images

taken of the bed rotated at angles covering a full 360 degrees at 30 degree increments.

Following each bioluminescence imaging session, the GTLS phantom was imaged on

the CT each of which also involved the removal of the bed and its mount from the CT.

On each of the three CT datasets, the centers of the four GTLS beads were manually

identified (i.e. with a computer cursor). To these I applied the perspective and distortion

transforms calculated in the calibration procedures generating a set of 2D locations

within the bioluminescence image space. The corresponding locations as seen on the

bioluminescence images were also identified manually and the absolute distance

between corresponding transformed CT and bioluminescence point pairs determined.

This was done for the 9 combinations of the bioluminescence and CT repositioning

studies, each involving 12 pairings (one for each angle) of each of the two GTLS beads

visible at a given angle.

26

The mean and standard deviations and max of

the errors were calculated for each bead location

at each angle, so that unusually large errors for a

given bead (i.e. location within the image) or for a

given angle could be identified. Failing the

identification of any outliers, the results were

summarized by a single mean, standard deviation

and overall max error.

2.8. Animals and imaging procedures.

Numerous animal studies have been undertaken

utilizing these registration procedures. Here I will

describe three preparatory studies (described

here as experiments 1, 2 and 3) whose results

have general application and implications across

all BLT reconstruction algorithms. In the first of these, experiment 1, I’ll measure the

dependence of the measured surface flux on the angle of the skin surface relative to the

camera. In experiment 2, I’ll provide direct evidence of the impact of inhomogeneous

light propagation within the tissues of the mouse and in experiment 3, I’ll demonstrate a

method of correcting for the time dependent changes in total light flux seen in typical

luciferase based bioluminescence imaging studies due to substrate transport and

consumption. Accounting for this time-course is important in multispectral and multiview

BLT studies [22, 72-74], which involve multiple sequential images.

Figure 2.2 Photograph (in gray-scale) of a
transgenic mouse onto which the
bioluminescence image (in hot-iron) has
been superimposed. The abdomen of the
animal has been opened surgically and
some organs removed to provide a clear
view of its kidneys. These images taken
immediately post-mortem and following a
luciferin injection, demonstrate the strong
and equal CBR luciferase expression in
the kidneys of this animal.

27

In experiments 1 and 2, the light source was a GTLS bead placed within a small

catheter that was in turn placed within the rectum of a nude mouse (nu/nu). Prior to this

placement, anesthesia was induced with 3% isoflurane and the eyes of the mouse were

dabbed with a sterile ocular lubricant (Pharmaderm - Paralube Vet Ointment) to prevent

drying. The mouse was then placed on the bed and secured with the plastic wrap

following which it was imaged within the IVIS imager and on the microCAT CT scanner.

The details of each of these imaging sessions are provided below. Continuously

throughout and between all imaging studies the mouse was maintained under

anesthesia using 1% isoflurane, with only momentary disconnects to allow transport

between imaging systems.

In experiment 3, I made use of a transgenic mouse that was genetically engineered

such that both of its kidneys uniformly expressed click-beetle red luciferase (see figure

2.2). It is worth noting that (like a Cerenkov/PET reference standard) animals of this

type can also be an effective means of testing the accuracy of BLT reconstruction

algorithms for distributed (i.e. non-point-like) sources in-vivo, because the source

distribution is more predictable across animals (compared to implanted, luciferase

expressing tumors, for example) and because the organs expressing the luciferase are

readily seen on MR. The use of this animal for the purposes here, however, is to

demonstrate a means to correct for the time-course of bioluminescence light output

following the luciferin injection.

Unlike the nude mice used in the first two experiments, the transgenic mouse has dark

brown fur that can interfere with the measurement of the bioluminescence signal. To

28

avoid this interference, the abdomen of the animal was depilated prior to imaging. This

animal received a bioluminescence image set followed by scans on the microCAT CT

and Bruker MR. Details of the imaging protocols used on this animal are described

below.

2.9. Imaging protocols.

Imaging on the IVIS varied somewhat with the experiment. For the angular dependence

measurement, both reflectance and bioluminescence mode images were acquired for

each angular position of the bed as it was rotated in 15 degree increments between ±

90 degrees. All bioluminescence images were acquired in the “open” filter setting (i.e.

with no filter present).

In experiment 2, demonstrating the affect of tissue heterogeneity, the animal was

imaged from above in a prone position. Several attempts were made with slight

adjustments to the position of the GTLS bead until the bioluminescence image achieved

a bimodal surface flux suggesting preferential light pathways to either side of the spine.

Upon achieving this position, the animal was imaged using the full set of 20 nm

bandpass filters available on the IVIS 200 covering the range from 560 to 660 nm.

For experiment 3, imagesets of the mouse were taken from both the anterior and

posterior views. Each imageset consisted of a reflectance image followed by the full set

of 20 nm bandpass filter images. Bracketing and interposed between each of these, a

short (10 sec) “open” filter setting image was acquired. This entire imaging sequence

commenced two minutes following an intraperitoneal injection of luciferin (150 mg/kg in

100 µL).

29

For the MicroCAT imaging, three hundred and sixty transmission images were acquired

at 1º increments encircling the mouse. These images were reconstructed with a cone-

beam 3D FBP algorithm (COBRA software from the Exxim Computing Corp.

Pleasanton, CA) into a 192×192×384 matrix over a 4.38×4.38×8.76 cm FOV (i.e.

0.228×0.228×0.228 mm voxels).

Images acquired on the Bruker MR were made using a 7 cm Bruker birdcage coil tuned

to 200.1 MHz and the 10 mT/m gradient coil system. 3D images were obtained with a

fast spin-echo sequence with a repetition interval (TR)= 1.2s, effective echo time (TE)=

40ms, image matrix of 128×96×256, 8 repetitions per phase encoding step and a total

imaging time of 61 minutes. The final voxel dimensions for these images are

0.341×0.333×0.333 mm.

2.10. Registration accuracy.

The results of the test of the BLI to CT registration accuracy showed no bias in the

error, neither for the angle of rotation nor for the bead location (see Table 2.1). The

mean error across all beads was 0.36 mm with a standard deviation of 0.23 mm. The

maximum error encountered over all measurements was 1.08 mm.

30

Table 2.1. The mean error in the BLI to CT registration for individual beads as the bed
is rotated.

angle
(degrees)

-165 -135 -105 -75 -45 -15 15 45 75 105 135 165

bead 1a or
1b avg
(mm)

0.56 0.17 0.35 0.40 0.31 0.52 0.25 0.29 0.25 0.24 0.12 0.24

bead 2a or
2b avg
(mm)

0.44 0.33 0.53 0.44 0.55 0.31 0.39 0.40 0.36 0.38 0.48 0.42

2.11. Experiments

Experiment 1 - Angular dependence. By the time a given photon reaches the inner

surface of an animal’s skin, it has usually undergone numerous scattering events such

that virtually all information regarding the direction of its source has been lost.

Moreover, for this reason, photons impinge on the inner surface nearly isotropically.

However, because of the change in refractive index when moving from skin to air, the

exit angle is not isotropic and thus the apparent intensity of the light emanating from a

given surface point is dependent upon the angle between the skin surface normal and

the camera line of sight. For BLT this dependence needs to be accounted for or

corrected when determining the surface flux at each surface point.

31

Figure 2.3 shows the measurements

made in experiment 1 of relative light

intensity as a function of the exit angle

fitted with a curve modeled based upon

the Snell and Fresnel equations and

assuming a refractive index of 1.4 (the

value measured in mammalian tissues

by Bolin, et al. [75]). The derivation of

this model will be described in section

2.15 of this manuscript. In measuring

the angular dependence, I chose a set

of surface points based upon a

threshold applied to the bioluminescence image taken at bead-angle zero. The surface

normal for these points was determined from the CT image and the angle relative to the

camera was garnered from the rotations to be applied to the CT data in registering the

bioluminescence and CT data sets. Given the somewhat flattened body contour of the

mouse (see figure 2.4a) the selected surface point normal vectors were all within 5

degrees of one another and therefore considered to correspond to a single mean angle

(note this mean angle was not zero for the horizontal bed position since the surface of

the mouse was at a slight angle relative to the bed). This same set of surface points

were followed as the bed was rotated to different positions between ±75º in 15º

increments. The intensities of the bioluminescence light at these surface points were

Figure 2.3 Measurements (x’s) of the relative light
intensity as the angle between the surface normal
and the camera line-of-sight varies between
(approximately) ±75º. The solid line shows the light
fall-off predicted by the proposed model assuming a
refractive index (r.i.) for biological tissues equal to 1.4
and a mouse imaged in air (r.i.=1.0).

32

averaged at each angle and associated

with the bed angle plus the mouse-to-

bed angular offset. The intensities were

then normalized to have unit maximum

amplitude.

Experiment 2 – tissue heterogeneity.

Figure 2.4 shows a set of images taken

in experiment 2. Based on the skin

surface contour as seen on the CT (in

figure 2.4a) one would not expect the

bimodal surface flux seen in the

bioluminescence images (figure 2.4b) if

the underlying tissue was

homogeneous in its light propagation properties. The CT image shows that the GTLS

bead is positioned directly beneath the spine in this animal suggesting that increased

attenuation through the bone may explain the bimodal distribution.

Experiment 3 – time course correction. As described in the Materials and Methods

section, the in vivo multispectral bioluminescence imaging protocol includes “open” (i.e.

unfiltered) acquisitions bracketing each of the images acquired with one of the 20 nm

bandpass filters. The intent of these repeat measures is to monitor the time-course of

luciferase enzyme-substrate activity (and perhaps other physiological changes) leading

to changes in the measured surface flux. Note that here I am assuming there are no

Figure 2.4 Transaxial and sagittal cross sections
through CT image of a mouse showing location of the
GTLS bead relative to the spin (a). Images in (b) show
measured luminescence signal in color
surperimposed on the reflectance image of the mouse
(left), a surface rendering taken from the CT (middle)
and a volume rendering of the bone also taken from
the CT (right).

33

changes in the spatial distribution of the enzyme or substrate nor changes affecting the

spectrum of the light emissions (e.g. temperature induced red-shift [76]).

The procedure to correct for the

enzyme-activity time-course is as

follows. To each of the “open” images

the same region of interest enveloping

the bulk of the light emanating from the

mouse was applied and the time of

acquisition and total light flux (in

photons per second per steradian) was

recorded. The unfiltered light flux at the

time of the filtered image acquisition

was estimated by linear interpolation of the bracketing unfiltered light flux

measurements. The time-course correction factor for each filtered image taken from a

given viewpoint (anterior or posterior) is simply the ratio of the interpolated flux relative

to flux of the first open image from that viewpoint. The change in the time-course

between views was determined by extrapolating the correction factors from the first view

to the time of the first open acquisition of the second view. All of the second viewpoint

correction factors are then scaled by this extrapolated factor. A plot of the resulting

correction factors is shown in figure 2.5.

Figure 2.5 Plot of correction factors as a function of
time. The two line segments, left and right, were
determined from the “open” measurements from the
posterior and anterior views, respectively. The
individual anterior factors were all scaled by the same
constant so as to produce the overall smooth time-
course shown.

34

2.12. Light Fall-off Correction.

The model I propose for describing the fall-off in

light intensity as the angle between the camera

line-of-sight and the surface normal increases is

derived from Snell’s law and the Fresnel equations

and assumes that photons just prior to exiting the

animal are isotropic. Thus, the incident angle θ1

(see figure 2.6) is uniformly distributed over ±90º. When these photons are moving from

the animal (with refractive index n1) into air (with refractive index n2 < n1), if they are

incident at an angle θ1 greater than ()121 nnsincrit
−=θ then they are internally reflected.

Whereas, if they are incident at an angle less than θcrit their exit angles θ2 are distributed

over the range ±90º. This distribution however is not uniform. Instead, for each

arbitrarily small solid angle dθ1, there is a corresponding (larger) solid angle dθ2 into

which the photons are distributed. The ratio of these solid angles dθ1/dθ2 determines the

reduction in light flux and can easily be calculated by solving Snell’s law of refraction

formula (equation 1) for θ1 and taking its derivative with respect to θ2 (result shown in

equation 2.2).

 () ()21 21 θθ sinnsinn ⋅=⋅ (2.2)

()

()2
2

2

2

2

2

1

sin
1
2

11

cos2

θ

θ
θ
θ

n
n

n

n

d

d

−⋅

⋅= (2.3)

Figure 2.6 Diagram defining
parameters θ1, θ2, n1 and n2

35

This relationship is modified

slightly by the partial reflections

occurring for incident angles less

than θcrit described by the Fresnel

equations. The Fresnel equation

describing the fraction of light

transmitted as a function of the

incident (or exit) angle is shown in

equation 2.3. The complete

description of the angular

distribution of the exiting photons for isotropic incident photons is the product of

equations 2.3 and 2.4, Tdθ1/dθ2.

()
()

()
()

2

tan
tan

sin
sin

1

2

12

12

2

12

12

+
−+

+
−

−=
θθ
θθ

θθ
θθ

T (2.4)

This model was tested on a phantom consisting of a large Delrin plastic block 10×10×4

cm. In the center of one of the 10×10 cm sides was drilled a 2 cm deep cylindrical hole

with a diameter of 0.5 cm. This in turn was filled by a snugly fitting cylindrical peg, also

made of Delrin. Into the tip of the peg, a small hole was excavated, just large enough to

accommodate a GTLS bead. The GTLS bead, so placed, was positioned in the center

of the large Delrin block. The block, in turn, was placed on the bed mount within the

IVIS imager and luminescent images were acquired with the block rotated at a series of

angles between ±75º (at 15º increments). Delrin is known to have a refractive index of

Figure 2.7 A plot similar to that of figure 2.3 except here
describing the light emanating from a point source placed 2
cm deep within a Delrin plastic block. The solid line in this
case is the modeled function using the known refractive
index for Delrin.

36

about 1.48 [77] and this value worked well when fitting the model to the averaged

surface flux (see figure 2.7).

2.13. Discussion

The majority of bioluminescence tomography reconstruction algorithms, when tested in

vivo, lack a gold-standard reference describing the true light-source distribution. This

lack of in vivo testing and validation has hampered both the continued refinement and

the acceptance of BLT for routine use. The registration procedures I propose enable the

development of a gold-standard reference to which the reconstructed luminescence

source distribution can be compared.

Although it as yet an open question, further improvements in the accuracy and

robustness of BLT reconstructions may require the incorporation of additional a priori

information. In particular, the spatial distributions of tissues having differing light

propagation properties may have significant impact. CT/MR to BLI registration allows a

mechanism via which this type of information may be exploited in BLT. By using the

animal’s own MR or CT, even abnormal anatomies may be handled.

Lastly, I have demonstrated corrections for two confounds that play a role in many BLT

acquisitions, the changes in bioluminescence flux as a function of time and as a function

of angle between the surface normal and camera line-of-site. In correcting for this latter

confound I propose a model that relates the distribution of light propagation vectors for

photons impinging on the inner surface of the skin to those exiting the skin surface. This

model was tested using careful measurements made possible by the described

registration procedures.

37

It is my hope and expectation that taken together these pieces form a platform upon

which bioluminescence tomography reconstruction algorithms may be improved and

refined and ultimately validated, paving the way for routine preclinical use.

38

3. SPECIFIC AIM 2: CERENKOV QUANTITATION

3.1. Overview

The reference standard images I propose to use are PET images that have been

reconstructed within the same spatial frame of reference within which a luminescence

dataset is acquired [78]. The luminescence data will come in the form of Cerenkov

radiation, which will act as a surrogate for bioluminescence. Cerenkov radiation is

produced by and is virtually 100% correlated with the locations of the positrons whose

distribution is described by the PET image. PET images describe positron concentration

and the intensity of the Cerenkov light produced by the positrons can be calculated

directly from this information based on first principles [79]. Thus, with the appropriate

scaling, PET images can provide ground truth against which a BLT algorithm's

reconstruction can be tested.

Cerenkov radiation (CR), first described by Pavel Cerenkov nearly a century ago, is

produced when a charged particle travels through a dielectric medium at a speed

greater than the phase velocity of light in that medium (i.e. greater than the speed of

light in a vacuum divided by the refractive index of the medium) [80, 81]. These

conditions produce a photonic shockwave somewhat similar to the sonic shockwave

(i.e. sonic boom) associated with supersonic bodies in air. Cerenkov photons have a

broad frequency spectrum with intensity inversely proportional to the square of the

photon's wavelength within and extending somewhat beyond the visible range.

39

Recent renewed interest in CR began following the demonstration of detectable

amounts of light emanating from a radionuclide bearing live mouse [82, 83], suggesting

the possibility of exploiting this phenomenon for medical research and possibly clinical

purposes. In this context, a number of radionuclides have been tested for CR production

(e.g. F-18, N-13, Cu-64, Zr-89, I-124, Lu-177, Y-90, I-131) [84, 85] including some

radionuclides, In-111 and Ac-225, that one might not, upon initial consideration, expect

to produce CR owing to their lack of a sufficiently high velocity charged particle

emission. In-111 decays via electron capture and emits only γ-rays with significant

abundance. Ac-225 is a virtually pure α emitter, but α's in water become superluminal

only at energies well beyond those of Ac-225's emissions. Never-the-less, experiments

designed to measure CR conducted by multiple groups have detected light emanating

from both In-111 and Ac-225 [84, 85]. However, to-date, clear evidence demonstrating

that the Cerenkov mechanism is the source of this light has been lacking.

Of the potential biomedical uses of CR, the most commonly cited application is as a low

cost, high throughput alternative to PET imaging [82, 83, 86] referred to as Cerenkov

Luminescence Imaging (CLI). Other proposed applications include: an alternative to

bremsstrahlung for imaging pure β- emitting radionuclides [82, 86]; a higher resolution

autoradiography method for high energy β's [86]; intra-operative or endoscopic imaging

of targeted structures in humans [85]; an excitation source for various fluorophores [87-

89]; and most recently a renewed interest in using CR as a light source for

photodynamic therapy [90, 91]. In each of these applications there are also

disadvantages to using a Cerenkov derived signal (e.g. limited half-life, ionizing

radiation, poor tissue penetration). As such, it is yet unclear whether any of these new

40

applications of Cerenkov imaging will prove to be clearly superior to extant techniques

and enjoy widespread use.

However, one concrete and clearly advantageous proposed use of CR is as a means of

validating the results of luminescence tomography reconstruction algorithms [82]. Thus

far, manuscripts have been published using both SPECT [20] and PET [92, 93] imaging

as validated reference standards. In these papers, the comparison of the reconstructed

luminescence to the nuclear imaging reference was limited to a simple difference

between centroid locations. One of these papers [93] looked at the linearity between the

two signal intensities but did not establish a relationship in absolute terms that spanned

the in vitro and in vivo conditions.

The work to be presented here seeks to establish such a cross-calibration between the

signals derived from CR and nuclear tomographic imaging modalities, thus allowing

nuclear imaging to better serve as a means of validating luminescence tomography

reconstruction algorithms. Since PET and (in some cases) SPECT are already

quantitative in terms of absolute radioactivity, establishing a cross-calibration amounts

to determining the quantity of CR produced per unit radioactivity under imaging

conditions and then measuring the light in absolute terms.

I accomplish this task using a set of computer models of CR production and apply the

models to predict and tabulate the efficiency of CR production for a number of medical

radionuclides under a variety of conditions affecting said efficiency. I also look at the

intrinsic resolution of the Cerenkov light produced by these radionuclides. Experiments

involving a subset of these radionuclides will be used to validate the model results. And

41

as an aside, I evaluate the CR production capacity of the two radionuclides for which

this capability has been questioned, namely In-111 and Ac-225.

Finally, I propose here a simple system that uses CR as a low intensity light source able

to calibrate luminescence imaging systems and thus avoids the expense of specially

calibrated sources, integrating spheres and the like. I’ll present data suggesting that this

approach is more accurate than calibrations currently performed by manufacturers,

including with regard to the calibration of spectral filters.

3.2. Modeling.

Overview. The radionuclides to be considered here decay primarily by α, β+, β- and γ

emissions. Neutrinos, conversion electrons, Auger electrons, characteristic x-rays,

bremsstrahlung radiation, annihilation photons, δ-rays, e+/e- pairs and secondary

electrons are also produced.

The α particles emitted by radionuclides generally are not of sufficient energy to be

superluminal when transiting through water, biological tissues or other non-periodic

mediums of moderate refractive indices, and should not produce CR. Likewise, the

secondary electrons produced by the transiting α's are not of sufficient velocity because

each electron receives only a small fraction, a maximum of ()2
5.48E-4 4 /mM M m= + , of

the α's energy (where m and M are the rest masses of the electron and α,

respectively). Neutrinos, Auger electrons, characteristic x-rays and e+/e- pairs (i.e. pair

production), are all either not produced at significant quantities, are not of sufficient

energy or do not interact with matter with sufficient efficiency to produce Cerenkov

42

radiation. Bremsstrahlung radiation can extend into the visible spectrum and thus

conceivably could be confused with Cerenkov radiation, but the amount within the

visible range is expected to be negligibly small and its wavelength distribution would be

dissimilar to the characteristic one over wavelength squared Cerenkov distribution and

thus can be easily distinguished. This leaves β+, β-, δ-rays, conversion electrons and

secondary electrons produced by both γ-rays and annihilation photons as the potential

dominant sources of Cerenkov radiation. These are all, in essence, β particles (i.e.

electrons or positrons) of varying origin. Over the range of β energies of interest here,

there are negligible differences in the Cerenkov producing properties of β+ and β-

particles and no difference what-so-ever among β-, δ-rays, conversion electrons and

secondary electrons [94].

Table 3.1 lists for each of the radionuclides to be modeled, the total abundance of each

of the types of emissions at least some of which have sufficient energy to produce CR in

water. Along with the half life and total abundance[95], I list the abundance of the

portion of those emissions that are above the energy threshold of CR production in

water (refractive index 1.33, threshold 263 keV [96]) and in mammalian tissue

(refractive index of 1.4, threshold 219 keV [75]); these based on my integrations of the β

energy spectra [95]. For example, while the overall β+ abundance of F-18 is 97% the β+

with energy ≥ 263 keV is only 43% and ≥ 219 keV is 54%. Note that since annihilations

photons have a kinetic energy of 511 keV, they are above the threshold for both

refractive indices (1.33 and 1.4) and their abundance is twice that of the β+ total

abundance.

43

Table 3.1. Total abundance and abundance of emissions having energy greater
than CR thresholds in water and in biological tissues.

radio-
nuclide

half lifea β+ (%) β- (%)
conversion electrons

(%)
γ-rays (%)

 total 1.33 1.4 total 1.33 1.4 total 1.33 1.4 total 1.33 1.4
C-11 20.4 m 100 69 77
N-13 9.97 m 100 79 84
O-15 122 s 100 90 93
F-18 109 m 97 43 54
Cu-64 12.7 h 18 9 11 39 11 15 < 0.1 <0.1
Ga-67 3.26 d 34 0 0 88 22 22
Ga-68 67.7 m 89 83 85 < 0.1 4 4 4
Zr-89 3.27 d 23 17 19 < 0.1 101 101 101
Y-90 2.67 d 100 89 91 < 0.1 <0.1
In-111 2.80 d 16 0 1 185 0 94
In-114m 49.5 d 81 0 0 22 6 6
In-114 71.9 s 100 85 89 < 0.1 <0.1
I-124 4.18 d 24 22 23 < 0.1 99 99 99
I-131 8.03 d 100 36 35 6 2 2 101 98 98
Ac-225 10.0 d 67 0 0 7 0 1

The radionuclides of interest for production of CR are listed in this table, and are modeled in this work.
Characteristics of each radionuclide are given including half life, total abundance and abundance of
emissions greater than the threshold for CR production. The CR abundance efficiencies are given for 1)
water (refractive index 1.33, threshold 263 keV) and 2) mammalian tissues (refractive index 1.4, threshold
219 keV). a s - seconds, m - minutes, d – days.

Notable in this table is the lack of CR producing emissions for Ac-225 which has been

reported to be a strong light producer [85]. The experiments with Ac-225 replicated this

result so I thought to consider Ac-225's daughters which I expected to be in transient

equilibrium with Ac-225 in these samples. Table 3.2 shows the CR capable abundances

for Ac-225's daughter radionuclides along with their relative activities at transient

equilibrium. These numbers suggest that Bi-213 and Pb-209 are the likely sources of

the bulk of the detected CR.

44

Table 3.2. Ac-225 daughters abundance of emissions and those having energy
greater than the CR threshold.

Ac-225
daughters

Half lifea

% of Ac-225
activity at
transient

equilibrium

β+ (%) β- (%)
conversion

electrons (%)
γ-rays (%)

 total 1.33 1.4 total 1.33 1.4 total 1.33 1.4
Fr-221 4.9 m 100 6 0 0 12 0 0
At-217 32.3 ms 100 < 0.1 < 0.1
Bi-213 45.59 m 100 98 65 71 5 5 5 27 27 27
Tl-209 2.20 m 2.2 100 81 85 29 4 4 282 198 198
Po-213 4.2 μs 97.8 < 0.1 < 0.1
Pb-209 3.253 h 100.01 100 28 35
Bi-209 stable

The alpha-emitting radionuclide Ac-225 has been identified as a strong producer of CR light. Assuming
their stable equilibrium with Ac-225, I’ve listed the relative activities of the daughters. In this table I also
list the characteristics of the daughter radionuclides, their total abundance and their capabilities to
produce CR in water and tissue. a s - seconds, m - minutes, d - days

Note that In-114m (see Table 3.1) is a common long-lived impurity in samples of In-111.

In-114m, in turn, decays to In-114. Because of In-114's short-half life its activity level in

samples is in transient equilibrium with the In-114m within a few minutes and thus the

two will have roughly equal activity levels. Samples of In-111 that are to be used

clinically can have In-114m activity levels up to 0.15% [97] (and therefore an equal

fraction of In-114) and this fraction will increase over time given In-111's faster rate of

decay. In-114 has significant CR production potential from its highly abundant high

energy β- emission (see Table 3.1).

Modeling Cerenkov production per β of a given initial energy. The production of

CR from a β particle is described by the Frank-Tamm formula [98] here integrated over

a range of wavelengths.

2 2

1 2

1 1 1
2 1

N

x n

δ πα
δ λ λ ϕ

= − −

 for 1nϕ > (3.1)

45

 0
N

x

δ
δ

= for 1nϕ ≤

This formula gives the number of Cerenkov photons generated per unit path length

having wavelengths within the interval from
1λ to

2λ expressed in the desired length

unit. Here n is the mean refractive index and ϕ is the velocity of the β-particle divided

by the speed of light in a vacuum and α is the fine structure constant.

The β-particle velocity, ν , can be determined from its energy, E , as follows:.

 ()

1 2
2

0

2

0

1
E

c
E E

ν = −
+

 (3.2)

where c is the speed of light in a vacuum and
0E is the rest mass of the β-particle

expressed in the same units as E .

For a given initial energy, I used Euler's method to integrate equation (1) over the full

path length of the β-particle as it decreased in energy while transiting through a medium

presumed to be of infinite spatial extent. During this integration, the rate of energy loss

was interpolated from the ESTAR Stopping Power and Range Tables provided by the

National Institute of Standards and Technology [99]. The table used in the model had

250 logarithmically spaced points between 1 keV and 10 MeV. The energy step size for

the Euler integration was 0.1 percent of the instantaneous β energy or 0.1 keV,

whichever was larger. The total path lengths calculated, implicit in this process, were

found to have a maximum error of 0.3% relative to the CSDA (continuous slowing down

approximation) within the range of sampled energies. It should be noted that the full

46

path length was calculated for testing purposes only. During routine use the integration

for each β is terminated when its energy drops below the CR threshold.

Modeling Cerenkov production by β's and conversion electrons. In order to

determine the average number of Cerenkov photons produced by β particles (or

equivalently by conversion electrons) per disintegration for a given radionuclide, I

weighted the above described integral by the relative probability of a β of a given energy

being emitted by that radionuclide and then summed across all possible energies (i.e. a

third integration of the original Frank-Tamm formula). The probability for each β energy

was derived from the β spectra available from the Lund/LBNL Nuclear Data Search

website [95]. The spectra were sampled at 1 keV intervals.

Modeling Cerenkov point spread function. In addition to the above described

numerical models relating absolute number of Cerenkov photons to initial β energy, I

developed a Monte-Carlo model to determine the Cerenkov point spread function (PSF)

for a given radionuclide. In order to incorporate this spatial information, this model

calculates the tortured path that each β particle makes as it generates Cerenkov

photons and scatters off nuclei and electrons within the medium.

My model of this transport process closely followed the work of Levin and Hoffman who

modeled positron transport for the purpose of determining the positron-electron

annihilation PSF for various radionuclides [100, 101]. In brief, I too made use of Bethe's

calculations of Moliere's theory of multiple elastic scattering from the nucleus [102] and

Ritson's model of the δ-ray energy distribution [103]. For details, please see the original

manuscripts. My model differed from Levin's in that instead of using the Bethe-Bloch

47

formula to determine the collisional energy loss rate, I used the aforementioned ESTAR

table. And, instead of using the Wu and Moskowski and Daniel models of β energy

spectra, I again used the aforementioned tables from Lund/LBNL. As a check on the

accuracy of the model, I calculated the positron PSF for some of the same radionuclides

described by Levin and found the results to be comparable.

At each step of the β transport, I calculated the number of Cerenkov photons produced

based on the length of the step and on the energy of the β at the start of the step

(applying equation 1 as before). The location of the Cerenkov photons was distributed

linearly along the path of the β for that step. Any δ-rays of sufficient energy were set to

generate Cerenkov photons in the same manner as the β particles.

Modeling Cerenkov from secondary electrons excited by γ-rays and annihilation

photons. Secondary electrons produce CR in a manner identical to that of β- particles.

However, the location of the Cerenkov production is generally far away from the

originating radionuclide. This is because the γ-rays or annihilation photons will often

travel a long distance before undergoing the photoelectric or Compton interaction that

ultimately gives rise to a secondary electron. As such, the total amount of CR produced

by secondary electrons will be geometry dependent. Larger volumes will tend to have a

larger fraction of total Cerenkov signal produced by secondary electrons but this is

contingent on annihilation photons and/or γ-rays of sufficient energy to produce

secondary electrons capable of producing Cerenkov photons within the given medium.

To investigate and quantify this effect, I created two Monte Carlo model variants

describing the transport of γ-ray and annihilation photons. The first consisted of a

48

radionuclide point source within an infinite medium. This model was used to determine

the PSF of CR due to secondary electrons. The second variant consisted of

radionuclide evenly distributed within a cuboid-shaped medium. This model was

specifically intended to mimic the conditions of the phantom studies (described below)

that were designed to calibrate the luminescence scanner.

In both of these models, the initial directions of the simulated γ-rays emanating from the

radionuclide source were randomly sampled so as to be uniformly distributed within the

4π solid angle about the source. Annihilation photon directions were similarly distributed

but were created in pairs with members traveling in opposite directions. The distance

traveled by each photon before interacting with the medium was randomly sampled

from an exponential distribution, the log-slope of which was interpolated from a table of

photon cross-sections, XCOM, available from the National Institute of Standards and

Technology website [104]. The table made use of the standard grid available on the

website but truncated to have energies between 1 keV and 10 MeV.

The total cross-section was used to determine the distance the photon traveled before

interacting but the type of interaction, photoelectric, Compton or other, was randomly

sampled reflecting the relative probabilities of each. When simulating a photoelectric

interaction, all of the photon's energy was transferred to the secondary electron and the

photon was terminated. For a Compton interaction, the Klein-Nishina formula was used

to determine the scattering angle into which the photon was propagated, as well as the

associated amount of energy transferred to the secondary electron. The CR associated

with the secondary electron, if any, was determined from a lookup table calculated by

49

the Cerenkov model based on the electron's initial energy (i.e. the path integral of

equation 1). For the PSF model, all Cerenkov radiation was attributed to the site of the

photoelectric or Compton interaction. All other types of interaction were assumed not to

produce CR (e.g. pair-production was ignored).

3.3. Experimental Cerenkov measurements.

In order to test these models, five types of experiments were conducted (see Table 3.3).

In one type of experiment, I acquired a luminescence spectrum. In a second type, I

varied the refractive index of the medium (water) by adding 25% by weight of sodium

chloride. In the third type, the volume of the medium was varied while maintaining a

constant amount of radionuclide, thus achieving a range of surface to volume ratios and

radionuclide concentrations. All measurements for these first three types of experiment

were made using one of three simple acrylic boxes having 2 mm thick walls; one had a

3.4x3.4x3.4 cm interior, another was 5.4x5.4x5.4 cm and the third was 9.6x9.6x9.6 cm.

Henceforth these will be referred to as the 3.4, 5.4 and 9.6 cm boxes respectively. All

three were painted on all surfaces with flat black spray paint (Krylon Fusion). Tests on

the boxes without radionuclide present demonstrated that they did not phosphoresce

significantly following exposure to visible light.

50

Table 3.3. Radionuclides tested and the types of experiments conducted on each.

 Experiment Conducted (and Number)

Radionuclide
Spectrum
only (1)

Refractive
index (2)

Volume
change (3)

β PSF (4)
Secondary

electron PSF
(5)

F-18 X X X X X
Ga-68 X X X
Zr-89 X X X
In-111 X X
I-131 X X
Ac-225 X

Experiments were used to validate the computation model presented. This table lists the experiment
types, as well as the radionuclides employed to evaluate them.

The remaining two types of experiment were designed to measure the beta and

secondary electron PSF's. The fourth experiment type, measuring the beta PSF, used a

5x5x3 cm solid acrylic block into which was cut a 0.11x3 cm by 1 cm deep slot on the

5x5 cm surface. The slot was filled with a mixture of radionuclide, India ink and

surfactant. The India ink significantly reduced the CR emanating from the slot itself,

leaving predominantly CR produced in the acrylic, which was taken to have a refractive

index of 1.491 [105]. The surfactant allowed the slot to be filled without significant air

pockets.

The fifth experiment type, which measured the secondary electron PSF, made use of a

10x10x5 cm solid acrylic block onto which a small drop of radionuclide was placed in

the center of its 10x10 cm face.

All CR measurements were made on Caliper Life Science's IVIS 200 luminescence

imager with the phantom placed in the center of a 13x13 cm field-of-view. The camera

focus was set at 1.5 cm above the platform (i.e. the surface on which the box rested).

The IVIS 200 uses a fixed focus lens and adjusts the focal point by adjusting the

51

platform height relative to the camera. The 1.5 cm setting is the default focus point and I

used this setting regardless of the height of fluid contained within the box. For the

acrylic block phantom measurements, the camera was focused on the proximal surface

of the block. All luminescence images were taken with an f-stop of f1 and a binning of 4

(i.e. 2x2 groups of pixels summed). Cosmic ray and background corrections were

turned on. Total radioactivity of the radionuclide samples were measured with a

Capintec Model CRC-127R dose calibrator (Capintec, Inc. Ramsey, NJ).

The IVIS 200 uses a cooled, back-thinned CCD (charge coupled device) detector. The

signal measured from each pixel of this detector is roughly proportional to the number of

photons impinging on the element during an image acquisition frame. The lens that

focuses the light on the CCD includes an aperture which defines the solid angle of

photon acceptance at a given focus point distance. The focus distance, along with the

focal length of the lens, determines the surface area seen by each pixel. Thus the

images acquired by the IVIS can be calibrated to photons per second per cm2 per

steradian. For isotropic sources, the pixel values can be summed and multiplied by 4π

steradians and by the area covered by the pixels in cm2 to arrive at the total photon flux

in photons per second.

Although the direction in which Cerenkov photons propagate is dependent upon the

direction of travel and energy of the charged particle, because the directions of the

charged particles in these Cerenkov efficiency experiments are isotropic, so too on

average are the Cerenkov photons. Note this is not precisely true of the secondary

electrons or their associated Cerenkov photons in the Cerenkov efficiency experiments.

52

The initial direction of travel of secondary electrons relative to the parent photon

direction is governed by the Klein-Nishina equation and is not strictly isotropic.

However, as these electrons scatter producing CR along their path much of the

directional bias is lost to the point where an isotropic assumption is acceptable. A

similar reasoning applies to the β's and associated Cerenkov photons in the PSF

measurements.

The photon attenuation of deionized water and 25 percent NaCl in water is negligible

over the range of wavelengths of the spectral measurements (550 to 670 nanometers).

Thus, the total photon flux (within a range of wavelengths), after applying the

corrections described below, is a direct estimate of the total CR production by the total

radioactivity present. Thus the efficiency of the CR production can be simply calculated

as the photon flux divided by the total radioactivity (e.g. photons per second per

becquerel or equivalently, photons per disintegration). It should be noted that this

means that the total photon flux measurement is by-in-large independent of the

concentration of the radionuclide and that the pixel intensities varied predominantly with

the surface area of the medium.

3.4. Spectral measurements.

Spectral luminescence measurements were made using the six 20-nanometer band-

pass filters available on the IVIS 200, centered at 560, 580, 600, 620, 640 and 660

nanometers. Immediately preceding these image acquisitions, one or more open (i.e.

without filter) images were acquired, varying the frame duration until a reasonably low-

noise image of the Cerenkov radiation was achieved. The filtered image frame durations

53

were set to be 20 times that of the low-noise open image. The open measurements

were used only to predict reasonable frame times for the filtered measurements. I did

not model the open condition. Prior to the spectral acquisition and each of the open

acquisitions, an associated reflected light image was acquired.

3.5. Cerenkov efficiency as a function of refractive index.

Radionuclide, initially in a volume no greater than 1 mL, was thoroughly mixed with

deionized water achieving a total volume of 30 (or 100 in some experiments) mL at

room temperature. The refractive index of this medium was taken to be 1.333 with a

density of 0.998 g/cc at 20 ̊C. This solution was then transferred to the 3.4 (or the 5.4)

cm box and a set of spectral measurements made with the IVIS imager.

The solution was then temporarily transferred to a container with a closeable top, to

which was added 10 (or 33.3) grams of NaCl and shaken to dissolution, thus achieving

a 25% by weight salt solution assumed to have a refractive index of 1.377 [96] and

density of 1.281 g/cc [106]. The salt solution was then returned to the box container and

imaged as before.

3.6. Cerenkov efficiency as a function of volume.

Radioactivity was initially mixed with 10 mL of deionized water and imaged in the 3.4 cm

box placed in the center of the field of view. Without moving the box, 15 mL of deionized

water was added bring the total to 25 mL. It was allowed to mix thoroughly and was

reimaged. This sequence was then repeated but this time adding 25 mL (for a total of

50 mL). The whole volume was then transferred to the 9.6 cm box, also placed in the

54

center of the field of view. Another 50 mL of deionized water was added and imaged.

The sequence was repeated two more times adding 150 and 250 mL for a total of 250

and 500 mL in the container, respectively.

3.7. Region of interest measurements and profiles.

All region of interest measurements were made using the Living Image software

(Caliper LifeSciences, Inc., Hopkinton, MA) which comes standard with the IVIS 200.

This software is designed to provide quantitatively accurate images in radiance units

(photons/second/cm2/steradian) and includes adjustments accounting for platform

height, lens aperture setting, field inhomogeneity, pixel binning and various sources of

background. For the Cerenkov efficiency measurements, I placed a large region of

interest over the homogeneous region within and well away from the edges of the box

containing the deionized water or salt solution medium. The mean radiance within this

region was then multiplied by the known surface area of the box opening (e.g. 92.16

cm2 for the 9.6 cm box) and by 4 steradians to arrive at the total Cerenkov photon flux

in photons per second. Calculating the total flux in this manner, effectively corrects for

light lost due to β particles entering the side walls of the container.

The PSF profiles were measured using custom code written in Matlab (The MathWorks,

Inc., Natick, MA). For the Cerenkov profile due to β emissions, this entailed first rotating

the image so that the slot was precisely aligned with the vertical axis of the image and

then summing along the length of the slot to generate a profile extending perpendicular

to the slot.

55

For the Cerenkov profile due to secondary electrons, the center of the drop (i.e. the

radionuclide source) was identified within the image and the mean radiance surrounding

that central point was plotted as a function of distance from that point.

3.8. Corrections

IVIS recalibration. During the course of this work it quickly became apparent that

neither the global absolute calibration nor the relative calibration of the individual 20 nm

band-pass filters of the IVIS imager was accurate. Specifically I noted that the Cerenkov

spectra I was measuring did not have the characteristic one over wavelength squared

shape I was expecting and yet the shape was consistent across radionuclides (Figure

3.1A). Examining the Cerenkov spectra published by others [84] I noted similarly

consistent spectral curve shapes across radionuclides that were both different from the

theoretical shape and different from that which I was measuring. I also noted, even after

all corrections, that my Cerenkov measurements were consistently about half of that

predicted by the models. Cleaning the lens and filters within the IVIS had a dramatic

affect on the system's sensitivity but still failed to bring it in line with expectations.

Rather than publish data based on what I believed to be a miscalibrated instrument, I

decided to recalibrate the IVIS based on a single spectral measurement of the

Cerenkov light given off by Ga-68 in deionized water. This amounted to multiplying each

of the filtered measurements by a slightly different factor ranging between 2.3 and 2.8.

This same set of constants was used for all subsequent measurements (i.e. in effect I

recalibrated the filters).

56

Decay Correction. All doses were calculated as the mean dose present during the

interval over which the image was acquired. This was accomplished by applying a

decay factor to the dose calibrator measurement. The decay factor, DF , was calculated

using the following well known formula:

Figure 3.1. Evaluation and Correction of Luminescence Imaging System for CR. A) The CR
efficiency measured as a function of one over the photon wavelength squared using calibrations provided
by the manufacturer. These plots should be linear. B) Test of the linearity of the photon flux
measurements. C) The diagram depicts the lens of the luminescence imager (gray ellipse) and defines
the parameters used in expression (4). Plot on right shows the measured camera sensitivity as a function
of the height of the imaged object (dark circles) along with a fit of expression (3) to determine the value
for parameter H (which was otherwise difficult to measure directly). D) Same data as in (A) but now after
calibrations based on the model and the spectral measurements for Ga-68. All measured spectral data
are now very close to linear.

57

1t e
DF e

λτ
λ

λτ

−
− −

=

 (3.3)

where () 1 2ln 2 Tλ = , 1 2T is the radionuclide half life, t is the time between when the

dose was measured and the start of the acquisition frame and τ is the frame duration.

Background Correction. The standard image processing on the IVIS 200 includes a

correction for the roughly uniform background typically encountered in luminescence

imaging. However, in these measurements there was an additional source of

background when imaging some radionuclides. This background is due to the direct

detection of x-ray, γ-ray and/or annihilation photons by the luminescence detector.

Because these high energy photons are not focused by the IVIS's lens system, this

background too is fairly uniform. To correct for this background, I subtracted a constant

from the luminescence image. The constant was determined by taking the mean value

of a large region of interest placed a few cm away from the radionuclide source in each

acquisition.

Linearity Correction. If all other things are held constant, the amount of Cerenkov

radiation produced by a radionuclide is directly proportional to the amount of

radioactivity present. Thus, given the well and accurately known half-life of F-18, for

example, multiple measurements of Cerenkov light made as a radionuclide decays

make for a good test of the linearity of a luminescence imaging system.

To test the linearity of the IVIS 200, I started with 3.5 mCi of F-18 diluted in 150 mL of

deionized water, placed in the 5.4 cm box and imaged it repeatedly over 6.5 half-lives,

58

11.9 hours total. The frame duration (i.e. time the shutter was open) was held constant

at 5 minutes for each measurement. Images were acquired every 54.885 minutes (i.e.

1/2 of F-18's 109.77 minute half-life) with the 560 nm (20 nm band pass) filter in place.

In Figure 3.1B is shown a scatter-plot of the radioactivity level versus the background

corrected total photon flux rate measured in each image. The solid line shows the

amount of Cerenkov light predicted by the model. Based on these results I determined

that a linearity correction was not necessary.

Source to Camera Distance Correction. As a point source moves closer to the

camera system, the solid angle limiting which photons have a chance of being detected

by the camera, increases. Thus, closer objects appear brighter than more distant

objects. For the phantom studies, the camera is detecting light from sources distributed

throughout the depth of the liquid medium. Sources at shallower depths, therefore, are

being detected with greater efficiency. This effect is described by the expression:

()()()
()()

1

1

1 cos tan

1 cos tan

A H d

A H

−

−

− −

−
 (3.4)

where d is the depth relative to a reference distance H (e.g. the distance to the focus

point) and A is the radius of the aperture at f1 which, for the IVIS 200, is 6.35 cm [107].

The value for H was determined by performing a nonlinear least-squares fit to a series

of measurements of the total photon flux taken from a constant planar source positioned

at various heights relative to the focus point (1.5 cm above the platform in all the

59

measurements). This procedure found H to be 51.2 cm. The parameter definitions,

measurements and the fit are shown in Figure 3.1C.

In addition, because of the change in refractive index between the medium and the air

above it, each plane at a given depth is magnified (a phenomenon well known to

SCUBA diving enthusiasts, wherein objects under water appear to be closer than they

really are). This magnification affect reduces the apparent radiance at a given depth in

that the photons produced there appear to be generated over a larger surface area.

Specifically, the magnification and thus the factor decrease in radiance, is described by

the following:

D L F
M

nD L F

+ +
=

+ + (3.5)

where D is the distance below the surface, L is the distance from the lens to the

surface, F is the focal length of the lens and n is the refractive index of the medium.

To arrive at a correction for measurements taken from fluids of differing depths, I

averaged expression (4) divided by expression (5) over the entire depth of the fluid

medium.

Loss of Cerenkov at Surfaces Correction. The β-particles leaving the medium at its

surfaces result in a loss of Cerenkov light production. This loss was estimated by the

following:

()

0 0
0.5

y

C S psf x dx dy
∞

⋅ ⋅ −

 (3.6)

60

where ()psf x is the CR point spread function, C is the radionuclide radioactivity

concentration, S is the medium's surface area and x and y are both distances from the

side of the container.

Because the measurements of total photon flux avoided losses at the sides of the box

(by extrapolating the central homogeneous radiance to the edges), S refers only to the

area of the top and bottom surfaces. This expression assumes infinite extent for the

dimensions parallel to the edge and does not consider the overlap at the edges and

vertices of the containers, which will become significant as the container dimensions

approach the full width half max of the PSF. For the containers, however, this does not

incur a significant error given the PSF's considered here.

3.9. Comparisons

Comparison of Measured and Modeled Cerenkov Efficiencies. Following the

recalibration of the IVIS 200 imager based upon my measurements of the Ga-68 CR

spectrum, all spectral measurements of CR demonstrated the characteristic one over

wavelength squared functional form (see Figure 3.1D). This was true for both the

deionized water and salt solution measurements and for all radionuclides, including the

Ac-225 and In-111 measurements. Moreover the magnitude of the predicted relative to

the measured CR efficiencies, following the recalibration, were all within the error of the

dose calibrator measurements.

61

Figure 3.2A shows a representative acquisition for the experimental validation of the

model results. The signal at a defined wavelength window (650-670 nm) from a

radioactive source in a defined medium (for example, water) and in a defined volume.

Extraneous background signal is subtracted. A chart, Figure 3.2B, with bars breaking

Figure 3.2. CR Efficiency Contributions From Three Sources; Modeled and Experimental
Readings. A) The experimental setup is shown for a representative acquisition. The radionuclide was
diluted in a defined medium and CR efficiency was measured and the background is subsequently
subtracted. B) CR efficiency contributions from three sources, β-particles, conversion electrons and
secondary electrons, as determined by the models along with comparisons to measured efficiencies. C)
Contributions to CR production by Ac-225 and its daughters in deionized water as predicted by the
model. D) Modeled and measured CR production efficiency for In-111 plus an assumed 0.05% impurity
of In-114. All efficiencies shown are for the production of photons having wavelengths between 650 and
670 nanometers. The results are from experiments using deionized water and a 25% by weight sodium
chloride and water solution (“salt”). Note - Ac-225+ denotes Ac-225 plus its daughters in transient
equilibrium.

62

down the contributions for beta, conversion electron and secondary electron

components for each radionuclide in water and in salt solution with X's showing

measures made with the 660 +/- 10 nm band pass filter. Each of the measurements was

made using a reasonably large volume of medium (~100 mL except for I-131 which was

made in ~30 mL) and yet the CR contribution from secondary electrons in almost all

cases was negligibly small. This was despite the high abundance of annihilation

photons in Ga-68 and F-18. This can be understood by appreciating that Compton

interactions in these mediums are far and away the dominant mechanism by which an

annihilation photon (having a kinetic energy of 511 keV) gives rise to secondary

electrons. Compton interactions allow a maximum transfer of energy to the secondary

electron that is well below the energy of the photon; the so-called Compton edge. For a

511 keV photon, the maximum energy transfer in a Compton interaction is 340.7 keV.

Most interactions transfer far less energy.

Zr-89 on the other hand has an appreciable contribution from secondary electrons. In

this case, however, these are not primarily resultant from Zr-89's annihilation photons

but rather from its 100% abundant 909 keV gamma which can transfer up to 709.6 keV

in a Compton interaction. The related conversion electrons also contribute significantly

to Zr-89's CR production efficiency.

The observant reader will also have noticed that Ga-68's CR efficiency in the salt

solution medium is lower than that in deionized water, a trend that runs contrary to the

usual increase with increasing refractive index (see below and Figure 3.5A). The

explanation for this can be found by noting that the salt solution also has a higher mass

63

density and therefore a higher β attenuation cross-section and concomitant reduced β-

particle path length. Increased density therefore tends to reduce CR production

efficiency, but for radionuclides having relatively low energy β's, the increased refractive

index overwhelms this reduction. For the high energy β's of Ga-68 however, the impact

of refractive index is small and the density effect dominates.

Comparison of Measured and Modeled for Actinium-225 and Indium-111. As can

be seen in Figure 3.2B, the model does an excellent job predicting the amount of CR

produced by Ac-225 and its daughters when it is assumed that transient equilibrium has

been reached. It should be noted that the dose calibrator setting I used (Capintec cal

#775 with a 5X multiplier) to quantify the dose, makes a similar assumption. For the

volume of medium used in this experiment, the contribution from secondary electrons

(and from conversion electrons in general), were negligible, leaving β-particles from Ac-

225's daughters as the predominant source. The CR contribution from Ac-225 itself is

non-existent (see Figure 3.2C) and the vast majority of the CR signal is attributed to Bi-

213.

The model of In-111 in a 25% salt solution medium predicted a CR production efficiency

of 2.57e-5 photons per disintegration within the 550 to 570 nanometer range. This is just

2.5% of the light within this range that was measured emanating from the In-111 sample

in the experiment. In deionized water, the model predicted zero contribution from In-

111. If, however, I assumed that In-114 was present as an impurity in the sample at a

level of 0.05% (i.e. within the FDA allowed 0.15% for this unexpired sample), the

measured and modeled came within reasonable agreement (see Figure 3.2D)

64

especially considering that the background levels in these measurements were over

80% of the measured signal.

Comparison of Measured and Modeled Cerenkov from β, Point-Spread-Functions.

Figure 3.3A shows a Monte Carlo simulation of the paths taken by 200 β+ particles

emanating from a single point and having energies equivalent to those emanating from

F-18. CR is produced all along these tracks until the β energy drops below the CR

threshold.

The experiments measuring the Cerenkov from β PSF used a roughly planar source of

radioactivity and was integrated over the two axes parallel to this plane; the depth

dimension integration being done implicitly by the camera resulting in an image (see

figure 3.3B) and the other during the post processing of the images. As such, these

experiments did not measure the PSF directly but rather they measured (approximately)

the projection of this function onto the axis perpendicular to the plane. Therefore, I

adjusted the output of the model, which calculates the distribution of Cerenkov light

about a point source, projecting this light onto a single axis.

Figures 3.3C and D show the integrated PSF profiles from this type of experiment for F-

18 and Ga-68, respectively. The profiles extend through and beyond the radionuclide

containing slot (i.e. plane) in both directions and thus there are two independent

measurements of the projected PSF with a gap (the width of the slot) in between. The

India ink greatly diminished but did not eliminate the Cerenkov light emanating from the

65

Figure 3.3. CR from β's Point Spread Functions. A) Simulated β+ tracks (blue) from an F-18 point
source. Red tracks are from δ particles. B) A representative acquisition of the PSF experimental setup.
This shows the channel in the acrylic block filled with a mixture of activity, surfactant and India ink. C)
Integrated F-18 and D) Ga-68 measured radiance profiles shown as diamonds. Solid lines are modeled
shapes with fitted amplitudes assuming β-particle source of CR.

slot proper, hence the signal attributed to this region seen in the graphs. The solid lines

are the modeled PSF projections (one a mirrored version of the other and separated by

the known gap width) scaled somewhat arbitrarily so as to achieve a good fit to the

measured data.

Comparison of Measured and Modeled Cerenkov from Secondary Electrons,

Point-Spread-Function. The measurement of the Cerenkov from secondary electrons

66

PSF, likewise, did not measure the PSF radial profile directly. Instead, in this

measurement the camera first integrates the PSF over the depth dimension (i.e. that

parallel to the direction in which the camera is pointing) and the resultant two-

dimensional PSF is then projected onto a single radius during post processing. The

output of the model was adjusted to mimic these projection operations and the result

was scaled to fit the measured curve. The result is shown in Figure 3.4A.

Figure 3.4. Volume Dependence of CR Production. A) Projected point spread function for F-18 drop
placed on acrylic plastic. Measured radiance shown as diamonds. Solid line is modeled shape with fitted
amplitude assuming secondary electron source of CR. B) CR efficiency of Zr-89 as a function of the
dimensions of the deionized water medium. Measured values made using the 560 nanometer bandpass
filter are shown as diamonds. Solid line is the modeled efficiency.

As can be seen in this plot the tail of the PSF would actually extend beyond the

dimensions of the block. A block large enough to measure the PSF in its entirety would

not be able to fit in the light tight enclosure of the IVIS camera system.

Comparison of Measured and Modeled Volume Dependence. The model of the loss

of CR due to β's and conversion electrons near the exterior surfaces in the experiments

suggest that this affect is negligibly small for the volumes used. As noted previously

though, CR production attributed to secondary electrons is expected to increase with

67

increases in the overall size of the medium. Figure 3.4B shows this dependency for the

one radionuclide looked at having a significant CR contribution from secondary

electrons, Zr-89. The predictions closely match the measured efficiencies.

3.10. Modeled Cerenkov production efficiencies as a function of
refractive index.

Having validated the accuracy of the models, I thought it would be beneficial to use the

models to characterize a larger list of radionuclides so that investigators might use this

information when selecting a CR producing radionuclide for a given purpose. Towards

this end, I present in Figures 3.5A,B the CR production efficiencies for photons within

the 550 to 570 nm range from β emissions predicted by the model and plotted as a

function of refractive index for a variety or radionuclides. Other wavelength ranges can

readily be calculated from this information by applying knowledge of the CR spectral

shape. These curves assume a medium with β and γ cross-sections and density equal

to that of water at 20 ̊C, this in spite of the changing refractive index. While this is not

entirely realistic, I felt the curves would be informative and reasonably accurate for

water-like mediums such as biological tissue. To highlight this point I've included, on the

same graph, points calculated for the cross-section [108], density and refractive index of

tissue [75]. These efficiencies are also shown in Table 3.4 for the reader's convenience.

The values shown do not include the CR production attributed to conversion electrons

or to secondary electrons, which for the small animal geometries where this information

is likely to be applied, are both expected to be small.

68

Figure 3.5. Modeled Cerenkov production efficiencies as a function of refractive index. Curves are
the modeled efficiencies for β-particle produced CR as a function of refractive index assuming β cross-
section properties and density of water. Efficiencies are in photons within the 550 to 570 nm range per
disintegration. The X's used the β cross section properties of biological tissue. (A) and (B) list different
radionuclides. Note - Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium.

As can be appreciated in these curves, CR production efficiency generally increases

with increasing refractive index but the rate of this increase is radionuclide dependent.

Generally speaking, radionuclides having higher energy β emissions will have a lower

proportional increase in CR per unit increase in refractive index whereas radionuclides

having β's closer to the CR threshold will have a greater proportional increase.

Table 3.4. CR from β Efficiencies.

Radionuclide Efficiency Radionuclide Efficiency
C-11 0.5568 Zr-89 0.1230
N-13 1.0132 Y-90 3.7047
O-15 2.3301 I-124 0.3718
F-18 0.1328 I-131 0.0703

Cu-64 0.0583 Ac-225+ 1.0143
Ga-68 2.5607

The CR efficiencies for the radionuclides modeled in Figure 3.5A,B at the refractive index of tissue (1.4)
are listed for convenience. Efficiencies are in photons within the 550 to 570 nm range per disintegration.
Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium.

69

3.11. Modeled Cerenkov point spread functions.

The Cerenkov from β PSF (prior to projection) is radially symmetric and therefore is

described by its projection onto a single radius (i.e. integration over all angles). The

resultant profile, it turns out, is reasonably well described by a sum of two exponentials.

In order to arrive at robust values for the full-width at half-max (FWHM) and full-width at

tenth-max (FWTM) values for this profile, I chose to fit the Monte-Carlo modeled data

with a sum of two exponentials and calculate the metrics from the fitted curves using the

modeled maximum value as the peak value. I present the results in Table 3.5 for the

simulations of several commonly used radionuclides in biological tissue (i.e. refractive

index 1.4 and tissue β attenuation).

Table 3.5. CR from β PSF width metrics.

Radionuclide FWHM FWTM Radionuclide FWHM FWTM
C-11 0.712 1.824 Zr-89 0.712 1.664
N-13 0.816 2.330 Y-90 1.082 5.010
O-15 0.928 3.644 I-124 0.882 3.406
F-18 0.492 1.066 I-131 0.490 1.086
Cu-64 0.492 1.080 Ac-225+ 0.790 2.194
Ga-68 0.928 3.996

List of PSF of the modeled radionuclides at the refractive index of tissue (1.4). FWHM and FWTM values
are in mm. Ac-225+ denotes Ac-225 plus its daughters in transient equilibrium.

3.12. Discussion

I have developed a set of models that accurately predict the CR production efficiency of

various radionuclides through two mechanisms, directly from emitted β particles (and

equivalently from conversion electrons) and from secondary electrons produced by the

radionuclide's γ-rays or annihilation photons. The models allow both the refractive index

and the photon cross-sections of the medium to be varied and thus should work for a

70

variety of materials, including biological tissues. I've applied these models in two

geometries (a point source in an infinite medium and a uniformly filled cuboid medium)

and validated them experimentally. These models can be readily adapted to geometries

of arbitrary shape and source distribution.

In addition, I have used these models to tabulate, for a number of commonly used

medical radionuclides, the CR production efficiency and parameters describing the β

particle and secondary electron Cerenkov point spread functions. This information can

be used to evaluate which radionuclides are most suitable for a given application.

In 1969, HH Ross [109] modeled CR based counting of β emissions as an alternative to

scintillation counting for radionuclide calibration purposes. My work builds on Ross' with

improvements in accuracy and extensions specifically suited to imaging applications.

While this manuscript was under initial review, a paper by Mitchell et. al. that described

modeling of Cerenkov production was published [110]. My work differs from theirs in

that their models utilized Monte Carlo techniques at an earlier stage and they did not

consider CR production by secondary electrons. Nor did they attempt to validate many

of their results. Although their model was based on entirely different computer code, the

Cerenkov efficiency results they reported are virtually identical to the values I calculate

with my CR from β's model.

Since the radioactivity level of many radionuclides can be determined with great

accuracy, the Cerenkov efficiency information allows for a simple means of calibrating

imaging systems capable of measuring low levels of light. Pure positron emitters (such

71

as F-18 or Ga-68) in water will have little volume dependency and can be calibrated

accurately in a dose calibrator. Ga-68 in particular is insensitive to small changes in

refractive index in the vicinity of 1.33 and thus measurements from it are robust to

temperature fluctuations and other factors affecting the refractive index of the medium.

A β- emitter having only relatively low energy γ's (for dose calibration) may be even

better. Using a simple setup, such as one of the boxes I described, the measured light

in photons per second corresponds directly to the total dose of radionuclide. The

corrections for background, source to camera distance and surface loss were all very

small; as was the secondary electron contribution. Thus a simple multiple integration of

the Frank-Tamm formula provides a robust and direct estimate of the true photon flux.

By choosing a radionuclide with a moderate half-life, the linearity of the system can also

readily be tested and nonlinearities corrected.

I investigated the mechanism of the light production for two radionuclides, Ac-225 and

In-111, for which the Cerenkov mechanism was called into question. My analysis

suggests that Ac-225 per se does not generate Cerenkov light, but that one of its β

emitting daughters, Bi-213, is responsible for the bulk of the Cerenkov signal with

significant contributions from Tl-209 and Pb-209. For In-111 I found that although it is

theoretically capable of producing CR, the amount of light produced is extremely small

and significantly smaller than that which was measured. I show evidence that the

amount of CR produced is consistent with an In-114 impurity as its source.

As mentioned in the Introduction, the primary goal in developing these models is to

determine the amount of CR produced by radionuclides placed within biological tissues.

72

For this purpose, accurate knowledge of the refractive index of the tissue is necessary.

However, there is a fair amount of uncertainty in the literature regarding the refractive

indices of tissues [111] and even small differences can have a large impact on the

amount of CR produced. There is also likely to be variation from one organ to another

within the animal and certainly the refractive index will be very different for structures

such as the urinary bladder. Radionuclides having higher energy β's are less sensitive

to these variations in refractive index and therefore may be more desirable although at

the cost of a reduction in resolution. In another context, the application of a controlled

electron energy source may prove to be an accurate method of assaying the refractive

index of a given tissue.

73

4. SPECIFIC AIM 3: OPTIMIZED ACQUISITION PROTOCOL

4.1. Overview

When an investigator plans an experiment in which he or she will be acquiring data with

a bioluminescence imager for the purpose of generating BLT reconstructed images,

they are faced with several choices regarding how to acquire that data. They need to

decide what the overall duration of the acquisition should be, what filters to use during

the acquisition and how they should distribute the overall time among the different

filtered measurements. They also need to decide what spatial sampling frequency to

use (i.e. the height of the camera and the binning of the CCD) and what voxel size to

use in the reconstruction. Currently, there is little to no guidance to help investigators

make these decisions. It is my goal here to rectify this situation.

Specifically I will be proposing procedures and algorithms that seek to reduce the noise

and improve the overall quality of the data that is used to reconstruct BLT images. In

order to do this optimally, it will be necessary to establish a relationship between the

noise in the data and the noise in the final image. This relationship ultimately depends

on the specific reconstruction algorithm used. For the purposes here, I will do this for

two reconstruction algorithms, a maximum likelihood expectation maximization

algorithm (MLEM) [112] and a direct reconstruction algorithm employing the Moore-

Penrose pseudoinverse [15, 16]. Although the Moore-Penrose is seldom if ever used in

practice, its use here (as I’ll detail below) is somewhat pedagogical. Moreover, both the

Moore-Penrose and MLEM methods can be considered canonical in that each finds a

74

solution using a pure classic target function, unbiased by regularizations, penalty

functions, et cetera.

The Moore-Penrose pseudoinverse matrix is well known for its capacity to compute a

‘best fit’ least-squares solution to a system of linear equations like those which are

encountered in BLT image reconstruction [16] (for details see section 4.5). Because this

solution is a linear operation it can also be used to determine the uncertainties in the

solution as a function of the uncertainties in the measurements. If one expresses the

measurement uncertainty as a standard deviation about the expected values, the

elements of the pseudoinverse can be seen to be coefficients weighting the relative

contributions of the measurements to the uncertainty in each voxel solution. Following

standard propagation of uncertainty rules, the standard deviations sum in quadrature

wherein these coefficients are also squared [113].

As I will demonstrate below, given an accurate estimate of the measurement noise level

this operation provides an exact estimate of the uncertainty in the least-squares solution

to the BLT inverse problem and in addition, allows for an optimal selection of filters

within a specified range of wavelengths along with the optimal distribution of acquisition

times among those filters given an overall duration for the experiment. Because it

provides an uncertainty estimate for each individual voxel, this information can also be

used to guide the sampling of the solution space (i.e. the number, size and distribution

of voxels within the animal or objects interior).

However, while all of this works perfectly for least-squares solutions, it is rare in BLT

that a least-squares solution is sought. Without a constraint requiring only positive

75

valued solutions, the noise in the resultant images is simply much too high. To get

around this problem an iterative MLEM algorithm (for details see section 4.5) can be

used to reconstruct the images.

In 1994 Barrett et al. [17] undertook an investigation of the noise properties of the

MLEM algorithm and determined that the uncertainty in the solution after k iterations,

, was log-normally distributed and could be approximated from a linear operation

acting on the measurement noise, , specifically:

 = ∑ , ∙ (4.1)

wherein is calculated in an iterative procedure (see Barrett [17] for details).

For the purposes here, I will make use of the matrix for MLEM solutions in manner

similar to my use of the Moore-Penrose pseudoinverse for least-squares solutions.

However, because of the approximations used by Barrett in the derivation of , the

noise estimates are not as accurate and the time distributions are in some cases slightly

suboptimal.

4.2. Camera noise model

In bioluminescence imaging there are practical limits on the maximum source intensity

per voxel within an animal. Given this maximum and a specified useful dynamic range,

one can infer a threshold difference in source intensities that one would want to be able

to reasonably detect. Summed across all wavelengths, in vivo photon flux rates in Colo

26-luc2 cells (for example) have been found to be about 250 photons per second per

76

cell [114]. Assuming 106 cells per µL, a voxel volume of 1 µL and a target dynamic

range of 1000:1, this would mean that we’d want to reliably distinguish voxels having a

difference in photon flux of 2.5x105 photons per second.

For the purposes of this dissertation it will be assumed that the noise in the

measurements made by the BLT camera system are due to photon shot noise, CCD

readout noise and CCD dark current. Thus the camera sensitivity and noise will not vary

over the field of view but they will vary with the resolution of the CCD image (i.e. the

image matrix size) and the band-width of the filters. The dark current noise will be

assumed to increase linearly with time, whereas the read noise will be time invariant.

The signal to noise ratio of this system thus can be described by the following

expression:

2

e

e r

PQ t
SNR

PQ t Dt N
=

+ +
 (4.2)

where: P = photon flux incident on the CCD (photons/pixel/second)
 Qe = quantum efficiency of the CCD (85%)
 D = dark current (1.82x10-4 electrons/second per 13.5x13.5 um pixel)
 Nr = read noise (5 electrons rms/pixel regardless of pixel size)
 t = integration time (seconds)

4.3. Digital mouse phantom

In order to assess the benefit of the proposed algorithms it is important to start with a

system matrix based on a model that demonstrates the depth dependent resolution and

77

spectral shift dependencies encountered in live animals. However, it is also important

that the accuracy of the inverse problem results not be adversely affected by

inaccuracies of the system model owing to uncertainties regarding the light propagation

properties of the tissue.

These types of uncertainties are prevalent in live animal models, therefore I made use

of a digital mouse phantom derived from a whole-body CT image of a live mouse. The

CT image was segmented using MIPAV image processing software (NIH, Center for

Information Technology) applying a simple threshold to separate the body from the

surrounding air followed by the application of its “fill holes” morphological filter. The

voxels immediately outside the mouse were then identified using MIPAV’s “find edges”

function.

4.4. Solving the forward model

The BLT system matrix was calculated based on an empirical model fitted to data

originating from a Monte Carlo simulation (code I’ve developed similar to the beta

particle transport Monte Carlo code that I wrote for specific Aim 2 – see Appendix for

details) of photon propagation from a point source centered within a sphere of “tissue”

having a reduced scattering coefficient of 0.92 mm-1 (this being a rough average value

for a variety of tissues within the visible range). Each iteration of the Monte Carlo code

simulated 10,000 photons and calculated the path-length each traveled before reaching

the surface for a given sphere radius without attenuation. For each sphere radius

(ranging from 0.5 to 100 mm) a histogram of the path-lengths was averaged over 10

iterations. The resultant mean histograms (see figure 4.1) all appeared to be log-normal

78

with log-means (i.e. the mean of the log of the path-length distribution) and log-stdevs

that varied with the sphere radius.

Figure 4.1. Three pathlength histograms for spheres of radius 18, 40 and 70 mm all shown as blue bars
superimposed on the same plot. The red, orange and yellow curves describe the fitted model histograms
for each of the three spheres, respectively, with means and standard deviations described by equations
4.5 and 4.6.

Fitting this data with empirically derived models (i.e. functions that fit well) arrived at the

following expressions for the log-mean of the path-length distribution (LMD) and the log-

standard deviation of the distribution (LSD):

 = 0.7339 . + 1.66 (4.3)

 = 0.1973 1 − . + 0.3146 . (4.4)

fr
eq

ue
nc

y
(p

ho
to

ns
 p

er
 1

0
m

m
 b

in
 o

ut
 o

f
10

00
0)

79

Figure 4.2 Data points describing the log-mean of the pathlength distribution (A) and the log-standard
deviation of the pathlength distribution (B). The fitted curves are described by equations 4.3 and 4.4,
respectively.

Using these formulas, it was possible to resurrect the path-length distributions expected

for a given voxel to surface-point distance (see figure 4.2A and B). And then using the

pathlength distribution information, it was in turn possible to determine what the photon

intensity would be at the surface for a given linear attenuation coefficient. This was done

by scaling (the bins of) the frequency distribution by the attenuation expected for the

path-length (i.e. bin location). The result was then integrated to get the overall

probability of a photon traveling that far, and these in turn were assumed to be

distributed over the surface of a sphere of that radius.

80

4.5 Image Reconstruction Methods

For the purposes of this dissertation I made use of two different reconstruction

algorithms, one direct and the other iterative. The direct solution was calculated using

the Moore-Penrose pseudoinverse of the system forward model matrix W. Solutions to

linear matrix problems (such as the one posed by BLT) when solved using the Moore-

Penrose pseudoinverse are well known to produce a least-squares solution. A short

proof of this assertion (adapted from [115]) and derivation of the pseudoinverse from a

singular value decomposition of W, are as follows.

By the singular value decomposition theorem, any real valued matrix, W, can be

factored into a product of three matrices, W=USVT, where the columns of U and V are

orthonormal (i.e. mutually orthogonal and of unit length) and S is diagonal with positive

real entries (known as the singular values of W). Thus the inverses of U and V are equal

to their transposes and the inverse of S is a diagonal matrix, S+, in which the elements

of S have been replaced by their reciprocals. The pseudoinverse of W (commonly

denoted as W+), is defined as follows:

 = (4.5)

which resolves to:

 = (4.6)

In section 1.2 of this manuscript I defined the BLT system equation to be:

 = (4.7)

81

where X is the vector of unknown voxel source intensities and Y is the vector of

measured spectral surface intensities. However, owing to the noise in Y it is no longer

necessarily in the range of W and therefore this equality does not hold. So instead we

seek a solution X0 that minimizes the L2-norm of the residual (i.e. the least squares

solutiuon). In other words, we seek a specific X0 which produces a smaller residual

norm than any general X:

 ‖ − ‖ ≤ ‖ − ‖ (4.8)

This solution can be found using the Moore-Penrose pseudoinverse using a simple

matrix multiply as demonstrated in the following:

 − = − + − (4.9)

which after rearranging and factoring becomes:

 − = − + − − (4.10)

then taking the norms (i.e. the lengths of the vector components) and applying the

Pythagorean theorm:

 ‖ − ‖ = ‖ − ‖ + ‖ − − ‖ (4.11)

and now defining X0 calculated from Y using the pseudoinverse W+ like so:

 = (4.12)

and then substituting into 4.11 after distributing (-Y):

82

 ‖ − ‖ = ‖ − ‖ + ‖ − ‖ (4.13)

And since all the terms in 4.13 are positive, it can easily be seen that 4.8 holds true and

thus that the X0 calculated using the pseudoinverse is the least-squares solution. It is

worth noting here that this method allows negative values in the solution for X, which of

course is nonsensical when describing the intensity of a light source.

The second BLT image reconstruction algorithm I used was the maximum likelihood

expectation maximization algorithm (MLEM). It constrains the solution to have only

positive values and assumes that the noise in Y is Poisson distributed [116]. It is

summarized by the following expressions:

 = ∙ ∑ , ∑ , (4.14)

where M is the number of measurements and N is the number of unknowns and where

Sn is defined as:

 = ∑ , (4.15)

However, if Y is corrected for counts stemming from the CCD dark current, cosmic rays

and other sources of background, by subtracting estimates of these counts from Y prior

to entering into the MLEM algorithm, the noise is no longer Poisson distributed. This

deficit was recognized and was addressed in the context of PET image reconstruction

by Politte et. al. in 1991 [117]. The simple expedient Politte proposed to get around this

problem was to add an estimate of the noise, σm, to the product WX within the loop of

the iterations as shown in expression 4.16.

83

 = ∙ ∑ , ∑ , (4.14)

In this way the uncorrected Y is used and retains its Poisson statistics.

The need for such an adjustment may not be well appreciated by some investigators

making use of the MLEM in the context of BLT or it may be assumed to be a small

effect, so I will take this opportunity to give an example of the magnitude of error when

this adjustment is not made. This example here made use of the simulated mouse

model which will be described in detail in a later section (4.12) of this manuscript.

Looking at the images of Figure 4.3 the importance of Politte’s approach is readily

apparent. The image on the left (4.3A) is a coronal cross-section through the original

un-noised source distribution and is provided here a reference for the ground truth. The

image calculated from 160 iterations of the MLEM algorithm and employing Politte’s

adjustments is shown in figure 4.3B. The image in Figure 4.3C shows the impact of

assuming that the noise is negligible and not accounting for it within the loop. While

Figure 4.3D shows what happens when Y is corrected for noise prior to entering the

MLEM algorithm.

84

Figure 4.3 Coronal cross-section through original simulated source distribution intensity data (A). Same
cross-section reconstructed from noisy data and using an estimate of that noise within the loop for the
MLEM algorithm as proposed by Politte (B). Images reconstructed from the same data using MLEM but
assuming negligible noise (C). And in (D) a reconstruction from the same data and noise estimate used in
(B) but but this time the data was pre-corrected before applying the standard MLEM algorithm.

4.6. Derivation of the optimization expression

In this section I will derive a formula that will allow an investigator to determine the

optimal distribution of acquisition times for a given set of filtered measurements. To do

this I’ll start by considering a vector with elements Xn describing the photon fluence rate

for each voxel (1≤n≤N, where N is the number of voxels) within an object (e.g. a mouse)

being imaged within a bioluminescence imager. The expected fluence rate Ym·j

measured by each of the detectors (e.g. each of M pixels, 1≤m≤M, within a CCD

camera) at a given wavelength j (1≤j≤J, where J is the number of wavelengths)

acquired with a given band-pass filter within the bioluminescence imager, can be

modeled as a matrix multiplication = ∑ , . Each wavelength will have its

own weight matrix (a subset of the full matrix W), which I’ll designate as Wj with

85

elements Wm·j,n. and each is acquired for a given duration, Tj, to yield a separate vector

of photon counts Cj (with elements ∙) for each wavelength. Note here that in this

definition each weight matrix Wj (for each wavelength) is accounting for the relative

intensity of the light source at a given wavelength (i.e. for the source spectrum). Thus,

for example, all other things being equal, if the relative amplitude at wavelength j for a

given luciferase is double that of another luciferase, then Wj of the former will be double

that of the latter.

Because C involves counting statistics, the uncertainty associated with each element of

C is Poisson distributed and is equal to the square root of the counts, ∙ = ∙ .

However, we are interested in the uncertainty in Y and ultimately its impact on the

uncertainty in X. To get the uncertainty in Y it is necessary to divide the uncertainty in C

by the acquisition time ∙ = ∙ = ∙ = ∙ . There are of course other sources

of noise in the measurement of C and I will incorporate these later, but for now I’ll

assume this simple Poisson noise model.

There are several means of solving for X given Y, but for the purposes here I’ll start by

making use of the Moore-Penrose pseudoinverse of W which when matrix multiplied by

Y estimates X in a manner that minimizes its squared error. I’ll designate this matrix as

W+, which like W can also be partitioned into submatrices, Wj
+, each corresponding to a

different wavelength. Because matrix multiplication is a linear operation, when

multiplying Y by W+, the error in Y is also multiplied by W+. However, uncertainties sum

in quadrature and thus the expression for the overall uncertainty X, , is as follows:

86

 = ∑ ∑ , ∙ ∙ ∙∙∙ (4.15)

which in turn expands to:

 = ∑ ∑ , ∙ ∙∙∙ (4.16)

Distributing the square and using the notation , ∙ = , ∙ gives:

 = ∑ ∑ , ∙ ∙∙∙ (4.17)

and finally – defining = ∑ ∑ , ∙∙∙ ∙ this simplifies to:

 = ∑ (4.18)

When the acquisition times for each wavelength are specified and there exists a

reasonable estimate of ∙ , this expression provides an estimate of the overall

uncertainty in X (a useful result in its own right), but it also provides the basis upon

which it is possible to determine the optimal time distribution among a given set of

filtered measurements (i.e. wavelengths). To demonstrate this, I’ll start by considering

just two wavelengths.

 = + (4.19)

Now, define T=T1+T2 and = to get:

87

 = + (4.20)

Based on this expression we will seek the value of which minimizes and start by

noting that squaring both sides does not affect the optimal value. Similarly the value

of T is inconsequential.

 = + 1 − (4.21)

Now, taking the derivative wrt , setting the result to zero and rearranging:

 = 1 − (4.22)

 = (4.23)

and now taking the square root of both sides:

 = (4.24)

and putting back T1 and T2

 = (4.25)

The expression for becomes:

 = (4.26)

88

This can be extended to more than two wavelengths to arrive at the final expression for

determining the optimal time distribution:

 ∑ = (4.27)

As promised earlier, I’ll now consider the additional complication posed by other

sources of noise inherent to the measurement of Y. For a CCD based system this

primarily comes in the form of a time dependent dark current, D, and a time

independent read noise, R. I’ll assume here that both of these sources of noise are

uniform across all detectors and wavelengths (but note that the following could also

easily be adjusted for non-uniform noise). In any case, assuming uniform noise, the

expression for the uncertainty in each element of Y is:

 ∙ = ∙
 (4.28)

Then following the same sequence of manipulations used previously:

 = ∑ ∑ , ∙ ∙∙∙ (4.29)

 = ∑ ∑ , ∙ ∙∙∙ (4.30)

and here adding definitions for = ∙ ∑ ∑ , ∙∙∙ and = ∙∑ ∑ , ∙∙∙ to get:

89

 = ∑ (4.31)

 = + (4.32)

 = + (4.33)

This expression can readily be minimized using a nonlinear search but can also can be

more quickly and robustly minimized by noting first that if R is assumed to be negligible

for a moment and defining to include , i.e. = + , then we get the same

solution (4.27) as before. This can be used as the initial estimate of the optimal time

distribution –

 = ∑ (4.34)

but then iterated several times now incorporating a term accounting for the read noise.

 = ∑ (4.35)

In practice, iterating this expression 10 or more times converges to greater than 4

significant digits. In all of the following simulations, for good measure the expression

was iterated 20 times.

90

Incorporating the additional sources of noise into expression (4.18) gives the final

expression predicting the overall image noise (root mean squared error):

 = √ ∑ (4.36)

As mentioned in the Introduction to this specific aim, the above result works perfectly

well for least-squares solutions but does not work for MLEM solutions. However,

returning to equation (4.16) and substituting Barrett’s U matrix gives (note ellipses are

used to emphasize that is log-normal distributed):

 = ∑ ∑ , ∙ ∙∙∙ (4.37)

All the manipulations (4.17) through (4.36) apply equally to this expression but

substituting , ∙ for , ∙ and for .

4.7. Algorithm to select optimal filters

The calculations described above allow for the determination of the optimal distribution

of time among a set of measurements given that the filters for those measurements had

already been chosen. These same equations, however, can also be employed to make

an optimal selection of filters within a specified range of wavelengths using the following

algorithm (see Appendix for Matlab code):

1) Start by selecting the range of wavelengths. Generally this will be a range

spanning the luciferase source spectrum, but in the case of a Cerenkov source

91

the range is only limited by the sensitivity of the CCD and attenuation of the

tissue.

2) Divide the range of wavelengths into discrete bands. The number of bands, J,

here is only limited by computational capacity. For the geometry of interest, solve

the forward model for each of the bands thereby determining the weight matrix,

Wj, for each wavelength band. Again note that the magnitude of each Wj here

incorporates the relative magnitude of the source spectrum at that wavelength.

3) Select an overall duration to be allotted to the entire acquisition and use

expressions (4.34) and (4.35) – or their equivalents in the case of a planned

MLEM reconstruction - to determine the optimal distribution of times among the

current set of filters. Use equation (4.36), or (4.37) as appropriate, to estimate the

expected degree of noise in the solution. Use this noise level as the current

minimum.

4) Then, independently for each adjacent pair of wavelengths, sum the

corresponding Wj matrices and recalculate U (or W+). Based on this new U (or

W+), recalculate the optimal distribution and re-estimate the new noise level.

Once this is done for all adjacent pairs, take the pairing having the minimum

expected noise level and compare it to the current minimum. If greater than the

current minimum, stop. Otherwise accept the summed pair of wavelengths

having the minimum expected noise and repeat step 4, recalculating and testing

the newly adjacent pairs.

92

4.8. Testing the optimization expression

Owing to correlations between the system matrix and the errors in any given

measurement, there is in fact no single time distribution that will for all samplings

produce a solution with minimal noise. Instead, the optimality of the time distribution

only becomes apparent when considering the expected noise level (i.e. the noise level

averaged over many samplings). Moreover, in order to get a gold standard reference

based upon which the true optimal distribution can be assessed, it is necessary to

calculate the expected noise-level for all possible time distributions. Because of

compute limitations, this is simply impractical for a realistic, highly sampled object (e.g.

mouse) with many wavelengths. So instead, I sought to verify the optimization

calculations making use of a very small toy system involving just 3 internal voxels (i.e. X

having just 3 elements) and 5 detector elements (i.e. Y with 5 elements). Thus each Wj

is a 5x3 matrix and each element of Wj was calculated as where d is a random

distance between 0 and 10 mm, and and are the wavelength’s attenuation

coefficient and relative spectral intensity (of the photon source), respectively.

Using this simple system, it was possible to simulate photon transport and detection,

reconstruct images and calculate the expected root-mean-squared error (RMSE) when

seeking a least squares solution to the image reconstruction problem or calculate the

expected root-mean-squared log error (RMSLE) when using an MLEM reconstruction.

The means of these errors were determined based on 10,000 acquisitions with

independently sampled random noise. The noise was added using Matlab’s poissrnd

function which takes as its argument the mean of the desired noise distribution. This

93

was specified as ∗ + + . The dark current and read noise parameter

values, D and R respectively, were set based on the IVIS 200 specifications

(D=0.009787 cnts/sec/pixel and R=1.995 cnts/pixel).

A cohort of 10,000 simulated acquisitions was repeated for each of 25 different time

distributions, 0.02: 0.04: 0.98 , in a two wavelength system. This was then repeated

another 25x25=625 times (same 0.02: 0.04: 0.98 but the remainder of the time split

between and with 0.02: 0.04: 0.98) in a 3 wavelength system. Among all the

time distributions tried, the distribution resulting in lowest expected (i.e. averaged over

10,000 trials) RMSE or RMSLE was identified. This is the brute force determined

optimal time distribution. The RMSE and RMSLE error level for the analytically

determined optimal time distribution (as determined using the iterative procedure

described by expression (4.35) was also calculated once again averaging over 10,000

noise samplings. This was also repeated for an analytically determined optimal time

distribution based on a uniform source distribution (i.e. where it was assumed that there

was no knowledge of the distribution of X) and finally for a naïve uniform time

distribution. In addition, for each simulation a prediction of the noise level was made

using expressions (4.36) and (4.37) and these were compared to the measured mean

noise level.

For the two-wavelength system, the entire process was repeated 100 times, each time

using a different randomly chosen source spectrum, set of distances, source intensities,

attenuation coefficients and overall acquisition time (between 1 and 36,000 seconds).

For each of these 100 repetitions the percent error between the brute-force and metric

94

predicted error levels was calculated and the mean, standard deviation and the

maximum of the percent errors was determined. Similarly, the three-wavelength system

simulations were repeated but owing to the significant additional computational burden

this was done just 10 times.

4.9. Two-wavelength LSQ simulation results

Monte-Carlo simulations were undertaken to demonstrate definitively the accuracy with

which the calculations derived here are able to determine the optimal distribution of

times among the filtered acquisitions. Two equations were investigated: 1) appropriate

for least-squares solutions to the inverse problem and making use of the Moore-

Penrose pseudoinverse and; 2) appropriate for MLEM solutions to the inverse problem

and making use of Barrett’s error estimating matrix. MLEM and other constrained

solutions are of more practical utility but because Barrett’s U matrix involves some

approximating assumptions, it can fail when those assumptions are violated.

95

Unconstrained least-squares

solutions for the BLT problems

investigated here, on the other

hand, generally produce uselessly

noisy images, however, the

Moore-Penrose calculations

should be exact in every instance

and hence the reason for their

inclusion here.

Each “toy” two-wavelength system

was simulated 10,000 times

(differing only in noise) at each of

20 different time ratios between

the two measurements. One hundred such toy systems were simulated. Figure 4.4

shows the results from one of these. Each point along the red line shows the average of

10,000 calculations of the RMSE relative to the true voxel intensities at a given relative

duration of measurement for the first wavelength. The X-location at which this curve

reaches its nadir is the brute force determined optimal fraction of time that should be

spent measuring the first filtered image given the parameters (source spectrum,

attenuation, geometry, etc.) of this specific toy system. The horizontal blue line shows

the level of that minimum. The two stars, show the optimal fractional time determined

using equation (4.36) when the true distribution is known perfectly (black star) and when

just rough information regarding the overall signal magnitude (assumed to be distributed

Figure 4.4 The red curve describes the brute force
determined overall least squares uncertainty in the inverse
solution as a function of the fraction of time spent on the 1st
of two measurements made a differing wavelengths. This is
the result for one toy problem selected out of 100 tried. Each
point along the red curve is the average of 10,000 measured
uncertainties. The black and green stars show the predicted
optimal fractional times and associated uncertainties, given
perfect and rough knowledge about the source distribution,
respectively.

96

uniformly) is available (green star) for the calculation. In practice, the true source

distribution will not be known in advance, so the green star shows more realistically

what can be achieved in practice. Overall, these results demonstrate that the formulas

derived in section 4.6 are consistently able to find the optimal distribution of acquisition

times between the two filtered measurements.

Figure 4.5 A and B show a comparison of the predicted an actual (i.e. measured) mean

RMSE uncertainties at the calculated optimal time distribution for each of the 100 toy

systems modeled, given perfect and rough information about the source distribution,

respectively. These results show that the equation I derived predict the image noise

almost perfectly.

Figure 4.5 Plots showing a comparison of the predicted and measured average uncertainty for each of
the 100 toy problems tested, given perfect information about the source distribution (A) and given rough
information (B).

predicted uncertainty
10-2 10-1 100 101 102

10-2

10-1

100

101

102
Two Wavelength Perfect Info

predicted uncertainty
10-2 10-1 100 101 102

10-2

10-1

100

101

102
Two Wavelength Rough Info

97

4.10. Three-wavelength LSQ simulation

Given how equation (4.36) was

derived, I had some concern that the

extrapolation to more than two

wavelengths might be problematic.

Therefore, a similar set of brute-force

Monte-Carlo calculations of the

optimal time distribution were

undertaken, however, this time

involving three wavelengths. In this

case only ten toy systems (each

parameterized by a different set of

random values) were modeled, but

each tried at 125 different time distributions, averaged over 10,000 runs (1,250,000

simulations altogether). The resultant 125 points in 3D (fraction 1 by fraction 2 by

RMSE) was fitted to a surface using Matlab’s griddata function. This surface is

displayed as a colorized 2D image in figure 4.6, with RMSE represented by the pixel

color. The black and green stars again show the optimal time distribution determined by

equation (4.36) given perfect and rough information, respectively. This result shows that

the accuracy of the predictions demonstrated previously for the two-filter case (figure

4.4), also extend to a larger number of filters.

Figure 4.6 Topogram of RMSE uncertainty, shown in
color, as a function of the relative fraction of time spent
on each of the first two filtered measurements. The
remaining time fraction (1-f1-f2) was given to the
measurement using the third filter. Black and green
stars show location of predicted minima.

98

4.11. Two-wavelength MLEM simulation

As mentioned previously, the intent in showing the above results for an unconstrained

LSQ solution is to demonstrate that the overall approach works precisely. As such, they

also serve to demonstrate that the occasional poor performance of the MLEM targeted

optimization seen in the following results, are therefore due to approximations implicit to

the calculations of Bartlett’s U matrix, not because of problems or inaccuracies in the

optimization per se.

Figure 4.7 Data similar to that shown in figure 4.5 except this time predictions are made using Barrett’s
matrix, inverse problem is solved using MLEM and uncertainty is measured as RMSLE.

99

Figures 4.7 A and B mirror the results

shown in figures 4.5 A and B except this

time the optimal time distribution

predictions were based on Bartlett’s U

matrix, the images were reconstructed

using an MLEM algorithm and the

uncertainty was measured in RMSLE.

Similarly figure 4.8 mirrors figure 4.4

again depicting a selected result out of

the 100 toy systems simulated. Never-the-less, it can be appreciated from these plots

that the utility of the expression derived for the least-squares solution case, also extend

to MLEM reconstructed images.

4.12. Mouse simulations

Although the toy systems used to test the optimization calculations were designed to

mimic the salient characteristics of real BLT problems, it can be argued that they do not

reflect the potential complications of a full sized system encountered in the preclinical

setting. Therefore, I created a model of light propagation and detection based on a set

of CT and PET images of an actual live adult nude mouse, co-registered using the

procedures described in Specific Aim 1. The CT was used to define the geometry of the

mouse and the PET images were used to define the source distribution of the light

emanating from within the mouse based upon the predictions of the Cerenkov models

Figure 4.8 Data similar to that shown in figure 4.4
except this time predictions are made using
Barrett’s matrix, inverse problem is solved using
MLEM and uncertainty is measured as RMSLE.

100

described in Specific Aim 2. This source distribution was then converted to light source

intensities for individual wavelengths assuming both Cerenkov and firefly luciferase

source spectra. The PET tracer that was used was 89Zr oxalate which is known to

uptake into the bones. A maximum intensity projection (MIP) of the PET image data is

shown in figure 4.9A. The Cerenkov and firefly source spectra are shown in figure 4.9B.

The propagation of the light through the tissues of the mouse was modeled using the

equations described in Section 4.4 and using the wavelength dependent attenuation

coefficients shown in figure 4.9C.

Figure 4.9 (A) MIP image of source distribution; (B) plot of normalized Cerenkov and firefly luciferase
spectra; and (C) plot of the attenuation coefficients used in the simulations as a function of wavelength.

Based on this model, the optimal time distribution among eight 20 nm bandpass filters

ranging from 560 to 720 nm, was determined assuming either Cerenkov or firefly

luciferase spectra and either MLEM or LSQ reconstructions, four optimizations of this

type in all. A similar set of optimizations was again run for these four conditions,

however, this time the algorithm was allowed to optimally combine filters together

mimicking an acquisition of the same overall duration but involving some filters having a

101

larger bandpass. The results of these optimizations are summarized in figures 4.10A

(firefly) and 4.10B (Cerenkov).

From this data it is clear that the optimal acquisition protocol depends on what image

reconstruction algorithm is to be used. This is not something that was considered in

previous time optimization efforts [31, 32, 118]. It is also interesting to note that the filter

selection process tended to prefer the additional count efficiency provided by the wide

bandpass filters over the additional information provided by more wavelengths, in the

MLEM case reducing the number of filters down to just two. Indeed, as we’ll see below,

quite accurate reconstructions can be generated using just the two wavelengths

indicated.

Figure 4.10 Plots of the optimal time distributions and filter choices for firefly luciferase (A) and Cerenkov
(B) light sources.

Each of the optimized image acquisition protocols was then simulated assuming the

PET derived source distribution described previously. A naïve uniform time acquisition

protocol was also simulated. The total acquisition time was taken to be one hour.

Coronal cross sectional images based on MLEM reconstructions of data acquired using

102

these acquisition protocols for the firefly luciferase source spectrum are shown in figure

4.11A-C for the uniform, optimal all filter, and optimal reduced filter protocols,

respectively. The corresponding RMSLE values were 3.55, 3.27 and 0.71, respectively.

Significant improvement in image quality is readily apparent when using the optimized

data acquisition protocols.

Figure 4.11 MLEM reconstructions for datasets assuming firefly (A-C) and Cerenkov (D-F) source
spectra and acquired using a uniform time distribution (A and D), optimally distributed time (B and E), and
optimally selected filters (C and F).

An equivalent set of images, this time simulated using the Cerenkov source spectrum

but again using MLEM reconstruction, is shown in figures 4.11D-F. The corresponding

RMSLE values in this case were 4.40, 4.06 and 0.98. As can be appreciated when

viewing these images, there is some improvement when using the all-filter optimally

distributed acquisition time protocol relative to a naïve uniform time protocol, but this

improvement is small, largely because uniform time is already close to optimal for these

filters. A much larger improvement is gained when the number of filters is reduced and

the bandwidths are extended.

At this same overall acquisition duration, the LSQ reconstructed image sets are so noisy

as to be rendered useless (see figure 4.12A-C). The improvement gains for the

103

optimized protocols, never-the-less, can still be appreciated from the reductions in

RMSE: 17598, 12805 and 11983 for the uniform, optimal full and optimal reduced filter

sets, respectively.

Figure 4.12 Sequence of images similar to that shown in figure 4.11 except here all are recontructed
using the Moore-Penrose psuedoinverse and all assumed the light emitted was consistent with a firefly
luciferase source. In this case (A-C) assumed one hour total acquisition time, while (D-F) assumed 100
million hours.

In order to actually visually perceive an improvement in LSQ reconstructed images, it

was necessary to simulate an acquisition that is on the order of 100 million times longer

(see figure 4.12D-F). Even here the improvement is subtle at best but is confirmed by

the RMSE values which in this case were 1.66, 1.42 and 1.13. Of particular note in

these images is the extreme heterogeneity in the spatial distribution of the noise,

wherein the center of the mouse is all but obliterated by noise but voxels near the

surface are well resolved. In the next section, we will explore this further.

4.13. Guidance for improved conditioning and SNR through optimized
sampling

As described previously, in luminescence tomography each column of the system

matrix W specifies the surface profile of a given voxel and each row reflects the voxel

104

domain contributing to a given pixel on the skin surface. Reducing the number of

columns is in effect a constraint on the solution space (i.e. domain). It can also be

considered a type of preconditioning in that the intent is to transform matrix W into a

new matrix having more favorable properties for iterative solution.

When seeking to optimize the time distributions, the target function that was minimized

was the overall uncertainty in the image, summing the uncertainties in the individual

voxels in quadrature. If instead we leave the voxel uncertainties separate, these values

can be used to guide a variety of decisions including whether a given pair or group of

voxels should be combined into a cluster and treated as a single large voxel. Combining

voxels entails combining columns of the system matrix W and thus is a type of

conditioning, wherein the condition number is improved (reduced).

The image in figure 4.13A shows a coronal cross-section through an image of these

voxel uncertainties, in this case for an LSQ solution assuming a uniform source

distribution. Given some estimate of the absolute intensity of a light source placed within

a given voxel within this image, this information could be used to ask the very

reasonable question, will it be possible to distinguish this voxel from its neighbors? And

when the answer is no, this voxel and one or more of its neighbors can be combined.

A constraint of this type differs from other previously proposed domain constraint

approaches in two major ways: 1) the changes to matrix W proposed here would be

limited to spatially adjacent voxels, whereas most preconditioners manipulate the matrix

without regard to this physical spatial context; 2) these matrix manipulations take into

105

consideration a noise model and thus they are guided based on statistical

considerations.

In solving the inverse problem, a single source intensity would be calculated for each

cluster (i.e. the voxels of a cluster are assigned the same source intensity). The net

effect is that the spatial domain within the animal is sampled non-uniformly in a manner

that reflects the depth dependent variation in achievable resolution.

Clustering voxels based on this information could be handled in a number of differing

ways, including algorithms that would place topographical constraints on the clusters.

For the purposes here, I have implemented just one very simple approach but others

are possible. The algorithm that I implemented (see Appendix for details) starts by

assigning each voxel to its own cluster, determines the associated predicted noise level

to that cluster and identifies the initial 26 neighboring clusters. It then makes multiple

passes through the cluster data, each time selecting the cluster with the greatest

uncertainty. And if that uncertainty is greater than a specified threshold (chosen based

on the aforementioned statistical considerations), the algorithm combines that cluster

with all of its immediate neighbors. When voxels are clustered together, their

corresponding columns in W are averaged together.

The results from the application of this algorithm can be seen in figure 4.13. Figure

4.13B shows the cluster uncertainties for same cross-section as in 4.13A but after

applying the clustering algorithm. Figure 4.13C is an image of the cluster sizes. Blue

depicts voxels belonging to clusters having a single voxel member and red depicts

voxels belonging to clusters having 27 voxel members (although in principle clusters

106

having other numbers of voxels are also possible). The original system matrix, W, had a

condition number (as calculated by Matlab’s cond function) of 9.7e6. After combining

the columns as directed by the clustering algorithm, the condition number was reduced

over three-fold to 3.0e6. The images in figures 4.13D and E show the resultant

reconstructions when using the original and the post clustering system matrices,

respectively. Here it can be appreciated that the noise within the central region of the

mouse has been greatly reduced by the clustering, albeit at a loss of resolution in this

region.

Figure 4.13 All images depict same coronal cross-section through a mouse. (A) Moore-Penrose
determined uncertainty image based on original W matrix, (B) based upon reduced W matrix, (C) cluster
size image; (D) 100 million hour image reconstructed from original W matrix; (D) 100 million hour image
reconstructed from reduced W matrix.

Reducing the rows of W could follow a similar process but for somewhat different

purposes. Generally speaking, reductions in the rows of W would not be expected to

improve (and in fact could worsen) the condition number. However, changes in the row

sampling can also improve the overall noise characteristics of the system, resulting in

improved solutions in addition to reduced computational burden. For example, for some

CCD cameras using a reduced resolution mode (i.e. charge binning) can improve the

107

signal to noise ratio beyond what one would expect from a simple averaging of pixel

groups. However, demonstrations of the improvement that might be gained from these

types of manipulation will not be pursued here.

4.14. Discussion

Through a series of simulations, I have demonstrated a novel means by which it is

possible to make accurate predictions of the optimal acquisition time distribution for a

multispectral bioluminescence tomography measurement. Moreover I show for the first

time that this optimal distribution is dependent, not only upon the source spectrum, but

also upon the algorithm that will be used to reconstruct the images. These simulations

also suggest, however, that optimally distributing the acquisition time (in most cases)

will not result in dramatic noise reductions relative a uniform time distribution protocol, at

least not for filter sets that constitute reasonable samplings of the source spectrum (i.e.

when all filters are within the spectral peak). The reason for this can best be appreciated

by noting the broad shallow basin in the brute-force determined uncertainty curves of

figures 4.4 and 4.8. In these and in the other simulated systems not shown, the fold

change in uncertainty when going from the optimal to uniform time is quite small.

However, I also show that by making use of the same calculations to optimally select

the filters and their bandwidths, significant reductions in noise can be achieved. And,

once again, the optimal filter selection is shown to be dependent upon both the source

spectrum and the choice of reconstruction algorithm. I also argue that this same basic

approach can be used to guide other acquisition protocol design choices, including

specifically the distribution of the sampling frequency of both the solution space within

the animal and of the measurements made of the light emanating from the animal

108

surface. And finally I demonstrate that in the former case, such guided decisions can

lead to improved image quality.

109

5. OVERALL SUMMARY AND CONCLUSIONS

From the outset of this work it has been my intent to make progress on what I perceived

to be the major problems limiting the successful implementation of bioluminescence

tomography in the preclinical small animal imaging setting. Specifically, I felt that the

lack of a gold standard reference against which improvements could be gauged and

poor data quality/system conditioning issues, were the major problems hampering

progress in BLT. Moreover, I recognized that there was a degree of synergy between

these two problems. Establishing a gold standard reference of the 3D source

distribution would require registrations, projective transforms, corrections and

quantitative calibrations that were all requisite components of the platform upon which

optimizations to reduce noise-levels and methodologies to guide system conditioning

could be based. For example, the projective transform and registration to CT 3D space

determined in Aim 1, are also steps used in the image reconstructions of Aim 3. The

corrections for the luciferin time-course and light falloff as a function of the angle of the

surface normal, are critical in maintaining the consistency of the measurements that

would otherwise introduce artifacts into the reconstructed images independent of the

noise in the data. Similarly, the calibration, filter sensitivity and source to camera

distance corrections described in Aim 2, improve the accuracy and integrity of the data.

It is only after the data is made accurate and consistent by correcting for all confounds

(steps pursued in Aims 1 and 2), that it then it becomes meaningful to try to address

questions regarding the precision of the data and how the resultant uncertainty

propagates through the reconstruction process (the topic of Aim 3).

110

Corrections for confounds in most imaging systems would typically be expected to be

applied automatically by the camera’s hardware and associated reconstruction software

(though I’ve identified several that are not). However, choices impacting precision are

often left to the user. This perhaps is especially true of BLT, where the user needs to

decide how long to image, what filters to use, how to distribute the acquisition time

among the chosen filters, what resolution the CCD images should be acquired at and

what voxel sizes to use (or what smoothing parameter values to apply) during the

reconstruction. To-date, there has been little-to-no guidance for the user to help them

make these decisions. Although there is certainly more to be done, this was one of the

main purposes behind the work in Aim 3.

In Aim 3, I demonstrated that it is possible to determine in advance the optimal filter

selection and acquisition time distribution to minimize the uncertainty in the

reconstructed images. The equations derived to make these calculations showed,

somewhat counter intuitively, that (roughly speaking) less time should be spent

acquiring weaker signals and more time spent acquiring stronger signals. I’ve also

demonstrated (to my knowledge, for the first time) that the optimal filter and time

selections depend upon what reconstruction algorithm will be used to generate the

images. Previous efforts had not considered the potential impact of this choice.

Many of the 3D tomographic imaging modalities have difficulty getting measurement

data from locations deep within the subject being imaged. However, I think it is safe to

say that for BLT this problem is extreme. Based on the data in figures 4.2A and 4.9C it

can be readily seen that of the photons emanating from a depth of just 1 cm, only 5% of

111

the 660 nm (red) photons will make it out of the animal (much less being detected),

while virtually none of the blue or green photons will make it out. This coupled with the

greater degree of scatter experienced by the more deeply sourced photons, means that

the achievable resolution at depth is greatly limited. One can conclude therefore, that

while it may be reasonable in many 3D imaging modalities to use a uniform grid to

sample the solution space (i.e. the same voxel spacing for both deep and shallow

locations), this is not at all the case for BLT. Within Aim 3 I describe what I think could

be the paradigm upon which these and related decisions can be made, whether it’s the

choice of voxel size, or selection of an appropriate basis function, the optimization of a

regularization parameter value.

In future work, I hope to build upon the intermodality registration capabilities described

here, to address what I believe to be the most important remaining problem in BLT

image reconstruction, that of incorporating organ location information (potentially

gleaned from MR images) so that the forward models may accurately reflect the

heterogeneity in photon transport within the animal.

112

6. REFERENCES

1. Wang G, Li Y, Jiang M. Uniqueness theorems in bioluminescence tomography. Med Phys.
2004;31(8):2289-99. PubMed PMID: ISI:000223316600015.

2. Jiang M, Wang G. Image reconstruction for bioluminescence tomography. Developments in X-Ray
Tomography Iv. 2004;5535:335-51. PubMed PMID: WOS:000225665000035.

3. Qin CH, Zhu SP, Feng JC, Zhong JH, Ma XB, Wu P, et al. Comparison of permissible source region and
multispectral data using efficient bioluminescence tomography method. J Biophotonics. 2011;4(11-
12):824-39. PubMed PMID: WOS:000297740500005.

4. Jiang M, Wang G. Uniqueness results for multi-spectral bioluminescence tomography. Crm Ser.
2008;7:153-72. PubMed PMID: WOS:000268435400008.

5. Ill-Conditioned Definition [cited 2017 Sept 25, 2017]. Available from:
http://www.statisticshowto.com/ill-conditioned/.

6. Law of Large Numbers. Available from: https://en.wikipedia.org/wiki/Law_of_large_numbers.

7. Tang JP, Han B, Han WM, Bi B, Li L. Mixed Total Variation and L-1 Regularization Method for Optical
Tomography Based on Radiative Transfer Equation. Comput Math Method M. 2017. PubMed PMID:
WOS:000394952900001.

8. Wang YQ, Feng JC, Jia KB, Sun ZH, Wei HJ. A Novel Reconstruction Algorithm for Bioluminescent
Tomography Based on Bayesian Compressive Sensing. Medical Imaging 2016-Biomedical Applications in
Molecular, Structural, and Functional Imaging. 2016;9788. PubMed PMID: WOS:000378223800026.

9. Hu YF, Liu J, Leng CC, An Y, Zhang S, Wang K. Lp Regularization for Bioluminescence Tomography
Based on the Split Bregman Method. Molecular Imaging and Biology. 2016;18(6):830-7. PubMed PMID:
WOS:000387367100005.

10. Leng CC, Yu DD, Zhang S, An Y, Hu YF. Reconstruction Method for Optical Tomography Based on the
Linearized Bregman Iteration with Sparse Regularization. Comput Math Method M. 2015. PubMed
PMID: WOS:000361241900001.

11. Wu P, Hu YF, Wang K, Tian J. Bioluminescence Tomography by an Iterative Reweighted l(2)-Norm
Optimization. Ieee T Bio-Med Eng. 2014;61(1):189-96. PubMed PMID: WOS:000333263300020.

12. Chen XL, Yang DF, Zhang QT, Liang JM. L-1/2 regularization based numerical method for effective
reconstruction of bioluminescence tomography. J Appl Phys. 2014;115(18). PubMed PMID:
WOS:000336919400052.

13. Darne C, Lu YJ, Sevick-Muraca EM. Small animal fluorescence and bioluminescence tomography: a
review of approaches, algorithms and technology update. Phys Med Biol. 2014;59(1):R1-R64. PubMed
PMID: WOS:000328549200001.

113

14. Johansen TA. On Tikhonov regularization, bias and variance in nonlinear system identification.
Automatica. 1997;33(3):441-6. PubMed PMID: WOS:A1997WU49200015.

15. Moore E. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical
Society. 1920;26(9):394-5.

16. Penrose R. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society.
1955;51:406-13.

17. Barrett HH, Wilson DW, Tsui BMW. Noise Properties of the Em Algorithm .1. Theory. Phys Med Biol.
1994;39(5):833-46. PubMed PMID: WOS:A1994NP47900004.

18. Wilson DW, Tsui BMW, Barrett HH. Noise Properties of the Em Algorithm .2. Monte-Carlo
Simulations. Phys Med Biol. 1994;39(5):847-71. PubMed PMID: WOS:A1994NP47900005.

19. Lu YJ, Machado HB, Bao QN, Stout D, Herschman H, Chatziioannou AF. In Vivo Mouse
Bioluminescence Tomography with Radionuclide-Based Imaging Validation. Molecular Imaging and
Biology. 2011;13(1):53-8. PubMed PMID: ISI:000286395600008.

20. Hu ZH, Liang JM, Yang WD, Fan WW, Li CY, Ma XW, et al. Experimental Cerenkov luminescence
tomography of the mouse model with SPECT imaging validation. Opt Express. 2010;18(24):24441-50.
PubMed PMID: WOS:000285586800058.

21. Liang ZX, Qiang YG, Liao YH, Zhu XS, Huang Z, Zhang XP, et al. In vivo mouse
<formula>^{99m}</formula>Tc SPECT scans with bioluminescence imaging validation. J X-Ray Sci
Technol. 2013;21(1):85-91. Epub 2013/03/20. PubMed PMID: 23507854.

22. Dehghani H, Davis SC, Jiang SD, Pogue BW, Paulsen KD, Patterson MS. Spectrally resolved
bioluminescence optical tomography. Opt Lett. 2006;31(3):365-7. PubMed PMID: ISI:000234961100025.

23. Han WM, Kazmi K, Cong WX, Wang G. Bioluminescence tomography with optimized optical
parameters. Inverse Probl. 2007;23(3):1215-28. PubMed PMID: ISI:000246789100022.

24. Ahn S, Chaudhari AJ, Darvas F, Bouman CA, Leahy RM. Fast iterative image reconstruction methods
for fully 3D multispectral bioluminescence tomography. Phys Med Biol. 2008;53(14):3921-42. PubMed
PMID: ISI:000257338700013.

25. Behrooz A, Kuo C, Xu H, Rice B. Adaptive row-action inverse solver for fast noise-robust three-
dimensional reconstructions in bioluminescence tomography: theory and dual-modality
optical/computed tomography in vivo studies. Journal of Biomedical Optics. 2013;18(7). PubMed PMID:
WOS:000323030400018.

26. Feng JC, Qin CH, Jia KB, Zhu SP, Liu K, Han D, et al. Total variation regularization for bioluminescence
tomography with the split Bregman method. Appl Optics. 2012;51(19):4501-12. PubMed PMID:
ISI:000306100100029.

114

27. Gao H, Zhao HK. Multilevel bioluminescence tomography based on radiative transfer equation Part
1: l1 regularization. Opt Express. 2010;18(3):1854-71. PubMed PMID: ISI:000274791200006.

28. Jiang M, Zhou T, Cheng JT, Cong WX, Wang G. Image reconstruction for bioluminescence
tomography from partial measurement. Opt Express. 2007;15(18):11095-116. PubMed PMID:
ISI:000249339800005.

29. Virostko J, Powers AC, Jansen ED. Validation of luminescent source reconstruction using single-view
spectrally resolved bioluminescence images. Appl Optics. 2007;46(13):2540-7. PubMed PMID:
WOS:000245969100020.

30. Wang G, Shen H, Liu Y, Cong A, Cong WX, Wang Y, et al. Digital spectral separation methods and
systems for bioluminescence imaging. Opt Express. 2008;16(3):1719-32. PubMed PMID:
WOS:000252932500038.

31. Taylor SL, Mason SKG, Glinton S, Cobbold M, Styles IB, Dehghani H. Optimisation of acquisition time
in bioluminescence imaging. Proc Spie. 2015;9319. PubMed PMID: WOS:000353631300033.

32. Basevi HRA, Guggenheim JA, Dehghani H, Styles IB. Information-theoretic method for wavelength
selection in bioluminescence tomography. Diffuse Optical Imaging Iv. 2013;8799. PubMed PMID:
WOS:000323554600008.

33. CCD binning: Andor; [Sept. 25, 2017]. Available from: http://www.andor.com/learning-
academy/ccd-binning-what-does-binning-mean.

34. Bal G, Schotland JC. Ultrasound-modulated bioluminescence tomography. Phys Rev E. 2014;89(3).
PubMed PMID: WOS:000333646400001.

35. Han WW, Shen HO, Kazmi K, Cong WX, Wang G. Studies of a mathematical model for temperature-
modulated bioluminescence tomography. Appl Anal. 2009;88(2):193-213. PubMed PMID:
WOS:000266276800005.

36. Huynh NT, Hayes-Gill BR, Zhang F, Morgan SP. Ultrasound modulated imaging of luminescence
generated within a scattering medium. Journal of Biomedical Optics. 2013;18(2). PubMed PMID:
WOS:000315159900006.

37. Wang G, Cong WX, Durairaj K, Qian X, Shen H, Sinn P, et al. In vivo mouse studies with
bioluminescence tomography. Optics Express. 2006;14(17):7801-9. PubMed PMID:
WOS:000240164100037.

38. Feng JC, Jia KB, Yan GR, Zhu SP, Qin CH, Lv YJ, et al. An optimal permissible source region strategy for
multispectral bioluminescence tomography. Opt Express. 2008;16(20):15640-54. PubMed PMID:
ISI:000260091300038.

39. Lu YJ, Zhang XQ, Douraghy A, Stout D, Tian J, Chan TF, et al. Source Reconstruction for Spectrally-
resolved Bioluminescence Tomography with Sparse A priori Information. Opt Express. 2009;17(10):8062-
80. PubMed PMID: ISI:000266381900036.

115

40. Cong A, Cong WX, Lu YJ, Santago P, Chatziioannou A, Wang G. Differential Evolution Approach for
Regularized Bioluminescence Tomography. Ieee T Bio-Med Eng. 2010;57(9):2229-38. PubMed PMID:
WOS:000283068800016.

41. Basevi HRA, Tichauer KM, Leblond F, Dehghani H, Guggenheim JA, Holt RW, et al. Compressive
sensing based reconstruction in bioluminescence tomography improves image resolution and
robustness to noise. Biomed Opt Express. 2012;3(9):2131-41. PubMed PMID: ISI:000308861100016.

42. Cong W, Wang G. Bioluminescence tomography based on the phase approximation model. J Opt Soc
Am A. 2010;27(2):174-9. PubMed PMID: WOS:000274210400006.

43. Feng JC, Jia KB, Qin CH, Zhu SP, Yang X, Tian J. Sparse Bayesian reconstruction method for
multispectral bioluminescence tomography. Chin Opt Lett. 2010;8(10):1010-4. PubMed PMID:
ISI:000282923300027.

44. Guo W, Jia KB, Zhang Q, Liu XY, Feng JC, Qin CH, et al. Sparse Reconstruction for Bioluminescence
Tomography Based on the Semigreedy Method. Comput Math Method M. 2012. PubMed PMID:
ISI:000308206900001.

45. Liu K, Tian J, Qin CH, Yang X, Zhu SP, Han D, et al. Tomographic bioluminescence imaging
reconstruction via a dynamically sparse regularized global method in mouse models. Journal of
Biomedical Optics. 2011;16(4). PubMed PMID: WOS:000291031400023.

46. Yu JJ, He XW, Geng GH, Liu F, Jiao LC. Hybrid Multilevel Sparse Reconstruction for a Whole Domain
Bioluminescence Tomography Using Adaptive Finite Element. Comput Math Method M. 2013. PubMed
PMID: WOS:000316139500001.

47. Yu JJ, Liu F, Wu JA, Jiao LC, He XW. Fast Source Reconstruction for Bioluminescence Tomography
Based on Sparse Regularization. Ieee T Bio-Med Eng. 2010;57(10):2583-6. PubMed PMID:
ISI:000283590000010.

48. Zhang XQ, Lu YJ, Chan T. A Novel Sparsity Reconstruction Method from Poisson Data for 3D
Bioluminescence Tomography. J Sci Comput. 2012;50(3):519-35. PubMed PMID:
WOS:000302257300003.

49. Jin A, Yazici B, Ale A, Ntziachristos V. Preconditioning of the fluorescence diffuse optical tomography
sensing matrix based on compressive sensing. Opt Lett. 2012;37(20):4326-8. PubMed PMID:
WOS:000310052800054.

50. Lee O, Kim JM, Bresler Y, Ye JC. Compressive Diffuse Optical Tomography: Noniterative Exact
Reconstruction Using Joint Sparsity. Ieee T Med Imaging. 2011;30(5):1129-42. PubMed PMID:
WOS:000290167500011.

51. Niu H, Lin ZJ, Tian F, Dhamne S, Liu H. Comprehensive investigation of three-dimensional diffuse
optical tomography with depth compensation algorithm. J Biomed Opt. 2010;15(4):046005. PubMed
PMID: 20799807; PubMed Central PMCID: PMCPMC2921418.

116

52. Suzen M, Giannoula A, Durduran T. Compressed sensing in diffuse optical tomography. Opt Express.
2010;18(23):23676-90. PubMed PMID: WOS:000283940900037.

53. Gao H, Zhao HK, Cong WX, Wang G. Bioluminescence tomography with Gaussian prior. Biomed Opt
Express. 2010;1(5):1259-77. PubMed PMID: ISI:000208209700002.

54. An Y, Liu J, Zhang GL, Ye JZ, Mao YM, Jiang SX, et al. Meshless reconstruction method for
fluorescence molecular tomography based on compactly supported radial basis function. Journal of
Biomedical Optics. 2015;20(10). PubMed PMID: WOS:000366017100010.

55. Eames ME, Pogue BW, Yalavarthy PK, Dehghani H. An efficient Jacobian reduction method for diffuse
optical image reconstruction. Opt Express. 2007;15(24):15908-19. PubMed PMID:
WOS:000251223900029.

56. Gupta S, Yalavarthy PK, Roy D, Piao D, Vasu RM. Singular value decomposition based
computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography. Med
Phys. 2009;36(12):5559.

57. Saibaba AK, Kilmer M, Miller EL, Fantini S. Fast Algorithms for Hyperspectral Diffuse Optical
Tomography. SIAM Journal on Scientific Computing. 2015;37(5):B712-B43.

58. Zhai YH, Cummer SA. Fast tomographic reconstruction strategy for diffuse optical tomography. Opt
Express. 2009;17(7):5285-97. PubMed PMID: WOS:000264747500044.

59. Taylor SL, Mason SKG, Glinton SL, Cobbold M, Dehghani H. Accounting for filter bandwidth improves
the quantitative accuracy of bioluminescence tomography. Journal of Biomedical Optics. 2015;20(9).
PubMed PMID: WOS:000365128100019.

60. Contag CH, Bachmann MH. Advances in vivo bioluminescence imaging of gene expression. Annual
Review of Biomedical Engineering. 2002;4:235-60. PubMed PMID: WOS:000177827800011.

61. Klerk CP, Overmeer RM, Niers TM, Versteeg H, Richel DJ, Buckle T, et al. Validity of bioluminescence
measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques. 2007;43(1
Suppl):7-13, 30.

62. Luker KE, Luker GD. Applications of bioluminescence imaging to antiviral research and therapy:
multiple luciferase enzymes and quantitation. Antiviral research. 2008;78(3):179-87.

63. Sato A, Klaunberg B, Tolwani R. In vivo bioluminescence imaging. Comparative medicine.
2004;54(6):631-4.

64. Soling A, Rainov NG. Bioluminescence imaging in vivo - application to cancer research. Expert
Opinion on Biological Therapy. 2003;3(7):1163-72.

65. Blasberg RG. In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations.
Nuclear Medicine and Biology. 2003;30(8):879-88. PubMed PMID: WOS:000188041100012.

117

66. Rice BW, Cable MD, Nelson MB. In vivo imaging of light-emitting probes. Journal of Biomedical
Optics. 2001;6(4):432-40. PubMed PMID: WOS:000172895700007.

67. Wang G, Cong WX, Shen HO, Qian X, Henry M, Wang Y. Overview of bioluminescence tomography-a
new molecular imaging modality. Frontiers in Bioscience. 2008;13:1281-93. PubMed PMID:
WOS:000255775700105.

68. Klose AD, Hielscher AH. Optical tomography with the equation of radiative transfer. Int J Numer
Method H. 2008;18(3-4):443-64. PubMed PMID: ISI:000256864200010.

69. Allard M, Cote D, Davidson L, Dazai J, Henkelman RM. Combined magnetic resonance and
bioluminescence imaging of live mice. Journal of Biomedical Optics. 2007;12(3):Article No. 034018.
PubMed PMID: BIOSIS:PREV200800116214.

70. Beattie BJ, Forster GJ, Govantes R, Le CH, Longo VA, Zanzonico PB, et al. Multimodality registration
without a dedicated multimodality scanner. Molecular Imaging. 2007;6(2):108-20. PubMed PMID:
WOS:000247785500004.

71. Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Second ed. Cambridge:
Cambridge University Press; 2004.

72. Dehghani H, Davis SC, Pogue BW. Spectrally resolved bioluminescence tomography using the
reciprocity approach. Medical Physics. 2008;35(11):4863-71. PubMed PMID: WOS:000260484400013.

73. Chaudhari AJ, Darvas F, Bading JR, Moats RA, Conti PS, Smith DJ, et al. Hyperspectral and
multispectral bioluminescence optical tomography for small animal imaging. Physics in Medicine and
Biology. 2005;50(23):5421-41. PubMed PMID: WOS:000234055900002.

74. Han WM, Wang G. Theoretical and numerical analysis on multispectral bioluminescence
tomography. Ima Journal of Applied Mathematics. 2007;72(1):67-85. PubMed PMID:
WOS:000243806100006.

75. Bolin FP, Preuss LE, Taylor RC, Ference RJ. Refractive-Index of Some Mammalian-Tissues Using a
Fiber Optic Cladding Method. Appl Optics. 1989;28(12):2297-303. PubMed PMID: ISI:A1989AC65000027.

76. Zhao H, H. Emission spectra of bioluminescent reporters and interaction with mammalian tissue
determine the sensitivity of detection in vivo. Journal of biomedical optics. 2005;10(4).

77. Nardo L, Brega A, Bondani M, Andreoni A. Non-tissue-like features in the time-of-flight distributions
of plastic tissue phantoms. Applied Optics. 2008;47(13):2477-85. PubMed PMID:
WOS:000256365000088.

78. Beattie BJ, Klose AD, Le CH, Longo VA, Dobrenkov K, Vider J, et al. Registration of planar
bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the
development of bioluminescence tomography reconstruction algorithms. Journal of Biomedical Optics.
2009;14(2). PubMed PMID: ISI:000266868500067.

118

79. Beattie BJ, Thorek DLJ, Schmidtlein CR, Pentlow KS, Humm JL, Hielscher AH. Quantitative Modeling
of Cerenkov Light Production Efficiency from Medical Radionuclides. PLoS One. 2012;7(2). PubMed
PMID: ISI:000302871500039.

80. Cerenkov PA. Visible emission of clean liquids by action of γ radiation. Compt Rend Dokl Akad Mauk
SSSR. 1934;8:451.

81. Cerenkov PA. Visible Radiation Produced by Electron Moving in a Medium with Velocities Exceeding
that of Light. Phys Rev. 1937;52(4):378-9.

82. Robertson R, Germanos MS, Li C, Mitchell GS, Cherry SR, Silva MD. Optical imaging of Cerenkov light
generation from positron-emitting radiotracers. Phys Med Biol. 2009;54(16):N355-N65. PubMed PMID:
WOS:000268664600015.

83. Spinelli AE, D'Ambrosio D, Calderan L, Marengo M, Sbarbati A, Boschi F. Cerenkov radiation allows in
vivo optical imaging of positron emitting radiotracers. Physics in Medicine and Biology. 2010;55(2):483-
95. PubMed PMID: ISI:000272960400010.

84. Liu HG, Ren G, Miao Z, Zhang XF, Tang XD, Han PZ, et al. Molecular Optical Imaging with Radioactive
Probes. Plos One. 2010;5(3). PubMed PMID: ISI:000274997100016.

85. Ruggiero A, Holland JP, Lewis JS, Grimm J. Cerenkov Luminescence Imaging of Medical Isotopes.
Journal of Nuclear Medicine. 2010;51(7):1123-30. PubMed PMID: ISI:000279430900020.

86. Lucignani G. Cerenkov radioactive optical imaging: a promising new strategy. European Journal of
Nuclear Medicine and Molecular Imaging. 2011;38(3):592-5. PubMed PMID: ISI:000287098000021.

87. Axelsson J, Davis SC, Gladstone DJ, Pogue BW. Cerenkov emission induced by external beam
radiation stimulates molecular fluorescence. Med Phys. 2011;38(7):4127-32. PubMed PMID:
ISI:000292521100028.

88. Dothager RS, Goiffon RJ, Jackson E, Harpstrite S, Piwnica-Worms D. Cerenkov Radiation Energy
Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems. Plos
One. 2010;5(10). PubMed PMID: ISI:000282748100026.

89. Liu HG, Zhang XF, Xing BG, Han PZ, Gambhir SS, Cheng Z. Radiation-Luminescence-Excited Quantum
Dots for in vivo Multiplexed Optical Imaging. Small. 2010;6(10):1087-91. PubMed PMID:
ISI:000278629300004.

90. Koziorowski J, Ballangrud AM, McDevitt MR, Yang WH, Sgouros G, Balatoni JA, et al. Combined
radionuclide- and photodynamic therapy: The activation of photosensitizers by Cerenkov radiation.
Journal of Nuclear Medicine. 2000;41(5):314. PubMed PMID: WOS:000089892400315.

91. Ran C, Zhang Z, Hooker J, Moore A. In Vivo Photoactivation Without "Light": Use of Cherenkov
Radiation to Overcome the Penetration Limit of Light. Mol Imaging Biol. 2011. Epub 2011/05/04.
PubMed PMID: 21538154.

119

92. Spinelli AE, Kuo C, Rice BW, Calandrino R, Marzola P, Sbarbati A, et al. Multispectral Cerenkov
luminescence tomography for small animal optical imaging. Opt Express. 2011;19(13):12605-18. Epub
2011/07/01. PubMed PMID: 21716501.

93. Zhong J, Tian J, Yang X, Qin C. Whole-Body Cerenkov Luminescence Tomography with the Finite
Element SP3 Method. Annals of Biomedical Engineering. 2011;39(6, Sp. Iss. SI). PubMed PMID:
BIOSIS:PREV201100353109.

94. Rohrlich F, Carlson BC. Positron-Electron Differences in Energy Loss and Multiple Scattering. Phys
Rev. 1954;93(1):38-44. PubMed PMID: ISI:A1954UB47200006.

95. Nuclear Data WWW Service: Lunds Universitet; 2011 [cited 2011 January 16]. Available from:
http://nucleardata.nuclear.lu.se/nucleardata/toi/perchart.htm.

96. CRC, editor. CRC Handbook of Chemistry and Physics. 86th Edition ed: CRC Press; 2005.

97. FDA Approved Drug Products: Food and Drug Administration; 2001 [cited 2011 May 5]. Available
from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2002/in111mal021902LB.pdf.

98. Frank I, Tamm I. Coherent visible radiation of fast electraons passing through matter. Compt Rend
Dokl Akad Mauk SSSR. 1937;14:109-14.

99. ESTAR Stopping Power and Range Tables: National Institute of Standards and Technology; 2011
[cited 2011 January 16]. Available from: http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.

100. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of
positron emission tomography system spatial resolution. Physics in Medicine and Biology.
1999;44(3):781-99. PubMed PMID: WOS:000079100800014.

101. Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of
positron emission tomography system spatial resolution (vol 44, pg 781, 1999). Physics in Medicine and
Biology. 2000;45(2):559-. PubMed PMID: WOS:000085410400024.

102. Bethe HA. Moliere Theory of Multiple Scattering. Phys Rev. 1953;89(6):1256-66. PubMed PMID:
ISI:A1953UB45300022.

103. Ritson D. Techniques of High Energy Physics: Interscience Publishers, Inc.; 1961.

104. XCOM Photon Cross Sections Database: National Istitute of Standards and Technology; 2011 [cited
2011 January 16]. Available from: http://www.nist.gov/pml/data/xcom/index.cfm.

105. Refractive Index Database: Mikhail Polyanskiy 2011 [cited 2011 February 9]. Available from:
http://refractiveindex.info.

106. CSG. Water Density Calculator 2011.

107. IVIS200-BR-01. IVIS 200 Series: Single View 3D Reconstruction. Caliper LifeSciences; 2009.

120

108. ICRP Composition of soft tissue: National Institute of Standards and Technology; 2011 [cited 2011
January 16]. Available from: http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=261.

109. Ross HH. Measurement of Beta-Emitting Nuclides Using Cerenkov Radiation. Anal Chem.
1969;41(10):1260-&. PubMed PMID: ISI:A1969D730200024.

110. Mitchell GS, Gill RK, Boucher DL, Li C, Cherry SR. In vivo Cerenkov luminescence imaging: a new tool
for molecular imaging. Philosophical transactions Series A, Mathematical, physical, and engineering
sciences. 2011;369(1955):4605-19.

111. Dehghani H, Brooksby B, Vishwanath K, Pogue BW, Paulsen KD. The effects of internal refractive
index variation in near-infrared optical tomography: a finite element modelling approach. Physics in
Medicine and Biology. 2003;48(16):2713-27. PubMed PMID: ISI:000185507200010.

112. Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via Em Algorithm. J
Roy Stat Soc B Met. 1977;39(1):1-38. PubMed PMID: WOS:A1977DM46400001.

113. Bevington P, Robinson D. Data Reduction and Error Analysis for the Physical Sciences. 2nd Edition
ed1992.

114. Klementyeva NV, Shirmanova MV, Serebrovskaya ЕО, Fradkov АF, Meleshina АV, Snopova LB, et al.
In Vivo Bioluminescence Imaging of Tumor Cells Using Optimized Firefly Luciferase luc2. Modern
Technologies in Medicine. 2013;5(3):6-13.

115. MacAusland R. The Moore-Penrose Inverse and

Least Squares 2014 [cited 2017 10/25/2017]. Available from:
http://buzzard.pugetsound.edu/courses/2014spring/420projects/math420-UPS-spring-2014-
macausland-pseudo-inverse.pdf.

116. Lange K, Carson R. Em Reconstruction Algorithms for Emission and Transmission Tomography. J
Comput Assist Tomo. 1984;8(2):306-16. PubMed PMID: WOS:A1984SG17200024.

117. Politte DG, Snyder DL. Corrections for Accidental Coincidences and Attenuation in Maximum-
Likelihood Image-Reconstruction for Positron-Emission Tomography. Ieee T Med Imaging.
1991;10(1):82-9. PubMed PMID: WOS:A1991FD82700009.

118. Eames ME, Wang J, Pogue BW, Dehghani H. Wavelength band optimization in spectral near-
infrared optical tomography improves accuracy while reducing data acquisition and computational
burden. Journal of Biomedical Optics. 2008;13(5). PubMed PMID: WOS:000261764900046.

121

7. APPENDIX

CODE ASSOCIATED WITH AIM 1

function movie= alphablendIVISimages(IVISrootname,imgSTRUCT,IVISrange,IMGrange)

 green= [zeros(64,1),(0:63)'/63,zeros(64,1)];

 red= [(0:63)'/63,zeros(64,1),zeros(64,1)];

 yellow= [(0:63)'/63,(0:63)'/63,zeros(64,1),];

 gray= [(0:63)'/63,(0:63)'/63,(0:63)'/63];

 hotmap= hot(64);

 hotmap(1:10,:)= 0;

 map= hsv(64);

 map(1,:)=0;

 [angles,dirLST]= getIVISangles(IVISrootname);

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 [r1,c1]= size(imgSTRUCT(i).image);

 fprintf(1,'Reference image max is %f and its size is %d x

%d\n',max(max(imgSTRUCT(i).image)),r1,c1);

 f= [deblank(dirLST(i,:)),'\luminescent.tif'];

 luminIMG= my_tiffread2(f);

 luminIMG= double(luminIMG);

 [r2,c2]= size(luminIMG);

 fprintf(1,'IVIS lumin image min is %f and max is %f and its size is %d x

%d\n',min(min(luminIMG)),max(max(luminIMG)),r2,c2);

 if r1 ~= r2 | c1 ~= c2

 luminIMG= interp2(luminIMG,(1:r1)'*(r2/r1),(1:c1)*(c2/c1));

 end composite=

alphablend(ind2rgb(floor(scale(imgSTRUCT(i).image,IMGrange(1),IMGrange(2),0,63)),gray), ...

ind2rgb(floor(scale(lowclip(luminIMG,IVISrange(1),0),0,IVISrange(2),0,63)),map),.3); figure;

 imshow(composite);

 outfile= ['composite',num2str(i),'.jpg'];

 imwrite(composite,outfile);

 end

 movie=1;

Published with MATLAB® R2017a

% define_geometry - takes a segmented imageset and identifies the boundary voxels

% segmented file is a series of unsigned bytes where OUTSIDE voxels are coded as 0's

122

% and INSIDE voxels have values other than 0

function m = define_geometry(segmented_fname,X,Y,Z)

DEBUG= 0;

%---------------- read segmented data ---------------------------------------

fp= fopen(segmented_fname,'rb');

segimg= fread(fp,[X*Y*Z],'uchar');

segimg= reshape(segimg,X,Y,Z);

fclose(fp);

%---------------- pad by two voxels all around ------------------------------

padsegimg= zeros(X+4,Y+4,Z+4);

padsegimg(3:(X+2),3:(Y+2),3:(Z+2))= segimg;

dZ= (X+4)*(Y+4);

dY= X+4;

dX= 1;

inside= padsegimg ~= 0; % inside is same size as padsegimg but contains only 0's and 1's where

1's indicate INSIDE

i_inside= find(inside); % get indices of all INSIDE voxels in this slice

% first pass edges have face-neighbors that are outside

i_edge1= find((inside(i_inside-dX) == 0) | (inside(i_inside+dX) == 0) | (inside(i_inside-dY) ==

0) | (inside(i_inside+dY) == 0) | (inside(i_inside-dZ) == 0) | (inside(i_inside+dZ) == 0));

i_edge1= i_inside(i_edge1); % adjust indices to refer to "inside" matrix

inside(i_edge1)= 2; % code first pass edge voxels as 2's

% second pass edges must also have face-neighbors that are inside (i.e. not other edges)

i_edge2= find((inside(i_edge1-dX) == 1) | (inside(i_edge1+dX) == 1) | (inside(i_edge1-dY) == 1) |

(inside(i_edge1+dY) == 1) | (inside(i_edge1-dZ) == 1) | (inside(i_edge1+dZ) == 1));

i_edge2= i_edge1(i_edge2); % adjust indices to refer to "inside" matrix

inside(i_edge2)= 3; % code second pass edge voxels as 3's

if DEBUG

 for i=3:(Z+2)

 figure; imshowsc(inside(:,:,i)); colormap('gray');

 end

end

[ex,ey,ez]= ind2sub([X+4,Y+4,Z+4],i_edge2);

e= [ex,ey,ez];

% add vectors pointing inside

nx= (inside(i_edge2+dX) == 1) - (inside(i_edge2-dX) == 1);

nx= nx + (inside(i_edge2+dX+dY) == 1) - (inside(i_edge2-dX+dY) == 1);

nx= nx + (inside(i_edge2+dX-dY) == 1) - (inside(i_edge2-dX-dY) == 1);

nx= nx + (inside(i_edge2+dX+dZ) == 1) - (inside(i_edge2-dX+dZ) == 1);

nx= nx + (inside(i_edge2+dX-dZ) == 1) - (inside(i_edge2-dX-dZ) == 1);

nx= nx + (inside(i_edge2+dX+dY+dZ) == 1) - (inside(i_edge2-dX+dY+dZ) == 1);

nx= nx + (inside(i_edge2+dX-dY-dZ) == 1) - (inside(i_edge2-dX-dY-dZ) == 1);

nx= nx + (inside(i_edge2+dX+dY-dZ) == 1) - (inside(i_edge2-dX+dY-dZ) == 1);

123

nx= nx + (inside(i_edge2+dX-dY+dZ) == 1) - (inside(i_edge2-dX-dY+dZ) == 1);

ny= (inside(i_edge2+dY) == 1) - (inside(i_edge2-dY) == 1);

ny= ny + (inside(i_edge2+dY+dX) == 1) - (inside(i_edge2-dY+dX) == 1);

ny= ny + (inside(i_edge2+dY-dX) == 1) - (inside(i_edge2-dY-dX) == 1);

ny= ny + (inside(i_edge2+dY+dZ) == 1) - (inside(i_edge2-dY+dZ) == 1);

ny= ny + (inside(i_edge2+dY-dZ) == 1) - (inside(i_edge2-dY-dZ) == 1);

ny= ny + (inside(i_edge2+dY+dX+dZ) == 1) - (inside(i_edge2-dY+dX+dZ) == 1);

ny= ny + (inside(i_edge2+dY-dX-dZ) == 1) - (inside(i_edge2-dY-dX-dZ) == 1);

ny= ny + (inside(i_edge2+dY+dX-dZ) == 1) - (inside(i_edge2-dY+dX-dZ) == 1);

ny= ny + (inside(i_edge2+dY-dX+dZ) == 1) - (inside(i_edge2-dY-dX+dZ) == 1);

nz= (inside(i_edge2+dZ) == 1) - (inside(i_edge2-dZ) == 1);

nz= nz + (inside(i_edge2+dZ+dX) == 1) - (inside(i_edge2-dZ+dX) == 1);

nz= nz + (inside(i_edge2+dZ-dX) == 1) - (inside(i_edge2-dZ-dX) == 1);

nz= nz + (inside(i_edge2+dZ+dY) == 1) - (inside(i_edge2-dZ+dY) == 1);

nz= nz + (inside(i_edge2+dZ-dY) == 1) - (inside(i_edge2-dZ-dY) == 1);

nz= nz + (inside(i_edge2+dZ+dX+dY) == 1) - (inside(i_edge2-dZ+dX+dY) == 1);

nz= nz + (inside(i_edge2+dZ-dX-dY) == 1) - (inside(i_edge2-dZ-dX-dY) == 1);

nz= nz + (inside(i_edge2+dZ+dX-dY) == 1) - (inside(i_edge2-dZ+dX-dY) == 1);

nz= nz + (inside(i_edge2+dZ-dX+dY) == 1) - (inside(i_edge2-dZ-dX+dY) == 1);

% normal points out (therefore minus)

n= -[nx,ny,nz];

normlength= sqrt(sum(n.^2,2));

% for any zero length norms use vectors pointing OUTSIDE

if any(normlength == 0)

 i_zero_edge= find(normlength==0);

 i_zero= i_edge2(i_zero_edge); % adjust indices to refer to "inside" matrix

 % add vectors pointing outside

 nx= (inside(i_zero+dX) == 0) - (inside(i_zero-dX) == 0);

 ny= (inside(i_zero+dY) == 0) - (inside(i_zero-dY) == 0);

 nz= (inside(i_zero+dZ) == 0) - (inside(i_zero-dZ) == 0);

 n(i_zero_edge,:)= [nx,ny,nz];

end

normlength= sqrt(sum(n.^2,2));

if any(normlength == 0)

 i_zero_edge= find(normlength==0);

 fprintf(1,'Encountered %d zero lengthed normals\n',length(i_zero_edge));

 inside(ex(i_zero_edge(1))-1:ex(i_zero_edge(1))+1,ey(i_zero_edge(1))-

1:ey(i_zero_edge(1))+1,ez(i_zero_edge(1))-1:ez(i_zero_edge(1))+1)

 n(i_zero_edge(1),:)

% error('stop');

end

n= n ./ [normlength,normlength,normlength]; % force unit length

m= [e-3,n]; % subtract three from edge coord to get rid of padding and switch to indices

starting at 0

%---------------- write output file ---

fp= fopen('normalvector.ini','w');

if fp == -1

 error('Cannot create normalvector.ini');

124

end

fprintf(fp,'%%NUMBER_OF_BOUNDARY_POINTS ');

fprintf(fp,'%d\n\n',length(i_edge2));

fprintf(fp,'\n\ngrid point in cartesian coordinates\n');

fprintf(fp,'(x,y,z)\n\n\n');

fprintf(fp,'normal vector in cartesian coordinates \n');

fprintf(fp,'n_x,n_y,n_z) = (sin a cos b, sin a sin b, cos a) \n\n');

fprintf(fp,'a and b are spherical coordinates\n');

fprintf(fp,'x y z n_x n_y n_z\n\n');

fprintf(fp,'%%NORMAL_VECTOR\n');

% Write surface points and normals.

for i=1:length(i_edge2)

 fprintf(fp,'%d %d %d %f %f %f\n',m(i,1),m(i,2),m(i,3),m(i,4),m(i,5),m(i,6));

end

% Attention! This line is necessary!

fprintf(fp,'\n');

fclose(fp);

fprintf(1,'wrote normalvector.ini\n');

fp= fopen('segmentation.txt','w');

if fp == -1

 error('Cannot create segmentation.txt');

end

for z=1:Z

 for y=1:Y

 fprintf(fp,'%c ',segimg(:,y,z)+'0');

 end

end

fprintf(fp,'\n');

fclose(fp);

fprintf(1,'wrote segmentation.txt\n');

dimensions=[X,Y,Z];

all_surface_coordinates= m(:,1:3);

all_surface_normals= m(:,4:6);

[i,j,k]= ind2sub(size(segimg),find(segimg>0));

all_interior_coordinates= [i,j,k] - 1;

save geometry all_surface_coordinates all_surface_normals all_interior_coordinates dimensions

fprintf(1,'wrote geometry.mat\n');

Published with MATLAB® R2017a

125

function

forwardmodel2image(nvFile,subSampleFactor,crops,parameterSTRUCT,window,angles,n_freq,forwardmodel

,fmssf)

 nv= read_nvf(nvFile);

 [r,c]= size(nv);

 % the following assumes that the image was cropped first, then subsampled

 surfPTS= [nv(:,1:3)' * subSampleFactor; ones(1,r)];

 surfPTS(1,:)= surfPTS(1,:) + crops(1); % add what was cropped off the image left side

 surfPTS(2,:)= surfPTS(2,:) + crops(2); % add what was cropped off the image top (when

displayed top to bottom)

 surfPTS(3,:)= surfPTS(3,:) + crops(3); % add what was cropped off the front (i.e. first

images)

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is

flipped

 tmp= surfPTS(3,:);

 surfPTS(3,:)= surfPTS(2,:); % CT Y becomes Z

 surfPTS(1,:)= 191 - surfPTS(1,:); % CT X becomes flipped X

 surfPTS(2,:)= tmp; % CT Z becomes Y

 % similar dimension reordering for norms

 norms= nv(:,4:6)';

 tmp= norms(3,:);

 norms(3,:)= norms(2,:);

 norms(1,:)= -norms(1,:);

 norms(2,:)= tmp;

 dimX= parameterSTRUCT.dims(1); % IVIS image size

 dimY= parameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal point

offset fixed at center of image

 f= parameterSTRUCT.f; % focal length

 aor2yRPY= parameterSTRUCT.aor2yRPY; % roll, pitch and

yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)]; % X and Z shift to

align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY; % roll, ptich and

yaw to align world coordinate system to camera coordinate system

 Ctilde= parameterSTRUCT.Ctilde; % coordinates of the

camera center in the world coordinate system

 rdfs= parameterSTRUCT.rdfs; % radial distortion

factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

126

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 k= 1;

 n= length(angles);

 for j=1:n_freq

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation

of the bed

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 imgPTS= P * surfPTS;

 imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1);

 P2R= P2 * R;

 P2R= P2R(1:3,1:3);

 imgNRMS= P2R * norms;

 rotSurfPTS= P2R * surfPTS(1:3,:);

 x= round(imgPTS(1,:));

 y= round(imgPTS(2,:));

 % must be in the window and pointing in the negative Z direction (i.e. towards the

camera)

 i_inWindow= find(x>window(1) & x<window(3) & y>window(2) & y<window(4) & imgNRMS(3,:)<0

& abs(imgNRMS(3,:))>abs(imgNRMS(2,:)) & abs(imgNRMS(3,:))>abs(imgNRMS(1,:)));

 if i==1, si=1; end

 ssi= si:fmssf:length(i_inWindow);

 si= fmssf - (length(i_inWindow) - ssi(end));

 fprintf(1,'angle %d, in window %d, ss %d\n',angle,length(i_inWindow),length(ssi));

 x= x(i_inWindow(ssi));

 y= y(i_inWindow(ssi));

 sampleSites= zeros(dimX,dimY);

 sampleSites(sub2ind([dimX,dimY],x,y))= forwardmodel(k:(k+length(x)-1));

 k= k + length(x);

 figure; imshowsc(sampleSites); colormap('gray');

 end

 end

Published with MATLAB® R2017a

function distortSTRUCT= get_distortion_data(distortIMG)

 [xdim,ydim]= size(distortIMG);

 imshowsc(distortIMG);

 colormap('gray');

 hold on;

 xi= zeros(200,1);

 yi= zeros(200,1);

 j= 1;

127

 while (1)

 [xl,yl,b]= ginput(2);

 if b(1) ~= 1, break; end

 plot(xl,yl);

 i= 1;

 while (1)

 [x,y,b]= ginput(1);

 if b ~= 1, break; end

 plot(x,y,'rx');

 xi(i)= x;

 yi(i)= y;

 i= i + 1;

 end

 distortSTRUCT(j).line= [xl,yl];

 distortSTRUCT(j).points= [xi(1:(i-1)),yi(1:(i-1))];

 distortSTRUCT(j).xdim= xdim;

 distortSTRUCT(j).ydim= ydim;

 j= j + 1;

 end

Published with MATLAB® R2017a

function calpts= getcalpts(tif)

t= my_imread(tif); %

mn= 0;

mx= overall_max(t)/4;

h= figure;

imshowsc(t,[mn,mx]);

colormap('gray');

set(h,'Position',[100,100,1000,1000]);

i= 0;

while (1)

 [x,y,but]= ginput(1);

 if but == 1

 i= i + 1;

 calpts(i,1)= x;

 calpts(i,2)= y;

 end

 if but == 2

 a= input('adjust zoom and hit return: ');

 if strcmp(a,'q') == 1

 break;

 end

 end

 if but == 3 & i > 1

 i= i - 1;

 end

 if i > 0

 calpts= calpts(1:i,:);

 hold off;

128

 imshowsc(t,[mn,mx]);

 hold on;

 plot(calpts(:,1),calpts(:,2),'r-x');

 set(h,'Position',[100,100,1000,1000]);

 end

end

hold on; plot(calpts(:,1),calpts(:,2),'r-x');

set(h,'Position',[100,100,1000,1000]);

Published with MATLAB® R2017a

% getIVISangles - gets list of directories containing IVIS data rotated at various angles

% directory names must follow convention of having a common root followed by 'm', 'p' or

% nothing followed by the angle number. 'm' is for minus and 'p' and nothing are for plus

function [angles,dirLST] = getIVISangles(rootname)

 d= dir([rootname,'*']);

 s= length(rootname) + 1;

 angleCNT= 0;

 dirLST= [];

 for i=1:length(d)

% disp(d(i).name);

 if d(i).isdir == 1

 dirLST= strvcat(dirLST,d(i).name);

 angleCNT= angleCNT + 1;

 angleID= d(i).name(s:end);

 if angleID(1) == 'm'

 angles(angleCNT)= -str2num(angleID(2:end));

 elseif angleID(1) == 'p'

 angles(angleCNT)= str2num(angleID(2:end));

 else

 angles(angleCNT)= str2num(angleID(1:end));

 end

 end

 end

 [angles,i]= sort(angles);

 dirLST= dirLST(i,:);

Published with MATLAB® R2017a

% getIVIScalangles - gets list of txt files containing IVIS calibration points at various angles

% txt file names must follow convention of having a common root followed by 'm', 'p' or

% nothing followed by the angle number, followed by '.txt'. 'm' is for minus and 'p' and nothing

is for plus

function [angles,calfileLST] = getIVIScalangles(rootname)

 d= dir([rootname,'*.txt']);

 s= length(rootname) + 1;

129

 angleCNT= 0;

 calfileLST= [];

 angles= [];

 for i=1:length(d)

 if d(i).isdir == 0

 calfileLST= strvcat(calfileLST,deblank(d(i).name));

 angleCNT= angleCNT + 1;

 angleID= d(i).name(s:end-4);

 if angleID(1) == 'm'

 angles(angleCNT)= -str2num(angleID(2:end));

 elseif angleID(1) == 'p'

 angles(angleCNT)= str2num(angleID(2:end));

 else

 angles(angleCNT)= str2num(angleID(1:end));

 end

 end

 end

 [angles,i]= sort(angles);

 calfileLST= calfileLST(i,:);

Published with MATLAB® R2017a

% getIVISspectra - gets list of directories containing IVIS data taken with various filters

% directory names must be in the form 0dd where dd is a two digit number

function [frequencies,dirLST] = getIVISspectra(dirname)

 frequencies= [];

 d= dir(dirname);

 freqCNT= 0;

 dirLST= [];

 for i=1:length(d)

 if d(i).isdir == 1

 [freqNUM,c]= sscanf(d(i).name,'%d',1);

 if c > 0

 dirLST= strvcat(dirLST,d(i).name);

 freqCNT= freqCNT + 1;

 frequencies(freqCNT)= freqNUM;

 end

 end

 end

 [frequencies,i]= sort(frequencies);

 dirLST= dirLST(i,:);

Published with MATLAB® R2017a

function [refIntensities,refCoordinates,sampleSites]=

mapIVIS(nvFile,subSampleFactor,crops,parameterSTRUCT,IVISrootname,window,csc_factors)

130

 nv= read_nvf(nvFile);

 [r,c]= size(nv);

 % the following assumes that the image was cropped first, then subsampled

 surfPTS= [nv(:,1:3)' * subSampleFactor; ones(1,r)];

 surfPTS(1,:)= surfPTS(1,:) + crops(1); % add what was cropped off the image left side

 surfPTS(2,:)= surfPTS(2,:) + crops(2); % add what was cropped off the image top (when

displayed top to bottom)

 surfPTS(3,:)= surfPTS(3,:) + crops(3); % add what was cropped off the front (i.e. first

images)

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is

flipped

 tmp= surfPTS(3,:);

 surfPTS(3,:)= surfPTS(2,:); % CT Y becomes Z

 surfPTS(1,:)= 191 - surfPTS(1,:); % CT X becomes flipped X

 surfPTS(2,:)= tmp; % CT Z becomes Y

 % similar dimension reordering for norms

 norms= nv(:,4:6)';

 tmp= norms(3,:);

 norms(3,:)= norms(2,:);

 norms(1,:)= -norms(1,:);

 norms(2,:)= tmp;

 dimX= parameterSTRUCT.dims(1); % IVIS image size

 dimY= parameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal point

offset fixed at center of image

 f= parameterSTRUCT.f; % focal length

 aor2yRPY= parameterSTRUCT.aor2yRPY; % roll, pitch and

yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)]; % X and Z shift to

align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY; % roll, ptich and

yaw to align world coordinate system to camera coordinate system

 Ctilde= parameterSTRUCT.Ctilde; % coordinates of the

camera center in the world coordinate system

 rdfs= parameterSTRUCT.rdfs; % radial distortion

factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

131

 [angles,dirLST]= getIVISangles(IVISrootname);

 k= 1;

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation of

the bed

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 [frequencies,freqLST]= getIVISspectra(dirLST(i,:));

 m1= length(frequencies);

 if m1 == 0, m2= 1; else m2= m1; end

 for j=1:m2

 if m1 == 0

 f= sprintf('%s\\luminescentFLoatCorrected.tif',dirLST(i,:));

 else

 f= sprintf('%s\\%s\\luminescentFLoatCorrected.tif',dirLST(i,:),freqLST(j,:));

 end

 luminIMG= double(my_tiffread2(f));

 [lm_dimX,lm_dimY]= size(luminIMG);

 if lm_dimX ~= dimX | lm_dimY ~= dimY

 dx= lm_dimX / dimX;

 dy= lm_dimY / dimY;

 [xi,yi]= meshgrid(dx:dx:lm_dimX,dy:dy:lm_dimY);

 luminIMG= interp2(luminIMG,xi,yi);

 end

 figure; imshowsc(luminIMG);

 hold on;

 plot([window(1),window(3),window(3),window(1),window(1)],[window(2),window(2),window(4),window

(4),window(2)],'r');

 imgPTS= P * surfPTS;

 imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1);

 P2R= P2 * R;

 P2R= P2R(1:3,1:3);

 imgNRMS= P2R * norms;

 rotSurfPTS= P2R * surfPTS(1:3,:);

 sampleSites= zeros(dimX,dimY);

 x= round(imgPTS(1,:));

 y= round(imgPTS(2,:));

 % must be in the window and pointing in the negative Z direction (i.e. towards the

camera)

 i_inWindow= find(x>window(1) & x<window(3) & y>window(2) & y<window(4) & imgNRMS(3,:)<0

& abs(imgNRMS(3,:))>abs(imgNRMS(2,:)) & abs(imgNRMS(3,:))>abs(imgNRMS(1,:)));

 x= x(i_inWindow);

 y= y(i_inWindow);

 sampleSites(sub2ind([dimX,dimY],x,y))= -imgNRMS(3,i_inWindow);

 figure; imshowsc(sampleSites); colormap('gray');

 refIntensities= luminIMG(sub2ind([dimX,dimY],x,y))'; % divide by the following to

get cos adjustment ./ -imgNRMS(3,i_inWindow)';

132

 if nargin == 7

 refIntensities= refIntensities * csc_factors(k);

 end

 k= k + 1;

 fp= fopen(sprintf('%s_%s_Intensities.txt',dirLST(i,:),freqLST(j,:)),'w');

 fprintf(fp,'%f ',refIntensities);

 fclose(fp);

 end

 refCoordinates= nv(i_inWindow,1:3);

 fp= fopen(sprintf('%s_IntensityCoordinates.txt',dirLST(i,:)),'w');

 fprintf(fp,'%f %f %f\n',refCoordinates');

 fclose(fp);

 q= [rotSurfPTS',imgNRMS'];

 figure; quiver3(q(:,1),q(:,2),q(:,3),q(:,4),q(:,5),q(:,6)); xlabel('X'); ylabel('Y');

zlabel('Z');

 axis image

 figure;

 plot3(nv(:,1),nv(:,2),nv(:,3),'b.');

 hold on;

 plot3(refCoordinates(:,1),refCoordinates(:,2),refCoordinates(:,3),'rh');

 xlabel('X'); ylabel('Y'); zlabel('Z');

 axis image

 end

Published with MATLAB® R2017a

function plot_nvf(nvf_fname)

 quivers= read_nvf(nvf_fname);

 figure;

 quiver3(quivers(:,1),quivers(:,2),quivers(:,3),quivers(:,4),quivers(:,5),quivers(:,6));

% b= min(quivers(:,3));

% e= max(quivers(:,3));

% for i=b:e

% si= find(quivers(:,3)==i);

% figure; hold on;

% for j=1:length(si)

%

 plot([quivers(si(j),1),quivers(si(j),1)+quivers(si(j),4)],[quivers(si(j),2),quivers(si(j),2)+q

uivers(si(j),5)]);

% plot(quivers(si(j),1)+quivers(si(j),4),quivers(si(j),2)+quivers(si(j),5),'x');

% end

% axis equal;

% end

Published with MATLAB® R2017a

133

function projections=

project_currentdiffusion(cd_fname,subSampleFactor,crops,parameterSTRUCT,angles)

 cd_data= load(cd_fname);

 [r,c]= size(cd_data);

 intensities= cd_data(:,7);

 % the following assumes that the image was cropped first, then subsampled

 surfPTS= [cd_data(:,1:3)' * subSampleFactor; ones(1,r)];

 surfPTS(1,:)= surfPTS(1,:) + crops(1); % add what was cropped off the left

 surfPTS(2,:)= surfPTS(2,:) + crops(2); % add what was cropped off the top

 surfPTS(3,:)= surfPTS(3,:) + crops(3); % add what was cropped off the front

 % camera model considers Z of CT to be the Y axis, and Y of CT to be the Z axis and X is

flipped

 tmp= surfPTS(3,:);

 surfPTS(3,:)= surfPTS(2,:); % CT Y becomes Z

 surfPTS(1,:)= 191 - surfPTS(1,:); % CT X becomes flipped X

 surfPTS(2,:)= tmp; % CT Z becomes Y

 % similar dimension reordering for norms

 norms= cd_data(:,4:6)';

 tmp= norms(3,:);

 norms(3,:)= norms(2,:);

 norms(1,:)= -norms(1,:);

 norms(2,:)= tmp;

 dimX= parameterSTRUCT.dims(1); % IVIS image size

 dimY= parameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal point

offset fixed at center of image

 f= parameterSTRUCT.f; % focal length

 aor2yRPY= parameterSTRUCT.aor2yRPY; % roll, pitch and

yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [parameterSTRUCT.xzshft(1);0;parameterSTRUCT.xzshft(2)]; % X and Z shift to

align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= parameterSTRUCT.wcs2ccsRPY; % roll, ptich and

yaw to align world coordinate system to camera coordinate system

 Ctilde= parameterSTRUCT.Ctilde; % coordinates of the

camera center in the world coordinate system

 rdfs= parameterSTRUCT.rdfs; % radial distortion

factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

134

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 projections= [];

 [xi,yi]= meshgrid(1:dimX,1:dimY);

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation of

the bed

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 [K, R, S] = perspective_transform_decompose(P);

 imgPTS= P * surfPTS;

 imgPTS(1:2,:)= imgPTS(1:2,:) ./ repmat(imgPTS(3,:),2,1);

 imgNRMS= R * norms;

 rotSurfPTS= R * surfPTS(1:3,:);

 x= imgPTS(1,:);

 y= imgPTS(2,:);

 up= find(imgNRMS(3,:)<0.0); % negative Z points up toward camera

 projection= griddata(x(up),y(up),intensities(up),xi,yi)';

 projection(isnan(projection))= 0;

% figure; imshowsc(projection);

 projections= [projections; projection];

 end

 projections= reshape(projections,dimX,dimY,n);

Published with MATLAB® R2017a

function nv= read_nvf(nvf_fname)

 fp= fopen(nvf_fname,'r');

 if fp == -1, error(sprintf('Cannot open %s',nvf_fname)); end

 while 1

 s= fgetl(fp);

 if strncmpi(s,'%NORMAL_VECTOR',14), break; end

 end

 nv= fscanf(fp,'%f %f %f %f %f %f',[6,inf])';

Published with MATLAB® R2017a

function imgSTRUCT= registerCT_to_IVIS(CTrootname, IVISrootname, IVISparameterSTRUCT, thres, typ,

multifile, ext, start, machineformat)

 if nargin < 5

 typ= 'int16';

 multifile= 3;

 ext= 'ct';

135

 start= 0;

 machineformat= 'ieee-le';

 end

 ct= read_raw(CTrootname,typ,[192,192,384],multifile,ext,start,machineformat);

 fv= isosurface(ct,thres);

 norms= isonormals(ct,fv.vertices);

 tmp= fv.vertices(:,3);

 fv.vertices(:,3)= fv.vertices(:,1); % original X becomes Z

 fv.vertices(:,1)= 191 - fv.vertices(:,2); % original Y becomes flipped X

 fv.vertices(:,2)= tmp; % original Z becomes Y

 tmp= norms(:,3);

 norms(:,3)= norms(:,1);

 norms(:,1)= -norms(:,2);

 norms(:,2)= tmp;

 dimX= IVISparameterSTRUCT.dims(1); % IVIS image

size

 dimY= IVISparameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal

point offset fixed at center of image

 f= IVISparameterSTRUCT.f; % focal length

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY; % roll, pitch

and yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)]; % X and Z shift

to align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY; % roll, ptich

and yaw to align world coordinate system to camera coordinate system

 Ctilde= IVISparameterSTRUCT.Ctilde; % coordinates of

the camera center in the world coordinate system

 rdfs= IVISparameterSTRUCT.rdfs; % radial

distortion factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 [angles,dirLST]= getIVISangles(IVISrootname);

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation of

the bed

136

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 [img,zbuf]= zbuffer(fv,norms,dimX,dimY,P);

 img= distort2D(img,[rdfs,1]);

 imgSTRUCT(i).image= img;

 imgSTRUCT(i).angle= angle;

 figure;

 imshowsc(img,[0 1]);

 colormap('gray');

 drawnow;

 end

Published with MATLAB® R2017a

function imgSTRUCT= renderSurface(surface_points,surface_normals,IVISparameterSTRUCT,angles)

 dimX= IVISparameterSTRUCT.dims(1); % IVIS image

size

 dimY= IVISparameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal

point offset fixed at center of image

 f= IVISparameterSTRUCT.f; % focal length

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY; % roll, pitch

and yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)]; % X and Z shift

to align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY; % roll, ptich

and yaw to align world coordinate system to camera coordinate system

 Ctilde= IVISparameterSTRUCT.Ctilde; % coordinates of

the camera center in the world coordinate system

 rdfs= IVISparameterSTRUCT.rdfs; % radial

distortion factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation of

137

the bed

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 [img,zbuf]= zbuffer(fv,norms,dimX,dimY,P);

 img= distort2D(img,[rdfs,1]);

 imgSTRUCT(i).image= img;

 imgSTRUCT(i).angle= angle;

 figure;

 imshowsc(img,[0 1]);

 colormap('gray');

 drawnow;

 end

Published with MATLAB® R2017a

function img= show_currentdiffusion(fname,X,Z,ythres)

 data= load(fname);

 img= zeros(X+2,Z+2);

 [r,c]= size(data);

 for i=1:r

 if data(i,2)>ythres,

 img(data(i,1)+1,data(i,3)+1)= data(i,7);

 end

 end

 figure; imagesc(img); axis image;

 img= zeros(X+2,Z+2);

 [r,c]= size(data);

 for i=1:r

 if data(i,2)<ythres,

 img(data(i,1)+1,data(i,3)+1)= data(i,7);

 end

 end

 figure; imagesc(img); axis image;

Published with MATLAB® R2017a

function m= vox2surfdist(segfname,dims,nvfname,shift,skip)

dims= [dims(2),dims(1),dims(3)]; % dims originally x,y,z but Alex reorders to y,x,z

ncol= prod(dims);

[y,x,z]= ind2sub(dims,1:ncol);

v= load(segfname);

v=reshape(v,48,23,48);

v=permute(v,[2,1,3]);

v= reshape(v,48*23*48,1);

nv= length(v);

s= read_nvf(nvfname);

138

ns= length(s);

i= shift:skip:ns;

s= s(i,1:3);

ns= length(s);

s= s';

i= find(v > 0);

ni= length(i);

m= zeros(ns,ni);

for j=1:ns

 m(j,:)= sqrt(sum(([x(i)',y(i)',z(i)']' - repmat(s(:,j),1,ni)).^2));

 fprintf(1,'%d\n',j);

end

CODE ASSOCIATED WITH AIM 2

% returns dE/dx for a given electron energy in a medium of specified atomic mass and number

function dEdx = bethe_bloch(electronEnergy,A,Z)

% theta is scattering angle in radians, 0 begin no scatter and pi being 180 degree back scatter

% thickness is the pathlegth that the electron travels through the media. the units are

grams/cm^2 (ie density normalized cm)

% electronEnergy is the initial energy of the electron in MeV

% A is the atomic weight of media in grams per mole

% Z is the effective atomic number of the media

c = 299792458; % speed of light in a

vacuum in meters per second

me= 9.1093821545e-31; % electron rest mass

in kg

re= 2.817940289458e-15; % electron radius in

meters

N0= 6.0221417930e23; % Avogadro's number

MeVperJoule= 6.241506363e+12;

velocity= beta_velocity(electronEnergy); % the electron

velocity in meters per second

beta= velocity / c; % electron velocity

fraction of the speed of light

lorentz_factor= 1 ./ sqrt(1-beta.^2); % Lorentz factor

I=1.201632998e-17; % 75 eV in Joules

Atmp= log(beta.*lorentz_factor.*sqrt(lorentz_factor-1)*me*c^2/I); % interim calculation

(unitless)

Btmp= (1./(2*lorentz_factor.^2)) .* ((lorentz_factor-1).^2/8 + 1 -

(2*lorentz_factor.^2+2*lorentz_factor-1)*log(2)); % interim calculation (unitless)

dEdx= MeVperJoule*4e4*pi*re^2*me*c^2*N0*Z.*(Atmp+Btmp)./(A*beta.^2); % energy lost in MeV per

cm

139

Published with MATLAB® R2017a

% interpolates Bethe's Table II from paper "Moliere's Theory of Multiple Scattering" Physical

Review, vol 89, No 6, Mar 15, 1953

function [f1, f2] = Bethe_table(nu)

tab= [

 0.0 0.8456 2.4929

 0.2 0.7038 2.0694

 0.4 0.3437 1.0488

 0.6 -0.0777 -0.0044

 0.8 -0.3981 -0.6068

 1.0 -0.5285 -0.6359

 1.2 -0.4770 -0.3086

 1.4 -0.3183 0.0525

 1.6 -0.1396 0.2423

 1.8 -0.0006 0.2386

 2.0 0.0782 0.1316

 2.2 0.1054 0.0196

 2.4 0.1008 -0.0467

 2.6 0.08262 -0.0649

 2.8 0.06247 -0.0546

 3.0 0.04550 -0.03568

 3.2 0.03288 -0.01923

 3.4 0.02402 -0.00847

 3.6 0.01791 -0.00264

 3.8 0.01366 0.00005

 4.0 0.010638 0.0010741

];

f1n2= interp1(tab(:,1),tab(:,[2,3]),nu);

f1= f1n2(:,1);

f2= f1n2(:,2);

Published with MATLAB® R2017a

function [distortPARAMS,y,ci,resnorm,varb,corrb]=

calc_distortion_parameters(distortSTRUCT,nparams)

 n= length(distortSTRUCT);

 npts= 0;

 for i=1:n

 npts= npts + size(distortSTRUCT(i).points,1);

 end

 p0= zeros(1,nparams);

 plb= zeros(1,nparams);

 pub= ones(1,nparams);

 options= optimset('Diagnostics','on','MaxFunEvals',100000);

 disp('Starting fit');

140

 [distortPARAMS,y,ci,resnorm,varb,corrb] =

fit_model('poly_distortion_mdl',p0,distortSTRUCT,zeros(npts,1),plb,pub,[],options);

 disp('Finished fitting');

Published with MATLAB® R2017a

function parameterSTRUCT= calIVIScam(worldptsfname,camptsfroot,dimX,dimY,rdfs)

% worldptsfname - is the name of the file containing the calibration points (in 3D) as measured

by Amira,

% where the first column contains the X-values, etc

% camptsfroot - is the root of the filename for the .txt files containing the calbration points

visible at

% the given angle. The angle is specfied in the filename as mX or pX where the X specifies the

angle in degrees

% and 'm' is for minus and 'p' for plus. The first column contains the index number identifying

the calbration

% point according to its order of appearance in the worldptsfname file. Columns 2 and 3 are the X

and Y values

% respectively.

% dimX and dimY are the dimensions of the IVIS images

% rdfs - is a vector of radial distortion factors (see Hartley and Zisserman's "Multiple View

Geometry" p 191)

 if nargin < 3

 dimX= 480;

 end

 if nargin < 4

 dimY= dimX;

 end

 if nargin < 5

 rdfs= [];

 end

 worldpts= load(worldptsfname); % reads worldpts measured using Amira

 % re-arrange axes to match the coordinate system used in Hartley and Zisserman's "Multiple

View Geometry" p 154

 worldpts(:,1)= 192 - worldpts(:,1); % new X is flipped old X

 tmp= worldpts(:,2); % save Y

 worldpts(:,2)= 384 - worldpts(:,3); % new Y is flipped old Z

 worldpts(:,3)= tmp; % new Z is old Y

 [angles,calfileLST]= getIVIScalangles(camptsfroot);

 campts_all= [];

 n= length(angles);

 for i=1:n

 campts= load(deblank(calfileLST(i,:))); % reads campts matrix

 worldpts_indices= campts(:,1); % extract indices of worldpts visible at

141

current angle

 campts= campts(:,2:3)'; % campts without indices transposed to column

vectors

 wpts= worldpts(worldpts_indices,:)'; % select worldpts visible at given angle

transposed to column vectors

 wpts= [wpts;ones(1,size(wpts,2))]; % add row of ones

 worldptsSTRUCT(i).worldpts= wpts; % accumulate worldpts in structure

 worldptsSTRUCT(i).angle= angles(i); % along with associated angle

 P= perspective_transform_estimate(wpts,campts);

 campts_all= [campts_all,campts]; % accumulate campts

 end

 campts_all= reshape(campts_all,prod(size(campts_all)),1); % reshape to a single column

vector

 f= 3318;

 aor2yRPY= [0,0,0];

 xzshft= [-mean(worldpts(:,1)),-mean(worldpts(:,3))];

 wcs2ccsRPY= [0,0,0];

 Ctilde= [0,mean(worldpts(:,2))*2,-4000];

 p0= [f,aor2yRPY,xzshft,wcs2ccsRPY,Ctilde];

 plb= [f-1000,[-pi/4 -pi/4 -pi/4],[-192 -192],[-pi/4 -pi/4 -pi/4],[-1000 -1000 -8000]];

 pub= [f+1000,[pi/4 pi/4 pi/4],[192 192],[pi/4 pi/4 pi/4],[1000 1000 2000]];

 options= optimset('Diagnostics','on','MaxFunEvals',100000,'MaxIter',100000);

 disp('Starting fit');

 [p,y,ci,resnorm,varb,corrb] =

fit_model('IVIScam_mdl',p0,worldptsSTRUCT,campts_all,plb,pub,[],options,dimX,dimY,rdfs);

 disp('Finished fitting');

 parameterSTRUCT.f= p(1);

 parameterSTRUCT.aor2yRPY= p(2:4);

 parameterSTRUCT.xzshft= p(5:6);

 parameterSTRUCT.wcs2ccsRPY= p(7:9);

 parameterSTRUCT.Ctilde= p(10:12);

 parameterSTRUCT.rdfs= rdfs;

 parameterSTRUCT.dims= [dimX,dimY];

Published with MATLAB® R2017a

function world= cam2world(pts1,A1,pts2,A2)

 x1= pts1(:,1);

 y1= pts1(:,2);

 x2= pts2(:,1);

 y2= pts2(:,2);

 [r,c]= size(pts1);

 world= [];

 for i=1:r

 b11=A1(1)-(x1(i)*A1(9));

 b12=A1(2)-(x1(i)*A1(10));

 b13=A1(3)-(x1(i)*A1(11));

142

 b21=A1(5)-(y1(i)*A1(9));

 b22=A1(6)-(y1(i)*A1(10));

 b23=A1(7)-(y1(i)*A1(11));

 c1=x1(i)-A1(4);

 c2=y1(i)-A1(8);

 b31=A2(1)-(x2(i)*A2(9));

 b32=A2(2)-(x2(i)*A2(10));

 b33=A2(3)-(x2(i)*A2(11));

 b41=A2(5)-(y2(i)*A2(9));

 b42=A2(6)-(y2(i)*A2(10));

 b43=A2(7)-(y2(i)*A2(11));

 c3=x2(i)-A2(4);

 c4=y2(i)-A2(8);

 B=[b11 b12 b13;b21 b22 b23;b31 b32 b33;b41 b42 b43];

 C=[c1;c2;c3;c4];

 R= pinv(B) * C;

 world= [world; R'];

 end

Published with MATLAB® R2017a

function [A1,A2]= camera_calibration(world,cam1,cam2)

 [r,c]= size(world);

 M=[];

 b=[];

 for i=1:r

% M= [M;[0 0 0 0 -world(i,:) -1 (cam1(i,2) * world(i,:))]];

% M= [M;[world(i,:) 1 0 0 0 0 (-cam1(i,1) * world(i,:))]];

 M= [M;[world(i,:) 1 0 0 0 0 (-cam1(i,1) * world(i,:))]];

 M= [M;[0 0 0 0 world(i,:) 1 (-cam1(i,2) * world(i,:))]];

 b= [b;cam1(i,1);cam1(i,2)];

 end

% [U,S,V]= svd(M);

% A1= V(:,end);

 A1= pinv(M) * b;

 M=[];

 b=[];

 for i=1:r

% M= [M;[0 0 0 0 -world(i,:) 1 (cam2(i,2) * world(i,:))]];

% M= [M;[world(i,:) 1 0 0 0 0 (-cam2(i,1) * world(i,:))]];

 M= [M;[world(i,:) 1 0 0 0 0 (-cam2(i,1) * world(i,:))]];

 M= [M;[0 0 0 0 world(i,:) 1 (-cam2(i,2) * world(i,:))]];

 b= [b;cam2(i,1);cam2(i,2)];

 end

% [U,S,V]= svd(M);

% A2= V(:,end);

 A2= pinv(M) * b;

Published with MATLAB® R2017a

143

function [psf,distance] =

cerenkov_beta_psf(betaSpectrum,estar,N,mediumRefractiveIndex,A,Z,MAXDIST,NDIVS,FROM_SLOT_FLG)

if nargin < 9, FROM_SLOT_FLG=0; end % default manner in which distance is

determined is NOT from slot

if nargin < 8, NDIVS=25; end % default number of divisions

if nargin < 7, MAXDIST=0.2; end % default spatial extent of psf

output in cm

if nargin < 6, Z= 7.22; end % default Z effective of the

medium (this value is used by Estar and is in Levin's paper) - acrylic is 6.7 according to Levin

and formula in Cherry's book

if nargin < 5, A= 18; end % default atomic mass (this

value is for water)

psf= zeros(NDIVS,1); % allocate result vector

me= 0.51099891013; % electron rest mass in MeV

betaSpectrum(:,2)= betaSpectrum(:,2) / sum(betaSpectrum(:,2));

cur_beta_energy= bsxfun(@repvals,betaSpectrum(:,1),round(betaSpectrum(:,2)*N)); % generate ~N

betas according to spectrum

N= numel(cur_beta_energy); % count number actually generated

cur_loc_x= zeros(N,1); % start N betas at the origin

cur_loc_y= zeros(N,1); % ...

cur_loc_z= zeros(N,1); % ...

d0= zeros(N,1); % distances start at zero

id0= ones(N,1); % distance indices start at

one

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);

 %%%%%%%%%%%%%%%

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1);

end %%%%%%%%%%%%%%%

Norig= N;

rel_theta= acos(1-2*rand(N,1)); % choose random isotropic

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi)

rel_phi= 2 * pi * rand(N,1); % and phi uniformly over

(0:2pi) --- see Rajon

sin_theta= sin(rel_theta); % avoid calculating twice (see

next two lines)

cur_dir_x= sin_theta .* cos(rel_phi); % calculate current direction

as Cartesian vector (note - "rel" angles treated as absolute angles)

cur_dir_y= sin_theta .* sin(rel_phi); % ...

cur_dir_z= cos(rel_theta); % ...

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2); % length of direction vector

cur_dir_x= cur_dir_x ./ d; % normalize to unit length

cur_dir_y= cur_dir_y ./ d; % ...

cur_dir_z= cur_dir_z ./ d; % ...

144

i_left= 1:N; % initially, everyone is in

n_left= numel(i_left); % count number in

Estep= 0.030; % each beta will loose Estep

MeV per step

delta_rayThreshold= 0.050; % set threshold for delta ray

production in MeV

stopThreshold= 0.01; % set threshold energy at which

we will stop following a given beta in MeV

Norig= N; % save starting number of

betas (because deltas will be added to N)

while n_left > 0

 dEdx=estar(cur_beta_energy(i_left)); % given current beta energy,

determine rate of energy loss in MeV per cm - 1st column is collisional loss rate

 r= Estep ./ dEdx(:,1); % distance beta travels

(in cm) when loosing Estep keV

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left); % determine new location

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left); % ...

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left); % ...

 photons_per_cm =

frank_tamm_wavelength_integral(560,580,beta_velocity(cur_beta_energy(i_left)),mediumRefractiveInd

ex) / 100; % rate of Cerenkov production per cm

 photons_per_cm= colvectorize(photons_per_cm);

 % make sure it's a column vector

 if FROM_SLOT_FLG==1

 d= abs(cur_loc_x(i_left));

 % distance from slot along x-axis

 else

 d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2);

 % current distance from origin in cm

 end

 id= ceil(d*NDIVS/MAXDIST);

 % convert distance to indexs

 id(id > NDIVS)= NDIVS;

 % anything over the max goes into the last element

 distincindx(psf, id0(i_left), id, photons_per_cm .* r);

 % update psf

 id0(i_left)= id;

 % new id now old

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)];

paths_z{i}= [paths_z{i},cur_loc_z(i,1)]; end %%%%%%%%%%%

 Pdelta= delta_ray_cdf(repvals(delta_rayThreshold,n_left),cur_beta_energy(i_left)) -

delta_ray_cdf(cur_beta_energy(i_left),cur_beta_energy(i_left)); % area under delta_ray PDF

between threshold and incident beta energy

 Pdelta= Pdelta .* r; % multiply number of deltas

per cm by distance beta traveled in last step

145

 tmp= rand(n_left,1);

 i_delta= find(tmp <= Pdelta); % randomly select which

betas have deltas

 Ndelta= numel(i_delta); % count number of deltas

% fprintf(1,'%d deltas created\n',Ndelta);

 i_not_delta= find(tmp > Pdelta); % and identify which betas

which do not have deltas

 if Ndelta > 0

 delta_ray_energies= rand_delta_ray(cur_beta_energy(i_left(i_delta)),delta_rayThreshold);

 % randomly select energy for each delta

 incident_energies= cur_beta_energy(i_left(i_delta));

 % select incident energies

 delta_phi= 2*pi*rand(Ndelta,1);

 % randomly select azimuthal angle for delta ray to be uniformly distributed between 0

and 2pi

 exiting_phi= mod(delta_phi+pi,2*pi);

 % the exiting beta is 180 away from this, still between 0 and 2 pi

 % zenith angles for delta and exiting beta conserve momentum - formulas from

http://www.irs.inms.nrc.ca/EGSnrc/pirs701/node43.html

 delta_theta=

acos(sqrt(delta_ray_energies./incident_energies.*(incident_energies+2*me)./(delta_ray_energies+2*

me)));

 exiting_theta= acos(sqrt((incident_energies-

delta_ray_energies)./incident_energies.*(incident_energies+2*me)./(incident_energies-

delta_ray_energies+2*me)));

% for j=1:Ndelta, fprintf(1,'incident energy %f produces delta of energy %f traveling with

phi of %f and %f and theta of %f and

%f\n',incident_energies(j),delta_ray_energies(j),exiting_phi(j),delta_phi(j),exiting_theta(j),del

ta_theta(j)); end

 cur_beta_energy(i_left(i_delta))= incident_energies - delta_ray_energies;

 % decrease energy of incident betas

 cur_beta_energy= [cur_beta_energy;delta_ray_energies];

 % append delta energies to end of list

 id0= [id0;ceil(d(i_delta)*NDIVS/MAXDIST)];

 % append starting id to end of list

 cur_loc_x= [cur_loc_x;cur_loc_x(i_left(i_delta))];

 % append delta locations to end of list (same location as incident)

 cur_loc_y= [cur_loc_y;cur_loc_y(i_left(i_delta))];

 % ...

 cur_loc_z= [cur_loc_z;cur_loc_z(i_left(i_delta))];

 % ...

 for i=N+1:N+Ndelta, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}=

cur_loc_z(i,1); end %%%%%%%%%%%

 cur_dir_x= [cur_dir_x;cur_dir_x(i_left(i_delta))];

 % append delta directions to end of list (initially same direction as incident)

146

 cur_dir_y= [cur_dir_y;cur_dir_y(i_left(i_delta))];

 % ..

 cur_dir_z= [cur_dir_z;cur_dir_z(i_left(i_delta))];

 % ...

 i_new_deltas= (N+1):N+Ndelta;

 % specify indices that point to these deltas

 [cur_dir_x,cur_dir_y,cur_dir_z] =

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_delta),exiting_theta,exiting_phi); %

update direction of incident betas

 [cur_dir_x,cur_dir_y,cur_dir_z] =

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_new_deltas,delta_theta,delta_phi); % update

direction of deltas

 N= N + Ndelta;

 % and count them

 end

 % next four lines only for betas that did NOT produce deltas

 rel_theta= rand_moliere(r(i_not_delta),cur_beta_energy(i_left(i_not_delta)),A,Z); %

randomly select angles distributed according to Moliere

 rel_phi= 2 * pi * rand(n_left-Ndelta,1);

 % randomly sample n_left phi angles distributed uniformly over 0:2pi

 [cur_dir_x,cur_dir_y,cur_dir_z] =

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_not_delta),rel_theta,rel_phi); % update

direction

% [std(cur_dir_x),std(cur_dir_y),std(cur_dir_z)]

 cur_beta_energy(i_left(i_not_delta))= cur_beta_energy(i_left(i_not_delta)) - Estep; %

reduce energy

 i_left= find(cur_beta_energy > stopThreshold); % determine which betas are

left

 n_left= numel(i_left); % count number left

end

distance= ((1:NDIVS)-0.5)*MAXDIST/NDIVS; % PSF x-axis

psf=psf/(2*trapz(distance,psf)); % normalize so psf from 0 to Inf is 0.5

PLOT=0;

if PLOT==1

 figure; for i=1:Norig, plot3(paths_x{i},paths_y{i},paths_z{i},'LineWidth',1); hold on; end

 % plot beta paths in blue

 for i=Norig+1:N, plot3(paths_x{i},paths_y{i},paths_z{i},'r','LineWidth',1); hold on; end

 % plot delta paths in red

 axis equal;

 xlabel('X'); ylabel('Y'); zlabel('Z');

 set(gcf,'Color',[1,1,1]);

 set(gca,'XGrid','on','YGrid','on','ZGrid','on');

 keyboard

 figure; plot(distance,psf,'-x'); % plot Cerenkov PSF

 ppsf= zeros(NDIVS,1);

 d= sqrt(cur_loc_x(1:Norig).^2+cur_loc_y(1:Norig).^2+cur_loc_z(1:Norig).^2);

 % final distance from origin in cm

147

 id= ceil(d*NDIVS/MAXDIST);

 % convert distance to indexs

 id(id > NDIVS)= NDIVS;

 % anything over the max goes into the last element

 incindx(ppsf, id);

 % positron update psf

 figure; plot(distance,ppsf,'-x'); % plot positron PSF

end

Published with MATLAB® R2017a

% cerenkov_secondary_electron_box- given a specified number of gammas of a given energy spectrum

traveling in isotropic directions uniformly distributed in a box filled with a medium of

specified photon and beta cross-sections and refractive index

% determine the number of Cerenkov photons produced within specified wavelength ranges

% note - the location of the Cerenkov production is taken to be the location where the gamma

knocks off the electron

% photonStartWavelength - vector of lower wavelength thresholds

% photonEndWavelength - vector of upper wavelength thresholds

% gammaSpectrum - two column matrix, 1st column is energy in MeV, 2nd column is abundance (0.511

gammas are taken to be positrons and abundance is that of positron not of 0.511 photons)

% xcom - function handle to photon cross-section function

% estar - function handle to beta cross-section function

% N - desired number of disintegrations

% mediumRefractiveIndex - refractive index of the medium

% boxDims - three element vector specifying box length, width and height

% returns number of Cerenkov photons per wavelength range

function nPhotons =

cerenkov_secondary_electron_box(photonStartWavelength,photonEndWavelength,gammaSpectrum,xcom,esta

r,N,mediumRefractiveIndex,boxDims)

nPhotons= zeros(numel(photonStartWavelength),1); % allocate space for results

stopThreshold= 0.01; % set threshold energy at which

we will stop following a given gamma

cur_gamma_energy= bsxfun(@repvals,gammaSpectrum(:,1),round(gammaSpectrum(:,2)*N)); % generate

~N*abundance gammas according to spectrum

normalizer= N; % keep this number to be used

to normalize

N= numel(cur_gamma_energy); % count total number of gammas

actually generated

rel_theta= acos(1-2*rand(N,1)); % choose random isotropic

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi)

rel_phi= 2 * pi * rand(N,1); % and phi uniformly over

(0:2pi) --- see Rajon

148

i_511= find(cur_gamma_energy==0.511); % find annihilation photons

cur_gamma_energy= [cur_gamma_energy;cur_gamma_energy(i_511)]; % duplicate gamma and add onto

end

rel_phi= [rel_phi;rel_phi(i_511)]; % within same plane

rel_theta= [rel_theta;rel_theta(i_511)+pi]; % but going in the opposite

direction

fprintf(1,'added %d 511 keV photons\n',numel(cur_gamma_energy)-N);

N= numel(cur_gamma_energy); % recount total number of gammas

actually generated

sin_theta= sin(rel_theta); % avoid calculating twice (see

next two lines)

cur_dir_x= sin_theta .* cos(rel_phi); % calculate current direction

as Cartesian vector (note - "rel" angles treated as absolute angles)

cur_dir_y= sin_theta .* sin(rel_phi); % ...

cur_dir_z= cos(rel_theta); % ...

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2); % length of direction vector

cur_dir_x= cur_dir_x ./ d; % normalize to unit length

cur_dir_y= cur_dir_y ./ d; % ...

cur_dir_z= cur_dir_z ./ d; % ...

cur_loc_x= rand(N,1)*boxDims(1); % start N gammas uniformly sampled

within the box

cur_loc_y= rand(N,1)*boxDims(2); % ...

cur_loc_z= rand(N,1)*boxDims(3); % ...

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);

 %%%%%%%%%%%%%%%

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1);

end %%%%%%%%%%%%%%%

i_left= 1:N; % initially, everyone is in

n_left= numel(i_left); % count number in

ONCE=0;

while n_left > 0

 muvCompton= xcom(cur_gamma_energy(i_left),'Compton'); % Compton cross-section

 muvPhotoelectric= xcom(cur_gamma_energy(i_left),'Photoelectric'); % photoelectric cross-

section

 muv= muvCompton+muvPhotoelectric; % sum of Compton

scattering and photoelectric cross-sections

 mean_free_path = 1 ./ muv; % inverse is mean free

path

 r= mean_free_path .* rande(n_left,1); % randomly choose

distance traveled by each of the photons before interacting

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left); % determine new

location

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left); % ...

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left); % ...

149

 i_in= find(cur_loc_x(i_left)>0 & cur_loc_x(i_left)<boxDims(1) & ... %

determine which gammas are still in the box

 cur_loc_y(i_left)>0 & cur_loc_y(i_left)<boxDims(2) & ...

 cur_loc_z(i_left)>0 & cur_loc_z(i_left)<boxDims(3));

 i_left= i_left(i_in); % throw out all

gammas that are outside the box

 n_left= numel(i_left); % update count of

number in

 fprintf(1,'fraction left= %f\n',n_left / N);

 if n_left==0, break; end % escape if none

left

 d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2); % current distance

from origin in cm

 i_compton= rand(n_left,1) < (muvCompton(i_in) ./ (muvCompton(i_in)+muvPhotoelectric(i_in)));

 % flag those undergoing Compton (ie incoherent) scatter

 i_photoelectric= i_compton == 0; % assume the rest have

undergone photoelectric interactions

 fprintf(1,'of %d, %d compton, %d photoelectric\n',n_left,sum(i_compton),sum(i_photoelectric));

 if any(i_compton)

 [rel_theta,ce_energy,cp_energy] = rand_compton(cur_gamma_energy(i_left(i_compton))); %

randomly sample thetas and corresponding electron and photon energies from Klein Nishina

 cur_gamma_energy(i_left(i_compton))= cp_energy; % update gamma energies

 rel_phi= 2 * pi * rand(sum(i_compton),1); % randomly sample

n_left phi angles distributed uniformly over 0:2pi

 [cur_dir_x,cur_dir_y,cur_dir_z] =

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_compton),rel_theta,rel_phi); % update

direction

 nPhotons = nPhotons +

sum(frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,ce_energy,estar,mediumRe

fractiveIndex),2); % determine Cerenkov produced by secondary electrons

 end

 if any(i_photoelectric)

 pe_energy= cur_gamma_energy(i_left(i_photoelectric)); % all energy goes to

secondary electron

 cur_gamma_energy(i_left(i_photoelectric))= 0; % ...

 nPhotons = nPhotons +

sum(frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,pe_energy,estar,mediumRe

fractiveIndex),2); % determine Cerenkov produced by secondary electrons

 end

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)];

paths_z{i}= [paths_z{i},cur_loc_z(i,1)]; end %%%%%%%%%%%

 i_left= i_left(i_compton & (cur_gamma_energy(i_left) > stopThreshold)); % determine

which gammas are left

150

 n_left= numel(i_left); % count

number left

% if ONCE==0

% ONCE=1;

% figure; for i=1:n_left, plot3(paths_x{i_left(i)},paths_y{i_left(i)},paths_z{i_left(i)});

hold on; end % plot gamma paths in blue

% axis equal;

% xlabel('X'); ylabel('Y'); zlabel('Z');

% end

end

nPhotons= nPhotons / normalizer; % adjust to Cerenkov

photons per disintegration

PLOT=0;

if PLOT==1

 figure; for i=1:N, plot3(paths_x{i},paths_y{i},paths_z{i}); hold on; end % plot gamma

paths in blue

 axis equal;

 xlabel('X'); ylabel('Y'); zlabel('Z');

end

Published with MATLAB® R2017a

% cerenkov_secondary_electron_psf - given a specified number of gammas of a given energy spectrum

traveling in isotropic directions from the center of an infinite medium of specified photon and

beta cross-sections and refractive index

% determine the number of Cerenkov photons produced within 560 to 580 nm as a function of

distance from the source

% note - the location of the Cerenkov production is taken to be the location where the gamma

knocks off the electron

% gammaSpectrum - two column matrix, 1st column is energy in MeV, 2nd column is relative

frequency (frequencies should sum to 1)

% xcom - function handle to photon cross-section function

% estar - function handle to beta cross-section function

% N - desired number of photons

% mediumRefractiveIndex - refractive index of the medium

% MAXDIST - maximum range over which PSF will be tablulated

% NDIVS - number of elements in PSF

% returns PSF and associated distance scale

function [psf,distance] =

cerenkov_secondary_electron_psf(gammaSpectrum,xcom,estar,N,mediumRefractiveIndex,MAXDIST,NDIVS,FR

OM_LINE_FLG)

if nargin < 7, FROM_LINE_FLG=0; end

if nargin < 6, NDIVS=25; end % default number of divisions

151

if nargin < 5, MAXDIST=0.2; end % default spatial extent of psf

output in cm

psf= zeros(NDIVS,1); % allocate PSF result vector

nrm= zeros(NDIVS,1); % allocate space for normalizer

distance= ((1:NDIVS)-0.5)*MAXDIST/NDIVS; % PSF x-axis

stopThreshold= 0.01; % set threshold energy at which

we will stop following a given gamma

cur_gamma_energy= bsxfun(@repvals,gammaSpectrum(:,1),round(gammaSpectrum(:,2)*N)); % generate

~N gammas according to spectrum

rel_theta= acos(1-2*rand(N,1)); % choose random isotropic

initial directions specified in polar coordinates with theta distributed uniformly over cos(0:pi)

rel_phi= 2 * pi * rand(N,1); % and phi uniformly over

(0:2pi) --- see Rajon

i_511= find(cur_gamma_energy==0.511); % find annihilation photons

cur_gamma_energy= [cur_gamma_energy;cur_gamma_energy(i_511)]; % duplicate gamma and add onto

end

rel_phi= [rel_phi;rel_phi(i_511)]; % within same plane

rel_theta= [rel_theta;rel_theta(i_511)+pi]; % but going in the opposite

direction

N= numel(cur_gamma_energy); % count total number of gammas

actually generated

sin_theta= sin(rel_theta); % avoid calculating twice (see

next two lines)

cur_dir_x= sin_theta .* cos(rel_phi); % calculate current direction

as Cartesian vector (note - "rel" angles treated as absolute angles)

cur_dir_y= sin_theta .* sin(rel_phi); % ...

cur_dir_z= cos(rel_theta); % ...

d= sqrt(cur_dir_x.^2+cur_dir_y.^2+cur_dir_z.^2); % length of direction vector

cur_dir_x= cur_dir_x ./ d; % normalize to unit length

cur_dir_y= cur_dir_y ./ d; % ...

cur_dir_z= cur_dir_z ./ d; % ...

cur_loc_x= zeros(N,1); % start N gammas at the origin

cur_loc_y= zeros(N,1); % ...

cur_loc_z= zeros(N,1); % ...

paths_x= cell(N,1); paths_y= cell(N,1); paths_z= cell(N,1);

 %%%%%%%%%%%%%%%

for i=1:N, paths_x{i}= cur_loc_x(i,1); paths_y{i}= cur_loc_y(i,1); paths_z{i}= cur_loc_z(i,1);

end %%%%%%%%%%%%%%%

i_left= 1:N; % initially, everyone is in

n_left= numel(i_left); % count number in

while n_left > 0

 muvCompton= xcom(cur_gamma_energy(i_left),'Compton'); % Compton cross-section

 muvPhotoelectric= xcom(cur_gamma_energy(i_left),'Photoelectric'); % photoelectric cross-

152

section

 muv= muvCompton+muvPhotoelectric; % sum of Compton

scattering and photoelectric cross-sections

 mean_free_path = 1 ./ muv; % inverse is mean free

path

 r= mean_free_path .* rande(n_left,1); % randomly choose

distance traveled by each of the photons before interacting

 cur_loc_x(i_left)= cur_loc_x(i_left) + r .* cur_dir_x(i_left); % determine new

location

 cur_loc_y(i_left)= cur_loc_y(i_left) + r .* cur_dir_y(i_left); % ...

 cur_loc_z(i_left)= cur_loc_z(i_left) + r .* cur_dir_z(i_left); % ...

 if FROM_LINE_FLG==0

 d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2+cur_loc_z(i_left).^2); % current

distance from origin in cm

 else

 d= sqrt(cur_loc_x(i_left).^2+cur_loc_y(i_left).^2); % current distance from line in cm

(ie ignoring z)

 end

 i_compton= rand(n_left,1) < (muvCompton ./ (muvCompton+muvPhotoelectric)); % flag those

undergoing Compton (ie incoherent) scatter

 i_photoelectric= i_compton == 0; % assume the rest have

undergone photoelectric interactions

 if any(i_compton)

 [rel_theta,ce_energy,cp_energy] = rand_compton(cur_gamma_energy(i_left(i_compton))); %

randomly sample thetas and corresponding electron and photon energies from Klein Nishina

 cur_gamma_energy(i_left(i_compton))= cp_energy; % update gamma energies

 rel_phi= 2 * pi * rand(sum(i_compton),1); % randomly sample

n_left phi angles distributed uniformly over 0:2pi

 [cur_dir_x,cur_dir_y,cur_dir_z] =

update_dir(cur_dir_x,cur_dir_y,cur_dir_z,i_left(i_compton),rel_theta,rel_phi); % update

direction

 photons = frank_tamm_double_integral(560,580,ce_energy,estar,mediumRefractiveIndex); %

determine Cerenkov produced by secondary electrons

 id= ceil(d(i_compton)*NDIVS/MAXDIST); % convert distance to

indices

 id(id > NDIVS)= NDIVS; % anything over the

max goes into the last element

 incindx(psf,id,photons); % update PSF

 incindx(nrm,id); % update normalizer

 end

 if any(i_photoelectric)

 ce_energy= cur_gamma_energy(i_left(i_photoelectric)); % all energy goes to

secondary electron

 photons = frank_tamm_double_integral(560,580,ce_energy,estar,mediumRefractiveIndex); %

determine Cerenkov produced by secondary electrons

 id= ceil(d(i_photoelectric)*NDIVS/MAXDIST); % convert distance to

indices

 id(id > NDIVS)= NDIVS; % anything over the

153

max goes into the last element

 incindx(psf,id,photons); % update PSF

 incindx(nrm,id); % update normalizer

 end

 for i=1:N, paths_x{i}= [paths_x{i},cur_loc_x(i,1)]; paths_y{i}= [paths_y{i},cur_loc_y(i,1)];

paths_z{i}= [paths_z{i},cur_loc_z(i,1)]; end %%%%%%%%%%%

 i_left= i_left(i_compton & cur_gamma_energy(i_left) > stopThreshold); % determine

which gammas are left

 n_left= numel(i_left); % count number left

end

psf= psf ./ nrm;

PLOT=0;

if PLOT==1

 figure; for i=1:N, plot3(paths_x{i},paths_y{i},paths_z{i}); hold on; end % plot gamma

paths in blue

 axis equal;

 xlabel('X'); ylabel('Y'); zlabel('Z');

 figure; plot(distance,psf,'-x'); % plot Cerenkov PSF

end

Published with MATLAB® R2017a

function E= cerenkov_threshold(mediumRefractiveIndex)

c = 299792458; % c is the speed of light in a vacuum in meters per

second

E0= 0.511; % rest mass-energy in MeV

v=c./mediumRefractiveIndex; % threshold beta velocity

E= sqrt(E0.^2./(1-(v/c).^2))-E0; % threshold beta energy

Published with MATLAB® R2017a

function checkIVIScamcal(worldptsfname,camptsfroot,IVISrootname,IVISparameterSTRUCT)

 worldpts= load(worldptsfname); % reads worldpts measured using Amira

 % re-arrange axes to match the coordinate system used in Hartley and Zisserman's "Multiple

View Geometry" p 154

 worldpts(:,1)= 192 - worldpts(:,1); % new X is flipped old X

 tmp= worldpts(:,2); % save Y

 worldpts(:,2)= 384 - worldpts(:,3); % new Y is flipped old Z

 worldpts(:,3)= tmp; % new Z is old Y

154

 dimX= IVISparameterSTRUCT.dims(1); % IVIS image

size

 dimY= IVISparameterSTRUCT.dims(2);

 px= dimX/2; py= dimY/2; % principal

point offset fixed at center of image

 f= IVISparameterSTRUCT.f; % focal length

 aor2yRPY= IVISparameterSTRUCT.aor2yRPY; % roll, pitch

and yaw to align axis of rotation of the mousebed to the Y-axis

 aor2yXYZ= [IVISparameterSTRUCT.xzshft(1);0;IVISparameterSTRUCT.xzshft(2)]; % X and Z shift

to align axis of rotation of the mousebed to the Y-axis

 wcs2ccsRPY= IVISparameterSTRUCT.wcs2ccsRPY; % roll, ptich

and yaw to align world coordinate system to camera coordinate system

 Ctilde= IVISparameterSTRUCT.Ctilde; % coordinates of

the camera center in the world coordinate system

 rdfs= IVISparameterSTRUCT.rdfs; % radial

distortion factors

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 [angles,calfileLST]= getIVIScalangles(camptsfroot);

 [angles,dirLST]= getIVISangles(IVISrootname);

 n= length(angles);

 for i=1:n

 angle= angles(i); % rotation of the bed in degrees

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix describing rotation of

the bed

 P= P3 * P2 * P1; % align bed, rotate bed, project to camera

coordinate frame

 campts= load(deblank(calfileLST(i,:))); % reads campts matrix

 worldpts_indices= campts(:,1); % extract indices of worldpts visible at

current angle

 campts= campts(:,2:3)'; % campts without indices transposed to column

vectors

 wpts= [worldpts';ones(1,size(worldpts,1))]; % transpose worldpts and add row of ones

 campts_est= P * wpts; % apply Ps

 campts_est= campts_est(1:2,:) ./ repmat(campts_est(3,:),2,1);

155

 if ~isempty(rdfs)

 % add camera distortion

 r= sqrt((campts_est(1,:)-px).^2+(campts_est(1,:)-py).^2);

 Lr= polyval([rdfs,1],r);

 campts_est(1,:)= (campts_est(1,:)-px).*Lr+px;

 campts_est(2,:)= (campts_est(2,:)-py).*Lr+py;

 end

 figure;

 t=my_imread([deblank(dirLST(i,:)) '\photograph.tif']);

 imshowsc(t,[0,2000]);

 colormap('gray');

 hold on;

 plot(campts_est(1,:),campts_est(2,:),'r-x');

 plot(campts_est(1,1),campts_est(2,1),'ro');

 plot(campts(1,:),campts(2,:),'b-x');

 plot(campts(1,1),campts(2,1),'bo');

 drawnow;

 end

Published with MATLAB® R2017a

function [histo_c,histo_s] = coincidence_path_length_histogram(mask3d,density,nbins)

 if nargin < 2, density= 100; end

 if nargin < 3, nbins= 100; end

 histo= zeros(nbins,1); % allocate space for result

 dims= size(mask3d); % mask dimensions

 maxlength= sqrt(sum(dims.^2)); % maximum possible pathlength through object is between

diagonal corners

 l2dims= ceil(log2(dims)); % log2 of dimensions rounded up

 newdims= 2.^l2dims; % next largest power of two for each dimension

 nlevels= min(l2dims); % number of subsamplings before one of the

dimensions goes to 1

 % calculate series of subsampled masks

 m{1}= zeros(newdims);

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d;

 mask3d= m{1};

 for level=2:nlevels

 m{level}= zoomout3(m{level-1}); % averages groups of 2x2x2 voxels

 m{level}(m{level}~=1)= 0; % zero out all non-ones

 end

 % at each level, remove voxels corresponding to regions that were entirely within the object

at the lower levels

 tmp1= zoomin3(m{nlevels});

 for level=(nlevels-1):-1:1 % working from the bottom up

 tmp2= m{level}; % save current level

 m{level}(tmp1==1) = 0; % zero out voxels correspnding to ones in the lower level

156

 tmp1= zoomin3(tmp2); % use blow up of copy in next round

 end

 % at this point, each level contains only the 1's that are "new" to that level

 % initialize photon starting points, final locations and directions

 locations= [];

 starts= [];

 directions= [];

 % work from the bottom level up

 for level=nlevels:-1:1

 curdims= size(m{level}); % get dimensions of the current level

 indices= find(m{level}==1); % find the 1's

 nIndices= numel(indices); % count them

 if nIndices > 0

 [x,y,z]= ind2sub(curdims,indices); % convert

to coordinate indices

 [new_locations,new_directions]= init_lines(x,y,z,density,level); % fill

each with photons

 locations= [locations,new_locations]; % add to

list of current locations

 starts= [starts,new_locations]; % add to

list of starting locations

 directions= [directions,new_directions]; % keep

full list of directions

 locations= update_lines(locations,directions,m{level});

 end

 if level > 1

 locations= locations * 2;

 starts= starts * 2;

 end

 end

 stopflg= 0;

 while ~stopflg

 [locations,stopflg]= update_lines(locations,directions,mask3d);

 end

 R= 45*0.327; % scanner radius

 cylinder= [0.327*dims(1)/2,0.327*dims(2)/2,1,0.327*dims(1)/2,0.327*dims(2)/2,dims(3),R]; %

points at either end of axis followed by the radius

 nlines= size(locations,2);

 hitflg= zeros(1,nlines);

 hitlocs= zeros(3,nlines,2);

 for i=1:nlines

 points= intersectLineCylinder([locations(:,i,1)', locations(:,i,1)'-locations(:,i,2)'],

cylinder);

 if size(points,1) == 1

 hitflg(1,i)= 1;

 hitlocs(:,i,1)= points(1,:)';

 end

 if size(points,1) == 2

 hitflg(1,i)= 2;

 hitlocs(:,i,1)= points(1,:)';

157

 hitlocs(:,i,2)= points(2,:)';

 end

 end

 coinc_hitflg= (hitflg == 2);

 singl_hitflg= (hitflg >= 1);

 d= sqrt(sum((locations(:,coinc_hitflg,1)-locations(:,coinc_hitflg,2)).^2));

 [h,x]= hist(d,nbins);

 histo_c= [x;h];

 d= sqrt(sum(cat(2,(locations(:,singl_hitflg,1)-starts(:,singl_hitflg,2)).^2,

(locations(:,singl_hitflg,2)-starts(:,singl_hitflg,2)).^2)));

 [h,x]= hist(d,nbins);

 histo_s= [x;h];

 p_coinc= sum(histo_c(2,:).*exp(-0.096*0.327*histo_c(1,:))) / nlines; % total coincident

events (ie total activity) times this number estimates the number of trues

 p_sngl= sum(histo_s(2,:).*exp(-0.096*0.327*histo_s(1,:))) / nlines; % total singles

events (ie total activity * 2) times this number estimates the number of singles

 keyboard

end

function [locations,directions] = init_lines(x,y,z,density,level)

 n= density * 8^(level-1) * numel(x); % the total number of new rays is the density

times the voxel volume times the number of voxels

 x= rowvectorize(x); % make sure all are row vectors

 y= rowvectorize(y); % ...

 z= rowvectorize(z); % ...

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n); % random starting points within boxes

 locations= cat(3,locations,locations); % make into pair of locations that will travel in

opposite directions

 dir_theta= acos(1-2*rand(1,n)); % choose random isotropic initial directions

specified in polar coordinates with theta distributed uniformly over cos(0:2pi)

 dir_phi= 2 * pi * rand(1,n); % and phi uniformly over (0:2pi) --- see Rajon

 directions= cat(1,dir_theta,dir_phi); % concatenate theta and phi to make a two row

direction matrix

end

function [locations,stopflg]= update_lines(locations,directions,mask)

 curdims= size(mask); % get current dimensions

 sin_theta= sin(directions(1,:)); % avoid calculating

twice (see next two lines)

 dir_x= sin_theta .* cos(directions(2,:)); % calculate current

direction as Cartesian vector

 dir_y= sin_theta .* sin(directions(2,:)); % ...

 dir_z= cos(directions(1,:)); % ...

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2);

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm;

 stopflg= 1; % start by assuming

all are out

 left= locations(:,:,1);

 head= left + cat(1,dir_x,dir_y,dir_z); % specify head of ray

as being unit distance away along line in specified direction

 ijk= ceil(left); % determine

158

indices of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

indicating for each ray if it is in or out of the grid

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't

signal stop until all rays are out of object

 box_corner= floor(left);

 [p,t]= ray_box_intersect(left(:,in),head(:,in),box_corner(:,in)); % determine

intersection with sides of bounding box

 left(:,in)= p; % this is the

new location

 left(:,in)= left(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; %

keep going just a little further to avoid being right on the face

 end

 right= locations(:,:,2);

 head= right - cat(1,dir_x,dir_y,dir_z); % specify head of

ray as being unit distance away along line in specified direction

 ijk= ceil(right); % determine indices

of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

indicating for each ray if it is in or out of the grid

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't

signal stop until all rays are out of object

 box_corner= floor(right);

 [p,t]= ray_box_intersect(right(:,in),head(:,in),box_corner(:,in)); % determine

intersection with sides of bounding box

 right(:,in)= p; % this is

the new location

 right(:,in)= right(:,in) - cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; % keep

going just a little further to avoid being right on the face

 end

 locations= cat(3,left,right); % re-pair

end

159

Published with MATLAB® R2017a

function [locations,starts] = coincidence_paths(mask3d,density)

 if nargin < 2, density= 100; end

 dims= size(mask3d); % mask dimensions

 l2dims= ceil(log2(dims)); % log2 of dimensions rounded up

 newdims= 2.^l2dims; % next largest power of two for each dimension

 nlevels= min(l2dims); % number of subsamplings before one of the

dimensions goes to 1

 % calculate series of subsampled masks

 m{1}= zeros(newdims);

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d;

 mask3d= m{1};

 for level=2:nlevels

 m{level}= zoomout3(m{level-1}); % averages groups of 2x2x2 voxels

 m{level}(m{level}~=1)= 0; % zero out all non-ones

 end

 % at each level, remove voxels corresponding to regions that were entirely within the object

at the lower levels

 tmp1= zoomin3(m{nlevels});

 for level=(nlevels-1):-1:1 % working from the bottom up

 tmp2= m{level}; % save current level

 m{level}(tmp1==1) = 0; % zero out voxels correspnding to ones in the lower level

 tmp1= zoomin3(tmp2); % use blow up of copy in next round

 end

 % at this point, each level contains only the 1's that are "new" to that level

 % initialize photon starting points, final locations and directions

 locations= [];

 starts= [];

 directions= [];

 % work from the bottom level up

 for level=nlevels:-1:1

 curdims= size(m{level}); % get dimensions of the current level

 indices= find(m{level}==1); % find the 1's

 nIndices= numel(indices); % count them

 if nIndices > 0

 [x,y,z]= ind2sub(curdims,indices); % convert

to coordinate indices

 [new_locations,new_directions]= init_lines(x,y,z,density,level); % fill

each with photons

 locations= [locations,new_locations]; % add to

list of current locations

 starts= [starts,new_locations]; % add to

list of starting locations

 directions= [directions,new_directions]; % keep

160

full list of directions

 locations= update_lines(locations,directions,m{level});

 end

 if level > 1 % when deeper than the 1st level

 locations= locations * 2; % scale doubles in anticipation of moving up

 starts= starts * 2; % ...

 end

 end

 stopflg= 0; % assume no stop

 while ~stopflg % loop until stopflg is set

 [locations,stopflg]= update_lines(locations,directions,mask3d); % update lines until

all are out

 end

end

function [locations,directions] = init_lines(x,y,z,density,level)

 n= density * 8^(level-1) * numel(x); % the total number of new rays is the density

times the voxel volume times the number of voxels

 x= rowvectorize(x); % make sure all are row vectors

 y= rowvectorize(y); % ...

 z= rowvectorize(z); % ...

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n); % random starting points within boxes

 locations= cat(3,locations,locations); % make into pair of locations that will travel in

opposite directions

 dir_theta= acos(1-2*rand(1,n)); % choose random isotropic initial directions

specified in polar coordinates with theta distributed uniformly over cos(0:2pi)

 dir_phi= 2 * pi * rand(1,n); % and phi uniformly over (0:2pi) --- see Rajon

 directions= cat(1,dir_theta,dir_phi); % concatenate theta and phi to make a two row

direction matrix

end

function [locations,stopflg]= update_lines(locations,directions,mask)

 curdims= size(mask); % get current dimensions

 sin_theta= sin(directions(1,:)); % avoid calculating

twice (see next two lines)

 dir_x= sin_theta .* cos(directions(2,:)); % calculate current

direction as Cartesian vector

 dir_y= sin_theta .* sin(directions(2,:)); % ...

 dir_z= cos(directions(1,:)); % ...

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2);

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm;

 stopflg= 1; % start by assuming

all are out

 left= locations(:,:,1);

 head= left + cat(1,dir_x,dir_y,dir_z); % specify head of ray

as being unit distance away along line in specified direction

 ijk= ceil(left); % determine

indices of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

indicating for each ray if it is in or out of the grid

161

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't

signal stop until all rays are out of object

 box_corner= floor(left);

 [p,t]= ray_box_intersect(left(:,in),head(:,in),box_corner(:,in)); % determine

intersection with sides of bounding box

 left(:,in)= p; % this is the

new location

 left(:,in)= left(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; %

keep going just a little further to avoid being right on the face

 end

 right= locations(:,:,2);

 head= right - cat(1,dir_x,dir_y,dir_z); % specify head of

ray as being unit distance away along line in specified direction

 ijk= ceil(right); % determine indices

of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

indicating for each ray if it is in or out of the grid

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't

signal stop until all rays are out of object

 box_corner= floor(right);

 [p,t]= ray_box_intersect(right(:,in),head(:,in),box_corner(:,in)); % determine

intersection with sides of bounding box

 right(:,in)= p; % this is

the new location

 right(:,in)= right(:,in) - cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10; % keep

going just a little further to avoid being right on the face

 end

 locations= cat(3,left,right); % re-pair

end

Published with MATLAB® R2017a

162

function pdf =

compton_electron_energy_spectrum_per_gamma_in_h2o(gammaInitialEnergy,nSteps,nGammas)

eHist=zeros(nSteps,1);

for i=1:nGammas

 e= gammaInitialEnergy;

 while e > (gammaInitialEnergy / (nSteps*0.1))

 [photon_angle,ce_energy,e] = rand_compton(e);

 index= ceil(nSteps*ce_energy/gammaInitialEnergy);

 eHist(index)= eHist(index) + 1;

 fprintf(1,'energy=%f\n',e);

 end

 fprintf(1,'gamma %d\n',i);

end

energies= gammaInitialEnergy*(1:nSteps)/nSteps - 0.5 * gammaInitialEnergy / nSteps;

pdf= [energies',eHist/sum(eHist)];

Published with MATLAB® R2017a

function [T,dedT,nu]= compton_energy_spectrum(hv)

% eq references refer to "The Atomic Nucleus" by Robley Evans 1955

% nu is the scattered photon angle relative to incident photon

% hv is the energy of the incident photon

r0= 2.818e-13; % classical electron radius pg 822

m0c2= 0.511; % MeV

alpha= hv / m0c2;

nu= (1:179) * pi / 180;

phi= acot((1+alpha)*tan(nu/2));

cos_sq_phi= cos(phi).^2;

one_minus_cos_nu= 1 - cos(nu);

one_plus_alpha_sq= (1 + alpha)^2;

% eq 1.10 on pg 676

T= (hv*alpha*one_minus_cos_nu) ./ (1+alpha*one_minus_cos_nu);

hv_prime= hv - T;

hv_prime_over_hv= hv_prime / hv;

% eq 2.8 on pg 683

part1= (r0^2/2) * (hv_prime_over_hv .^ 2) .* ((1 ./ hv_prime_over_hv) + hv_prime_over_hv -

(sin(nu).^2));

% 2nd half of eq 5.2 on pg 692

part2= (2*pi/(alpha^2*m0c2)) * ((one_plus_alpha_sq - alpha^2 * cos_sq_phi) ./ (one_plus_alpha_sq

- alpha * (2+alpha) * cos_sq_phi)) .^ 2;

% eq 5.2 on pg 692

dedT= part1 .* part2;

%dedT= part1;

Published with MATLAB® R2017a

163

function cdf = delta_ray_cdf(delta_rayEnergy,betaEnergy)

% delta_rayEnergy - vector of pssoble delta ray energies in MeV

% betaEnergy - energy of the beta particle in MeV

c = 299792458; % speed of light in a

vacuum in meters per second

me= 9.1093821545e-31; % electron rest mass

in kg

re= 2.817940289458e-15; % electron radius in

meters

N0= 6.0221417930e23; % Avogadro's number

MeVperJoule= 6.241506363e+12; % Joules to MeV conversion

factor

velocity= beta_velocity(betaEnergy); % the beta particle

velocity in meters per second

beta= velocity / c; % electron velocity

fraction of the speed of light

re= re * 100; % convert from

meters to cm

me= me * c^2; % convert from kg to

Joules

me= me * MeVperJoule; % convert from Joules

to MeV

cdf= 2*pi*re^2*me*N0 ./ (beta.^2.*delta_rayEnergy); % result is number of

delta rays per cm

Published with MATLAB® R2017a

function pdf = delta_ray_pdf(delta_rayEnergy,betaEnergy)

% delta_rayEnergy - vector of pssoble delta ray energies in MeV

% betaEnergy - energy of the beta particle in MeV

c = 299792458; % speed of light in a

vacuum in meters per second

me= 9.1093821545e-31; % electron rest mass

in kg

re= 2.817940289458e-15; % electron radius in

meters

N0= 6.0221417930e23; % Avogadro's number

MeVperJoule= 6.241506363e+12; % Joules to MeV conversion

factor

velocity= beta_velocity(betaEnergy); % the beta particle

velocity in meters per second

beta= velocity / c; % electron velocity

fraction of the speed of light

re= re * 100; % convert from

164

meters to cm

me= me * c^2; % convert from kg to

Joules

me= me * MeVperJoule; % convert from Joules

to MeV

pdf= 2*pi*re^2*me*N0 ./ (beta.^2.*delta_rayEnergy.^2); % result is number of

delta rays per cm per MeV

Published with MATLAB® R2017a

% calculates mean relative sensitivity of IVIS 200 camera over range distances from focal point

(1.5 cm below up to depth cm above that)

function factor = depth_adjustment_factor(depth,refindx)

% depth - depth of the fluid in cm

factor = quad(@(x)height_adjustment_factor(x,refindx,depth),-1.5,depth-1.5) / depth;

Published with MATLAB® R2017a

% calculates expansion terms for determination of electron scattering pdf as a function of

normalized angle nu according to Moliere's theory

% see Bethe, "Moliere's Theory of Multiple Scattering", Physical Review, vol 89, No 6, Mar 15,

1953

% and Levin and Hoffman, "Calculation of positron range and its effect on the fundamental limit

of positron emission tomography system spatial resolution", PMB, vol 44, 1999

function [f0,f1,f2] = f_of_nu(nu)

x= nu.^2; % see Bethe eqn

24a

x=nu;

f0= 2*exp(-x); % see Bethe eqn 27

(Levin eqn 8 is wrong)

f1= zeros(size(f0)); % allocate space

f2= zeros(size(f0)); % ...

i= find(nu >= 4); % select large

nu

if numel(i) > 0 % for large nu -

use eqns

 f1(i)= 2*(1-5*x(i).^(-2)).^(-4/5) ./ x(i).^4; % see

Levin eqn 8

 f2(i)= 16*(log(x(i))+log(0.4)) ./ (x(i).^6 .* (1-9*x(i).^(-2)-24*x(i).^(-4))); % ...

end

j= find(nu < 4); % select small

nu

if numel(j) > 0 % for small nu -

use table

 [tf1,tf2]= Bethe_table(nu(j)); % interpolate

165

Bethe's data

 f1(j)= tf1; % transcribe

entries

 f2(j)= tf2; % ...

end

Published with MATLAB® R2017a

function photonSecondsPerMeter =

frank_tamm(photonFrequency,particleVelocity,particleCharge,mediumRelativePermeability,mediumRefra

ctiveIndex)

% photonFrequency is the frequency of the Cerenkov photon in (1/seconds)

% particleVelocity - is the speed of the particle (meters/sec)

% particleCharge is the electric charge of the particle (elementary charge i.e. # of protons)

% mediumRelativePermeability - is the permeability of the medium relative to that of free space

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function

of lambda

% returns photonSecondsPerMeter

c = 299792458 ; % c

is the speed of light in a vacuum in meters per second

h = 6.62606896e-34; %

Planks constant in Joules*seconds

mu0= 4*pi*1e-7; %

the permeability of free space in Joules*seconds^2/(Coulombs^2*meters)

CoulombsPerElementaryCharge= 1.602176487e-19; % the number of Coulombs

per proton

mediumPermeability= mediumRelativePermeability * mu0; % mediumPermeability in

Joules*seconds^2/(Coulombs^2*meters)

betasq= c^2 ./ (particleVelocity.^2 .* mediumRefractiveIndex.^2); % beta is the ratio

of the speed of light in the medium to the speed of the particle

JouleSecondsPerMeter = (pi * mediumPermeability .*

(CoulombsPerElementaryCharge*particleCharge).^2) .* photonFrequency .* (1 - betasq); %

Cerenkov energy at specified wavelength

JouleSecondsPerMeter(JouleSecondsPerMeter<0)= 0; % Cerenkov radiation only

produced when beta > 1 so zero out negatives

photonEnergy= photonFrequency * h; % energy in

Joules of a single photon of specified wavelength

photonSecondsPerMeter= JouleSecondsPerMeter ./ photonEnergy; % convert to number of photon-

seconds per meter

Published with MATLAB® R2017a

% frank_tamm_double_integral - integrates Frank-Tamm formula over wavelength range(s) and over

full path length of beta

function photons =

166

frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,initialBetaEnergy,estar,medi

umRefractiveIndex)

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% initialBetaEnergy - starting energy of the beta particle in MeV

% estar - handle to function determining energy loss in MeV per cm for a given beta energy

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function

of lambda

% returns matrix of size (number of wavelengths,number of betas) containing the total number of

Cerenkov photons within range of wavelengths produced by betas of given initial energies and

parameters of the medium

c = 299792458; % c is the speed of light

in a vacuum in meters per second

nw= numel(photonStartWavelength); % the number of start

wavelengths

if numel(photonEndWavelength) ~= nw % must match the number of end

wavelengths

 error('number of start and end wavelengths must match');

end

nv= numel(initialBetaEnergy); % the number of betas

photons= zeros(nw,nv); % initialize photon

accumulator

betaEnergy= colvectorize(initialBetaEnergy); % initialize beta energy and

force to be a column vector

betaVelocity= beta_velocity(betaEnergy); % initialize beta

velocities

while any((mediumRefractiveIndex*betaVelocity/c) > 1) % keep looping so long as at

least one beta velocity is superluminal

 Estep= betaEnergy * 1e-3; Estep(Estep<0.0001)= 0.0001; % specify energy step in MeV as

0.1% of betaEnergy but bottoming out at 0.1 keV

 photonsPerMeter =

frank_tamm_wavelength_integral(photonStartWavelength,photonEndWavelength,betaVelocity,mediumRefra

ctiveIndex); % determine Cerenkov production rate in photons per meter

 dEdx= estar(betaEnergy,'Total');

 % determine beta energy loss rate MeV per

cm

 distance= rowvectorize(1e-2 * Estep ./ dEdx);

 % determine distance in meters that beta

moves in losing Estep

 distance(isnan(distance))= 0;

 % zero out NaN's (i.e. Estep/dEdx = 0/0)

 distance(isinf(distance))= 0;

 % zero out inf's (i.e. Estep/dEdx = ?/0)

 photons= photons + repmat(distance,nw,1) .* photonsPerMeter;

 % accumulate Cerenkov photons generated in that

distance

 betaEnergy= betaEnergy - Estep;

167

 % loose Estep energy

 betaEnergy(betaEnergy<0)= 0;

 % careful not to go below zero

 betaVelocity= beta_velocity(betaEnergy);

 % recalc beta velocities

end

Published with MATLAB® R2017a

% frank_tamm_triple_integral - integrates Frank-Tamm formula over wavelength range(s), over full

path length of beta and over a given beta spectrum

function photons =

frank_tamm_triple_integral(photonStartWavelength,photonEndWavelength,betaSpectrum,estar,mediumRef

ractiveIndex)

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% betaSpectrum - table with two columns, energy in MeV and probability

% estar - handle to function determining energy loss in MeV per cm for a given beta energy

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function

of lambda

% returns vector of size equal to the number of wavelengths, containing the total number of

Cerenkov photons within each range of wavelengths produced by betas of given beta spectrum and

parameters of the medium

c = 299792458; % c is the speed of light

in a vacuum in meters per second

[ne,two]= size(betaSpectrum); % get beta spectrum table

dimensions

if two ~= 2

 error('beta spectrum must be two columns: energy and probability');

end

betaSpectrum(:,2)= betaSpectrum(:,2) / sum(betaSpectrum(:,2)); % force probabilities to sum to

1

nw= numel(photonStartWavelength); % the number of start

wavelengths

if numel(photonEndWavelength) ~= nw % must match the number of end

wavelengths

 error('number of start and end wavelengths must match');

end

% photons= zeros(nw,1); % initialize photon

accumulator

% for i=1:ne

% photons = photons + betaSpectrum(i,2) *

frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,betaSpectrum(i,1),estar,medi

168

umRefractiveIndex);

% end

photons = sum(repmat(rowvectorize(betaSpectrum(:,2)),nw,1) .*

frank_tamm_double_integral(photonStartWavelength,photonEndWavelength,betaSpectrum(:,1),estar,medi

umRefractiveIndex),2);

Published with MATLAB® R2017a

% frank_tamm_wavelength_integral - calculates integral of Frank Tamm assuming charge of +/- 1

(i.e. a beta) and relative permeability of 1

function photonsPerMeter =

frank_tamm_wavelength_integral(photonStartWavelength,photonEndWavelength,particleVelocity,mediumR

efractiveIndex)

% photonStartWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% photonEndWavelength is the start of the range of wavelengths of the Cerenkov photons in

nanometers

% particleVelocity - is the speed of the particle (meters/sec)

% mediumRefractiveIndex - is the index of refraction of the medium (unitless), it is a function

of lambda

% returns photonsPerMeter

c = 299792458; % c is the speed of light

in a vacuum in meters per second

alpha= 7.297352537650e-3; % the fine structure

constant (unitless)

photonStartWavelength= colvectorize(photonStartWavelength) / 1e9; % make into column and convert

to meters

photonEndWavelength= colvectorize(photonEndWavelength) / 1e9; % make into column and convert to

meters

if any(photonStartWavelength >= photonEndWavelength) % ensure order is correct

 error('start wavelength must be less than end wavelength');

end

particleVelocity= rowvectorize(particleVelocity); % make into row

nw= numel(photonStartWavelength); % the number of start

wavelengths

if numel(photonEndWavelength) ~= nw % must match the number of end

wavelengths

 error('number of start and end wavelengths must match');

end

nv= numel(particleVelocity); % the number of betas

beta= particleVelocity / c; % particle relative

phase velocity

% result is matrix of size nw by nv -- see Measurement of B-Emitting Nuclides Using Cerenkov

Radiation by HH Ross in Analytical Chemistry (41) 10, Aug 1969 p 1260

photonsPerMeter= 2*pi*alpha * ((1./photonStartWavelength)-(1./photonEndWavelength)) * (1 - (1 ./

169

(beta.^2 * mediumRefractiveIndex^2)));

photonsPerMeter(photonsPerMeter<0)= 0; % zero out negatives which are

indicative of beta*mediumRefractiveIndex < 1

Published with MATLAB® R2017a

function f = height_adjustment_factor(d,refindx,depth)

% d - distance from focus point assuming 13 cm FOV on the IVIS 200

% depth - depth of the fluid

A= 6.35; % aperature radius in cm

H= 51.2; % lens to focal point distance in cm

C= 1-cos(atan(A/H));

f= (1-cos(atan(A ./ (H-d)))) / C; % sensitivity of camera relative to sensitivity at focal

point (i.e. relative to d=0)

% calc magnification correction factors http://scubageek.com/articles/wwwbigr.html

D= depth - d -1.5; % distance d is below the surface

L= H - depth + 1.5; % distance from lens to the fluid surface in cm

R= 5; % distance from lens to CCD

M = (D+L+R)/(D*refindx+L+R); ; % magnification factor

f= f ./ M; % sensitivity is inverse of magnification

Published with MATLAB® R2017a

% IVIScam_mdl - IVIS optical imager with rotating bed modelled as a basic pinhole camera - see

Hartley and Zisserman p153+

function campts_all= IVIScam_mdl(p,worldptsSTRUCT,dimX,dimY,rdfs)

 px= dimX/2; py= dimY/2; % principal point offset fixed at center of image

 f= p(1); % focal length

 aor2yRPY= p(2:4); % roll, ptich and yaw to align axis of rotation of the mousebed to

the Y-axis

 aor2yXYZ= [p(5);0;p(6)]; % X and Z shift to align axis of rotation of the mousebed to the Y-

axis

 wcs2ccsRPY= p(7:9); % roll, ptich and yaw to align world coordinate system to camera

coordinate system

 Ctilde= p(10:12); % coordinates of the camera center in the world coordinate system

 K= [f 0 px; 0 f py; 0 0 1]; % camera calibration matrix

 x= [0 0 0 1 wcs2ccsRPY 0];

 R= x2t(x','rpy'); % rotation matrix representing the orientation of the camera

coordinate frame

 R= R(1:3,1:3); % reduce R to 3x3

 P3= K * R * [eye(3) -Ctilde']; % projective transform model of the camera

 % determine transformation matrix which aligns the axis of rotation of the mousebed to the Y-

axis

 x= [0 0 0 1 aor2yRPY 0];

170

 R= x2t(x','rpy');

 P1= R * [[eye(3) aor2yXYZ];[0,0,0,1]];

 campts_all= [];

 n= length(worldptsSTRUCT);

 for i=1:n

 angle= worldptsSTRUCT(i).angle; % rotation of the bed in degrees

 worldpts= worldptsSTRUCT(i).worldpts;

 x= [0 0 0 1 0 angle*pi/180 0 0];

 P2= x2t(x','rpy'); % transformation matrix

describing rotation of the bed

 campts= P3 * P2 * P1 * worldpts; % align bed, rotate bed, project

to camera coordinate frame

 campts= campts(1:2,:) ./ repmat(campts(3,:),2,1); % normalize to 2D space

 if nargin >= 5

 % add camera distortion

 r= sqrt((campts(1,:)-px).^2+(campts(2,:)-py).^2);

 Lr= polyval([rdfs,1],r);

 campts(1,:)= (campts(1,:)-px)./Lr+px;

 campts(2,:)= (campts(2,:)-py)./Lr+py;

 end

 campts_all= [campts_all,campts]; % accumulate campts

 end

 campts_all= reshape(campts_all,prod(size(campts_all)),1); % reshape as column vector

Published with MATLAB® R2017a

% returns the PDF for specified angle(s) for electrons undergoing multiple scattering events off

nuclei as described by Moliere

function pdf = moliere_pdf(theta,thickness,electronEnergy,A,Z)

% theta is scattering angle in radians, 0 begin no scatter and pi being 180 degree back scatter

% thickness is the pathlength that the electron travels through the media. the units are

grams/cm^2 (ie density normalized cm)

% electronEnergy is the initial energy of the electron in MeV

% A is the atomic weight of media in grams per mole

% Z is the effective atomic number of the media

c = 299792458; % speed of light in a

vacuum in meters per second

h= 6.6260689633e-34; % Planck's constant in

Joule*seconds = kg*meter^2/second

me= 9.1093821545e-31; % electron rest mass

in kg

alpha= 7.297352537650e-3; % the fine structure

constant (unitless)

N0= 6.0221417930e23; % Avogadro's number

velocity= beta_velocity(electronEnergy); % the electron

velocity in meters per second

hbar= h/(2*pi); % reduced Planck

beta= velocity / c; % electron velocity

171

fraction of the speed of light

lorentz_factor= 1 ./ sqrt(1-beta.^2); % Lorentz factor

momentum= lorentz_factor .* velocity * me; % relativistic

momentum in kg * meters / second

lambda_bar= hbar./momentum; % the electron DeBroglie

wavelength in meters

e= sqrt(alpha*c*hbar); % using definition of

fine structure constant - calc e in kg^0.5*meters^1.5/second

a0= hbar^2/(me*e^2); % the Bohr radius in

meters (same as classical electron radius / square of fine structure constant

zalpha= Z*e^2./(hbar*velocity); % the alpha from

Bethe's eqn 21a;

X0= lambda_bar / (0.885*a0*Z^(-1/3)); % unitless critical

angle -see Levin eqn 5

Xa= sqrt(X0.^2.*(1.13+3.76*zalpha.^2)); % unitless

characteristic screening angle - see Levin eqn 4

C= 40000*pi*N0*0.885^2*hbar^2/(me^2*c^2*1.167*1.13);

C= 6680;

b = log(thickness*C*(Z+1)*Z^(1/3) ./ (beta.^2*A.*(1+(3.76/1.13)*zalpha.^2))); % normalized

distance parameter - see Bethe eqn 22

Xc= sqrt(1.167*Xa.^2.*exp(b)); % unitless minimum

scattering angle - see Levin eqn 2

if any(exp(b)<17), fprintf(1,'warning - number of collisions (%f) less than 17\n',min(exp(b)));

end

%N= N0 / A;

%Xc= sqrt(40000*pi*N*thickness*e^4*Z*(Z+1)/(momentum*velocity)^2)

%b= log(Xc^2/(1.167*Xa^2))

B= Bfun(b); % solve for B - see

Levin pg 784

nu= theta./(Xc.*sqrt(B)); % see Levin pg 784

[f0,f1,f2]= f_of_nu(nu); % calc f0, f1

and f2 according to Levin pg 784

pdf= f0 + f1./B + f2./B.^2; % and the answer is

...

function Bat_b = Bfun(at_b)

if any(at_b < 1) || any(at_b > 28)

 error('at_b must be between 1 and 28');

end

B=logspace(0,1.5,100);

b=B-log(B);

Bat_b= interp1(b,B,at_b);

Published with MATLAB® R2017a

172

function histo = path_length_histogram(mask3d,density,nbins)

 if nargin < 2, density= 100; end

 if nargin < 3, nbins= 100; end

 histo= zeros(nbins,1); % allocate space for result

 dims= size(mask3d); % mask dimensions

 maxlength= sqrt(sum(dims.^2)); % maximum possible pathlength through object is between

diagonal corners

 l2dims= ceil(log2(dims)); % log2 of dimensions rounded up

 newdims= 2.^l2dims; % next largest power of two for each dimension

 nlevels= min(l2dims); % number of subsamplings before one of the

dimensions goes to 1

 % calculate series of subsampled masks

 m{1}= zeros(newdims);

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d;

 mask3d= m{1};

 for level=2:nlevels

 m{level}= zoomout3(m{level-1}); % averages groups of 2x2x2 voxels

 m{level}(m{level}~=1)= 0; % zero out all non-ones

 end

 % at each level, remove voxels corresponding to regions that were entirely within the object

at the lower levels

 tmp1= zoomin3(m{nlevels});

 for level=(nlevels-1):-1:1 % working from the bottom up

 tmp2= m{level}; % save current level

 m{level}(tmp1==1) = 0; % zero out voxels correspnding to ones in the lower level

 tmp1= zoomin3(tmp2); % use blow up of copy in next round

 end

 % at this point, each level contains only the 1's that are "new" to that level

 % initialize photon starting points, final locations and directions

 locations= [];

 starts= [];

 directions= [];

 % work from the bottom level up

 for level=nlevels:-1:1

 curdims= size(m{level}); % get dimensions of the current level

 indices= find(m{level}==1); % find the 1's

 nIndices= numel(indices); % count them

 if nIndices > 0

 [x,y,z]= ind2sub(curdims,indices); % convert

to coordinate indices

 [new_locations,new_directions]= init_rays(x,y,z,density,level); % fill

each with photons

 locations= [locations,new_locations]; % add to

list of current locations

 starts= [starts,new_locations]; % add to

list of starting locations

173

 directions= [directions,new_directions]; % keep

full list of directions

 locations= update_rays(locations,directions,m{level});

 end

 if level > 1

 locations= locations * 2;

 starts= starts * 2;

 end

 end

 stopflg= 0;

 while ~stopflg

 [locations,stopflg]= update_rays(locations,directions,mask3d);

 end

% need to keep updating till all rays leave the mask -- also need to terminate based on mask

only at the final level - instead keep rays on hold (ie don't extend but don't terminate)

 d= sqrt(sum((locations-starts).^2));

 [h,x]= hist(d,nbins);

 histo= [x,h];

 keyboard

end

function [locations,directions] = init_rays(x,y,z,density,level)

 n= density * 8^(level-1) * numel(x); % the total number of new rays is the density

times the voxel volume times the number of voxels

 x= rowvectorize(x); % make sure all are row vectors

 y= rowvectorize(y); % ...

 z= rowvectorize(z); % ...

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n); % random starting points within boxes

 dir_theta= acos(1-2*rand(1,n)); % choose random isotropic initial directions

specified in polar coordinates with theta distributed uniformly over cos(0:2pi)

 dir_phi= 2 * pi * rand(1,n); % and phi uniformly over (0:2pi) --- see Rajon

 directions= cat(1,dir_theta,dir_phi); % concatenate theta and phi to make a two row

direction matrix

end

function [locations,stopflg]= update_rays(locations,directions,mask)

 curdims= size(mask); % get current dimensions

 sin_theta= sin(directions(1,:)); % avoid calculating

twice (see next two lines)

 dir_x= sin_theta .* cos(directions(2,:)); % calculate current

direction as Cartesian vector

 dir_y= sin_theta .* sin(directions(2,:)); % ...

 dir_z= cos(directions(1,:)); % ...

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2);

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm;

 head= locations + cat(1,dir_x,dir_y,dir_z); % specify head of ray

as being unit distance away along line in specified direction

 ijk= ceil(locations); % determine indices

of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

174

indicating for each ray if it is in or out of the grid

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't signal

stop until all rays are out of object

 box_corner= floor(locations);

 [p,t]= ray_box_intersect(locations(:,in),head(:,in),box_corner(:,in)); %

determine intersection with sides of bounding box

 locations(:,in)= p; % this is the

new location

 locations(:,in)= locations(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;

 % keep going just a little further to avoid being right on the face

 else

 stopflg= 1; % all out

 end

end

Published with MATLAB® R2017a

function pathlength_analysis(CTdirectory,PTdirectory)

pix_size= 1; % coordinate system

going forward will have isotropic voxels of size pix_size cm

ct= MSKread3DDicom([CTdirectory, '*']); % get CT data

ct_xsize= ct.dicomHdr.PixelSpacing(1) / 10; % get voxel sizes in cm

ct_ysize= ct.dicomHdr.PixelSpacing(2) / 10; % ...

ct_zsize= ct.dicomHdr.SpacingBetweenSlices / 10; % ...

new_xdim= double(round(ct.dicomHdr.Width*ct_xsize/pix_size)); % determine new dims to get

isotropic voxels

new_ydim= double(round(ct.dicomHdr.Height*ct_ysize/pix_size)); % ...

new_zdim= double(round(size(ct.data,3)*ct_zsize/pix_size)); % ...

[xi,yi,zi]=

meshgrid((1:new_xdim)*pix_size/ct_xsize,(1:new_ydim)*pix_size/ct_ysize,(1:new_zdim)*pix_size/ct_z

size); % resample mesh

tissue_distribution=interp3(ct.data,xi,yi,zi); %

tissue_distribution is isotropic

tissue_distribution= (tissue_distribution>-900 & tissue_distribution<-200) + ...

 (tissue_distribution>=-200 & tissue_distribution<300)*2 + ...

 (tissue_distribution>=300)*3; % segment

into air, lung, water and bone (0,1,2,3) mua values are (0,0.026,0.095,0.12)

pt= MSKread3DDicom([PTdirectory, '*']); % get PT data

175

pt_xsize= pt.dicomHdr.PixelSpacing(1) / 10; % get voxel sizes in cm

pt_ysize= pt.dicomHdr.PixelSpacing(2) / 10; % ...

pt_zsize= pt.dicomHdr.SliceThickness / 10; % ...

[xi,yi,zi]=

meshgrid((1:new_xdim)*pix_size/pt_xsize,(1:new_ydim)*pix_size/pt_ysize,(1:new_zdim)*pix_size/pt_z

size); % resample mesh

source_distribution=interp3(pt.data,xi,yi,zi); %

source_distribution sampled same as tissue distribution

figure; orthosc(tissue_distribution)

figure; orthosc(source_distribution)

xcenter= pix_size*new_xdim/2; % coordinate of image

center

ycenter= pix_size*new_ydim/2; % ...

axial_extent= 15.7; % PT cylinder axial

extent in cm - be nice if this was in header

R= 88 / 2; % PT cylinder

radius in cm - be nice if this was in header

ptcyl= [xcenter,ycenter,0,xcenter,ycenter,47*pix_size,R]; % define PT cylinder

(points at either end of axis followed by radius

if pt.dicomHdr.Units ~= 'BQML' % be sure of units

 error('error - data not stored in Bq/mL\n');

end

% set fudge factors based upon scanner type

if pt.dicomHdr.ManufacturersModelName == 'Discovery 690'

 detector_efficiency_ff= 0.6061;

 timing_window_ff= 0.9544;

elseif pt.dicomHdr.ManufacturersModelName == 'Discovery 600'

 detector_efficiency_ff= 0.7711;

 timing_window_ff= 1.1171;

elseif pt.dicomHdr.ManufacturersModelName == 'Discovery STE'

 fprintf(1,warning - 'fudge factors for DSTE not yet established\n');

 detector_efficiency_ff= 1;

 timing_window_ff= 1;

else

 fprintf(1,'Unknown scanner\n');

 detector_efficiency_ff= 1;

 timing_window_ff= 1;

end

total_coinc= 0;

for i=1:size(pt.data,3)

 total_activity_Bq= overall_sum(pt.data(:,:,i)) * pt_xsize * pt_ysize * pt_zsize; % sum

times voxel volume to get total activity for this slice

 total_activity_Bq= total_activity_Bq / (pt.dicomHdrVector(i).DecayFactor *

pt.dicomHdrVector(i).DeadTimeFactor); % adjust for dead time and decay

 total_coinc= total_coinc + total_activity_Bq * double(pt.dicomHdrVector(i).acq_duration) *

pt.dicomHdr.positron_fraction; % accumulate expected total number of coincident events within

the FOV

end

176

nEventsSimulated= 1e5;

[locations,directions,starts,lengths] =

pet_photon_sim(tissue_distribution,nEventsSimulated,source_distribution);

nLines= size(locations,2); % total number

of annihilation pairs simulated

locations= locations * pix_size; % convert to cm

starts= starts * pix_size; % ...

lengths= lengths * pix_size; % ...

[h,x]=hist(lengths(2,:,1)+lengths(2,:,2),100); figure; bar(x,h);

[h,x]=hist(lengths(3,:,1)+lengths(3,:,2),100); figure; bar(x,h);

[h,x]=hist(lengths(4,:,1)+lengths(4,:,2),100); figure; bar(x,h);

nSlices= double(pt.dicomHdr.NumberOfSlices); % get number of

slices

nBeds= (nSlices-5) / 42; % assume 47 slices

per bed with 5 slice overlap

begSlices= ((1:nBeds)-1) * 42 + 1; % locations of 1st

slice of each bed position in "slice" units

bed_positions= begSlices * pt_zsize; % convert to cm

[hitflgs,hitlocs] =

pet_geometry_filter(locations,[xcenter,ycenter],[axial_extent,R],bed_positions,[atan2(axial_exten

t,2*R),0]);

mualengths= lengths;

mualengths(1,:,:)= 0;

mualengths(2,:,:)= mualengths(2,:,:) * 0.095; % 0.026;

mualengths(3,:,:)= mualengths(3,:,:) * 0.095;

mualengths(4,:,:)= mualengths(4,:,:) * 0.12;

mualengths= squeeze(sum(mualengths,1));

figure;

for i=1:nBeds

 j=round((i-1)*13.8462)+1;

 s(i)=overall_sum(source_distribution(:,:,j:(j+13)));

 t(i)=overall_sum(tissue_distribution(:,:,j:(j+13)));

 % determine measured trues - note: definition of prompts is different depending up the randoms

correction method applied

 midSlice= (i-1) * 42 + 1; % location

of middle slice of current bed position in "slice" units

 fprintf(1,'midslice %d

location=%f\n',pt.dicomHdrVector(midSlice).SeriesNumber,pt.dicomHdrVector(midSlice).SliceLocation

);

 randoms_meas= pt.dicomHdrVector(midSlice).total_delays; %

measured randoms

 if pt.dicomHdr.RandomsCorrectionMethod == 'SING'

 trues_meas= pt.dicomHdrVector(midSlice).total_prompts * (1 -

pt.dicomHdrVector(midSlice).ScatterFractionFactor) - randoms_meas; % -

pt.dicomHdrVector(midSlice).total_delays;

% trues_meas= pt.dicomHdrVector(midSlice).total_prompts; % -

pt.dicomHdrVector(midSlice).total_delays;

177

 else

 fprintf(1,'warning - untested conditions using other than singles-based randoms

correction\n');

 trues_meas= pt.dicomHdrVector(midSlice).total_prompts * (1 -

pt.dicomHdrVector(midSlice).ScatterFractionFactor) - randoms_meas;

 end

 mtv(i)=trues_meas;

 mrv(i)=randoms_meas;

 coinc_hitflg= (sum(hitflgs(:,:,i),1) == 2); % separate

coincidences from singles

 singl_hitflg= (sum(hitflgs(:,:,i),1) == 1); % ...

 a(i)= sum(sum(mualengths(coinc_hitflg,:),2));

 b(i)= sum(sum(squeeze(lengths(3,coinc_hitflg,:)),2));

 p_coinc= sum(exp(-sum(mualengths(coinc_hitflg,:),2))) / nLines; %

calculate the probability of a coincident pair

 p_singl= sum(sum(exp(-mualengths(singl_hitflg,:)),2)) / nLines; %

calculate the probability of a single

 trues_estimate= total_coinc * p_coinc * detector_efficiency_ff^2; % estimate trues

 randoms_estimate= ((total_coinc * p_singl * detector_efficiency_ff) /

double(pt.dicomHdrVector(midSlice).acq_duration)) * timing_window_ff;

 etv(i)=trues_estimate;

 erv(i)=randoms_estimate;

 yyy(i)= p_coinc * nLines;

% fprintf(1,'\n\n\nBed position %d \n',i);

% fprintf(1,'estimated trues =\t%f\nmeasured trues =\t%f\noff by factor of

%f\n',trues_estimate,trues_meas,trues_estimate/trues_meas);

% fprintf(1,'estimated rndms =\t%f\nmeasured rndms =\t%f\noff by factor of

%f\n',randoms_estimate,randoms_meas,randoms_estimate/randoms_meas);

 hold on; plot3(starts(1,coinc_hitflg),starts(2,coinc_hitflg),starts(3,coinc_hitflg),'x')

plot3(hitlocs(1,coinc_hitflg,2,i),hitlocs(2,coinc_hitflg,2,i),hitlocs(3,coinc_hitflg,2,i),'rx')

plot3(hitlocs(1,coinc_hitflg,1,i),hitlocs(2,coinc_hitflg,1,i),hitlocs(3,coinc_hitflg,1,i),'gx')

 axis equal

end

figure; plot(mtv); hold on; plot(etv,'r'); plot(s,'g'); plot(yyy,'m');

figure; plot(t);

figure; plot(a);

figure; plot(b);

keyboard

Published with MATLAB® R2017a

function P= perspective_transform_build(pos,target,up,va)

v= target - pos; % v is vector describing the direction that the

camera is pointing

v= v / sqrt(sum(v.^2)); % normalize to unit length

178

up= up - dot(up,v) * v; % up is the camera's up direction, the real up is

perpendicular to v

up= up / sqrt(sum(up.^2)); % normalize up vector to unit length

r= cross(v,up); % r points to the camera's right

R= [[0;0;1],[0;1;0],[1;0;0]] \ [v',up',r']; % R will cause v to point to +Z, up to point to +Y

and r to point to +X

f= cot((va/2)*(pi/180)); % f is the focal length

K= diag([f,f,1]); % K is the camera internal calibration matrix

P= K * R * [eye(3),-pos']; % P is the camera matrix

Published with MATLAB® R2017a

% PERSPECTIVE_TRANSFORM_DECOMPOSE Extract K, R from camera matrix P.

%

% [K,R,Ctilde] = PERSPECTIVE_TRANSFORM_DECOMPOSE(P [,noscale]) finds K, R, t such that P =

K*R*[eye(3) -Ctilde].

% It is det(R)==1.

% K is scaled so that K(3,3)==1 and all diagonal elements of K are >0.

%

% Works also generally for any P of size N-by-(N+1).

% Works also for P of size N-by-N, then t is not computed.

% Brad Beattie

function [K, R, Ctilde] = perspective_transform_decompose(P,noscale)

N = size(P,1);

H = P(:,1:N);

[K,R] = vgg_rq(H);

Ctilde = -P(:,1:N)\P(:,end);

if nargin > 1

 for i=1:3

 R(i,:)= R(i,:) * sign(K(i,i));

 K(:,i)= K(:,i) * sign(K(i,i));

 end

 K= K / K(3,3);

end

Published with MATLAB® R2017a

%PHOTON_INTERACTION - given photon energy, material and path-length, calculates probability of

depositing specified energies

% [pedei,cdei,ppdei]= photon_interaction(hv,material,pathlength,at_energies)

% hv - photon energy in MeV

% material - type of material photon is interacting with (must be supported by mu_table)

% pathlength - mean path-length through material

% at_energies - vector of energies at which probabilities/intensities are calculated

179

% pedei - photoelectric deposited energy intensity

% cdei - Compton deposited energy intensity

% ppdei - pair production deposited energy intensity

function [pedei,cdei,ppdei,nu]= photon_interaction(hv,material,pathlength,at_energies)

% allocate result vectors

pedei= zeros(size(at_energies)); % photelectric deposited energy intensity

cdei= zeros(size(at_energies)); % Compton deposited energy intensity

ppdei= zeros(size(at_energies)); % pair-production deposited energy intensity

if hv <= 0, return; end

% get mu's for incident photon energy

[mu_compton,mu_photoelectric,mu_pairproduction,mu_total]= mu_table(material,hv);

% apply mu to length to get probability of interaction

p_total= 1 - exp(-mu_total*pathlength);

p_compton= p_total .* mu_compton ./ mu_total;

p_photoelectric= p_total .* mu_photoelectric ./ mu_total;

p_pairproduction= p_total .* mu_pairproduction ./ mu_total;

% photoelectric

[de,i]= min(abs(hv-at_energies)); % find energy in at_energies closest to hv

if de > 0.1, warning('Photoelectric effect deposits energy far from requested range'); end

pedei(i)= p_photoelectric; % assign entire photoelectric fraction to that energy

% Compton

[T,dedT,nu]= compton_energy_spectrum(hv); % calculate energy spectrum for Compton electrons

cdei= interp1(T,dedT,at_energies); % interpolate to at_energies

cdei(isnan(cdei))= 0; % zero values outside range of Compton energy table

sum_cdei= sum(cdei);

if sum_cdei > 0, cdei= p_compton * cdei / sum_cdei; end % force sum to Compton probability

if nargout == 4

 nu= interp1(T,nu,at_energies);

 nu(isnan(nu))= 0;

end

% pair production

if hv > 1.022 % only ocurrs with energies greater than 2 * 0.511 MeV

 [de,i]= min(abs((hv-1.022)-at_energies)); % find energy in at_energies closest to hv-1.022

 if de > 0.1, warning('pair-production effect deposits energy far from requested range'); end

 ppdei(i)= p_pairproduction; % assign entire pair-production fraction to that energy

end

Published with MATLAB® R2017a

function [img,zbuf]= project3Dto2D(points,intensities,xDim,yDim,P)

% project3Dto2D

img= zeros(xDim,yDim);

zbuf= repmat(inf,xDim,yDim);

tmp= points(:,3);

points(:,3)= points(:,1); % X becomes Z (i.e. CT Y becomes Z)

points(:,1)= 191 - points(:,2); % Y becomes flipped X (i.e. CT X becomes flipped X)

points(:,2)= tmp; % Z becomes Y (i.e. CT Z becomes Y)

180

points= P * ([points,ones(size(points,1),1)])';

points(1:2,:)= round(points(1:2,:) ./ repmat(points(3,:),2,1));

inImgIndices= find(points(1,:)>=1 & points(1,:)<=xDim & points(2,:)>=1 & points(2,:)<=yDim);

nPoints= numel(inImgIndices);

for i=1:nPoints

 j= inImgIndices(i);

 x= points(1,j);

 y= points(2,j);

 if points(3,j) < zbuf(x,y) % if z is closer than current closest

 zbuf(x,y)= points(3,j); % update closest z

 img(x,y)= intensities(j); % assign pixel intensity based on given intensity

 end

end

Published with MATLAB® R2017a

% delta_rayEnergy - vector of random delta ray energies in MeV

function delta_rayEnergy= rand_delta_ray(betaEnergy,betaThreshold)

% betaEnergy - energy of the beta particle in MeV

c = 299792458; % speed of light in a

vacuum in meters per second

me= 9.1093821545e-31; % electron rest mass

in kg

re= 2.817940289458e-15; % electron radius in

meters

N0= 6.0221417930e23; % Avogadro's number

MeVperJoule= 6.241506363e+12;

%MetersPerPlanckLength= 1.61625281e-35;

%KgPerPlanckMass= 2.1764411e-8;

%SecondsPerPlanckTime= 5.3912427e-44;

velocity= beta_velocity(betaEnergy); % the beta particle

velocity in meters per second

beta= velocity / c; % electron velocity

fraction of the speed of light

re= re * 100; % convert from

meters to cm

me= me * c^2; % convert from kg to

Joules

me= me * MeVperJoule; % convert from Joules

to MeV

% select constants B and C such that CDF starts at 0 and ends at 1

181

C= 2*pi*re^2*me*N0 ./ (beta.^2.*betaThreshold);

B= 1 ./ (C - (2*pi*re^2*me*N0 ./ (beta.^2.*betaEnergy)));

cdf= rand(size(betaEnergy)); % random number

between 0 and 1

delta_rayEnergy= 2*pi*re^2*me*N0 ./ (beta.^2.*(C-cdf./B)); % invert

dellta_ray_cdf

Published with MATLAB® R2017a

% rand_moliere - generates random numbers according to distribution originally described by

Moliere and as calculated by Levin

function theta= rand_moliere(thickness,betaEnergy,A,Z);

% thickness - path length(s) in cm traveled by one or more betas

% betaEnergy - energy(ies) in MeV of one or more betas

% uses "rejection method" described by Levin and explained in INTRODUCTION TO MONTE CARLO METHODS

by D.J.C. MACKAY of Department of Physics, Cambridge University.

Nt= numel(thickness); % number of path

lengths

Ne= numel(betaEnergy); % number of beta

energies

% either or both thickness and betaEnergy can be vectors, if both vectors they must be of same

size

% if only one is a vector, then singular value of other applies to all

if Nt ~= Ne & Nt ~= 1 & Ne ~= 1

 error('thickness and betaEnergy must be of the same size or equal to one');

end

N=max([Nt,Ne]); % the length of the

thickness/betaEnergy vector(s) determines the number of angles to return

theta= repvals(NaN,N); % allocate and

initialize thetas

i_left= (1:N)'; % start by

needing all

while N > 0

 pdf_max= moliere_pdf(0,thickness(i_left),betaEnergy(i_left),A,Z); % the max of Moliere's

PDF is always at angle 0

 pdf_min= moliere_pdf(pi,thickness(i_left),betaEnergy(i_left),A,Z); % and the min is at

the maximum deflection angle of +/- pi

 sigmasq= -pi^2 ./ (2*log(pdf_min./pdf_max)); % calculates variance

of bounding Gaussian reference function

 x= randn(N,1) .* sqrt(sigmasq); % randomly sample

from Gaussian

 i= find(x > -pi & x <= pi); % only consider

those between +/- pi

 g_ref= pdf_max(i) .* exp(-x(i).^2 ./ (2*sigmasq(i))); % determine

182

height of Gaussian at those sample points

 pdf_ref= moliere_pdf(x(i),thickness(i_left(i)),betaEnergy(i_left(i)),A,Z); % determine

height of Moliere PDF at those same sample points

 y= rand(size(pdf_ref)) .* g_ref; % for each

sample point, randomly sample a number from a uniform distribution maxing at g_ref

 j= find(y<=pdf_ref); % accept value

for theta if random height value less than Moliere's function

 theta(i_left(i(j)))= x(i(j)); % assign to

return vector

 i_left= find(isnan(theta)); % see who's

left unassigned

 N= numel(i_left);

end

Published with MATLAB® R2017a

function histo = singles_path_length_histogram(mask3d,density,nbins)

 if nargin < 2, density= 100; end

 if nargin < 3, nbins= 100; end

 histo= zeros(nbins,1); % allocate space for result

 dims= size(mask3d); % mask dimensions

 maxlength= sqrt(sum(dims.^2)); % maximum possible pathlength through object is between

diagonal corners

 l2dims= ceil(log2(dims)); % log2 of dimensions rounded up

 newdims= 2.^l2dims; % next largest power of two for each dimension

 nlevels= min(l2dims); % number of subsamplings before one of the

dimensions goes to 1

 % calculate series of subsampled masks

 m{1}= zeros(newdims);

 m{1}(1:dims(1),1:dims(2),1:dims(3))= mask3d;

 mask3d= m{1};

 for level=2:nlevels

 m{level}= zoomout3(m{level-1}); % averages groups of 2x2x2 voxels

 m{level}(m{level}~=1)= 0; % zero out all non-ones

 end

 % at each level, remove voxels corresponding to regions that were entirely within the object

at the lower levels

 tmp1= zoomin3(m{nlevels});

 for level=(nlevels-1):-1:1 % working from the bottom up

 tmp2= m{level}; % save current level

 m{level}(tmp1==1) = 0; % zero out voxels correspnding to ones in the lower level

 tmp1= zoomin3(tmp2); % use blow up of copy in next round

 end

 % at this point, each level contains only the 1's that are "new" to that level

183

 % initialize photon starting points, final locations and directions

 locations= [];

 starts= [];

 directions= [];

 % work from the bottom level up

 for level=nlevels:-1:1

 curdims= size(m{level}); % get dimensions of the current level

 indices= find(m{level}==1); % find the 1's

 nIndices= numel(indices); % count them

 if nIndices > 0

 [x,y,z]= ind2sub(curdims,indices); % convert

to coordinate indices

 [new_locations,new_directions]= init_rays(x,y,z,density,level); % fill

each with photons

 locations= [locations,new_locations]; % add to

list of current locations

 starts= [starts,new_locations]; % add to

list of starting locations

 directions= [directions,new_directions]; % keep

full list of directions

 locations= update_rays(locations,directions,m{level});

 end

 if level > 1

 locations= locations * 2;

 starts= starts * 2;

 end

 end

 stopflg= 0;

 while ~stopflg

 [locations,stopflg]= update_rays(locations,directions,mask3d);

 end

% need to keep updating till all rays leave the mask -- also need to terminate based on mask

only at the final level - instead keep rays on hold (ie don't extend but don't terminate)

 d= sqrt(sum((locations-starts).^2));

 [h,x]= hist(d,nbins);

 histo= [x,h];

 keyboard

end

function [locations,directions] = init_rays(x,y,z,density,level)

 n= density * 8^(level-1) * numel(x); % the total number of new rays is the density

times the voxel volume times the number of voxels

 x= rowvectorize(x); % make sure all are row vectors

 y= rowvectorize(y); % ...

 z= rowvectorize(z); % ...

 locations= repmat([x;y;z],1,n/numel(x)) - rand(3,n); % random starting points within boxes

 dir_theta= acos(1-2*rand(1,n)); % choose random isotropic initial directions

specified in polar coordinates with theta distributed uniformly over cos(0:2pi)

 dir_phi= 2 * pi * rand(1,n); % and phi uniformly over (0:2pi) --- see Rajon

 directions= cat(1,dir_theta,dir_phi); % concatenate theta and phi to make a two row

184

direction matrix

end

function [locations,stopflg]= update_rays(locations,directions,mask)

 curdims= size(mask); % get current dimensions

 sin_theta= sin(directions(1,:)); % avoid calculating

twice (see next two lines)

 dir_x= sin_theta .* cos(directions(2,:)); % calculate current

direction as Cartesian vector

 dir_y= sin_theta .* sin(directions(2,:)); % ...

 dir_z= cos(directions(1,:)); % ...

 nrm= sqrt(dir_x.^2 + dir_y.^2 + dir_z.^2);

 dir_x= dir_x ./ nrm; dir_y= dir_y ./ nrm; dir_z= dir_z ./ nrm;

 head= locations + cat(1,dir_x,dir_y,dir_z); % specify head of ray

as being unit distance away along line in specified direction

 ijk= ceil(locations); % determine indices

of new bounding box within mask for each ray

 in= (ijk(1,:) >= 1) & (ijk(2,:) >= 1) & (ijk(3,:) >= 1) & (ijk(1,:) <= curdims(1)) & (ijk(2,:)

<= curdims(2)) & (ijk(3,:) <= curdims(3)); % vector of 1's and 0's (ie TRUES and FALSES)

indicating for each ray if it is in or out of the grid

 indx= sub2ind(curdims,ijk(1,in),ijk(2,in),ijk(3,in)); % list of indices

into mask that are not outside dimensions of mask - the length of this vector is equal to the

number of 1's in "in"

 in_in= (mask(indx) == 1); % of these, which are

also in the object defined by mask

 in(in)= in_in; % now 1's indicate

for each ray that it is both in the grid and within the object defined by the mask

 if any(in)

 stopflg= 0; % don't signal

stop until all rays are out of object

 box_corner= floor(locations);

 [p,t]= ray_box_intersect(locations(:,in),head(:,in),box_corner(:,in)); %

determine intersection with sides of bounding box

 locations(:,in)= p; % this is the

new location

 locations(:,in)= locations(:,in) + cat(1,dir_x(:,in),dir_y(:,in),dir_z(:,in)) * 1.0e-10;

 % keep going just a little further to avoid being right on the face

 else

 stopflg= 1; % all out

 end

end

Published with MATLAB® R2017a

function factor = surface_beta_loss_factor(x,psf)

cs_psf= cumtrapz(x,psf);

cs_psf= cs_psf * 0.5 / cs_psf(end);

factor= trapz(x,0.5-cs_psf);

185

Published with MATLAB® R2017a

CODE ASSOCIATED WITH AIM 3

function [M] = applyCombines(combineIndices, M)

 [s1,s2,s3]=size(M);

 for k=1:numel(combineIndices)

 j=combineIndices(k);

 M(:,j,:)=M(:,j,:)+M(:,j+1,:);

 i=(1:s2)~=(j+1);

 M= M(:,i,:);

 s2=s2-1;

 end

end

Published with MATLAB® R2017a

function W = calculateModel(interiorPoints, voxelWidth, detectorPoints, detectorWidth, mu)

[nVoxels,three]=size(interiorPoints);

if three ~= 3, error('interiorPoints must be nVoxels by 3 in size'); end

[nDetectors,three]=size(detectorPoints);

if three ~= 3, error('detectorPoints must be nDetectors by 3 in size'); end

nWavelengths= numel(mu);

W= zeros(nDetectors,nWavelengths,nVoxels);

% create attenuation lookup table

r=(1:500)*100/500; % range of source to surface distances is 1/5 to 100 mm

max_pld=-log(eps)/min(mu); % maximum pathlength distance that needs to be considered

is determined by the minimum attenuation

pld=(1:500)*max_pld/500; % range of pathlengths

dpld= pld(1); % step size

lut= zeros(500,nWavelengths); % lookup table to contain 500 source distances by

nWavelengths

for i=1:nWavelengths

 LMD= log(0.7339 * r.^1.907 + 1.66); % mu parameters of the lognormal

distribution describing the pathlengths

 LSD= 0.1973 * (1-exp(-0.5558*r)) + 0.3146 * exp(-1.403*r); % sigma parameter of the

lognormal distribution describing the pathlengths

 % fill in lookup table for each source distance and wavelength integrating over the lognormal

pathlength distribution

 for j=1:numel(r)

 lut(j,i)= sum(exp(-mu(i)*pld) .* lognpdf(pld,LMD(j),LSD(j)) * dpld);

 end

end

for i=1:nDetectors

 dx2= (detectorPoints(i,1) - interiorPoints(:,1)).^2; % squared distance in x of

detectorPoint from all interiorPoints

186

 dy2= (detectorPoints(i,2) - interiorPoints(:,2)).^2; % same for y

 dz2= (detectorPoints(i,3) - interiorPoints(:,3)).^2; % same for z

 d2= (dx2+dy2+dz2) * voxelWidth.^2; % squared distance in mm^2 between

detectorPoint and all interiorPoints

 d= sqrt(d2); % distance in mm

 for j=1:nWavelengths

 % distribute probability over surface of a sphere, factor in detector sizes

 W(i,j,:)= detectorWidth^2 * (1./(4*pi*d2))' .* interp1(r,lut(:,j),d)';

 % multiplying by W should convert photons/second/voxel to photons/second/detector

 end

end

Published with MATLAB® R2017a

function [optimalTimes, estNoise, pinvW] = determineOptimalTimes(W3D, X, T, D, R)

 [nDetectors,nWavelengths,nVoxels]= size(W3D);

 W=reshape(W3D,nDetectors*nWavelengths,nVoxels); % reshape into 2D weight matrix

 pinvW=pinv(W); % calculate pseudo inverse

 pinvW3D=reshape(pinvW',nDetectors,nWavelengths,nVoxels); % make it look like W3D

 for j=1:nWavelengths

 Wj=squeeze(W3D(:,j,:)); % extract W for wavelength j

 pWj=squeeze(pinvW3D(:,j,:))'; % extract and invert pseudo inverse W for wavelength j

 pWj2=pWj.^2; % uncertainties sum in quadrature so weights are squared

 Y=Wj*X; % estimated measurements for specified source

distribution

 % calculate parameters for equations (see OptimalTimeCalculation_v9.doc)

 Q(j)=mean(pWj2*Y);

 QD(j)=mean(sum(pWj2*D,2));

 QR(j)=mean(sum(pWj2*R,2));

 end

 f=sqrt(Q+QD); f=f/sum(f); % initial estimate of f

 for i=1:20 % iterate 20 times (very

likely convergent)

 f=sqrt(Q+QD+(QR./f)); f=f/sum(f); % update estimate of f

 end

 optimalTimes= f * T; % convert fractions to

actual times

 estNoise=sqrt(sum((Q+QD+(QR./optimalTimes)) ./ optimalTimes)); % estimated noise

end

Published with MATLAB® R2017a

function [optimalTimes, optimalWavelengths, optimalBandwidths, newW3D, combineIndices,

finalUncertainty, initalUncertainty] = determineOptimalTimesAndWavelengths(curW3D, X, T, D, R,

187

curWavelengths, curBandwidths)

[nDetectors,nWavelengths,nVoxels]=size(curW3D);

[optimalTimes,initalUncertainty]=determineOptimalTimes(curW3D,X,T,D,R); % start by determining

optimal time distribution when using all wavelengths

%initalUncertainty=initalUncertainty/sqrt(nWavelengths); %TESTING

finalUncertainty=initalUncertainty % initialize final (i.e.

minimum) uncertainty

optimalWavelengths=curWavelengths; % initialize final

optimal wavelengths

optimalBandwidths=curBandwidths; % initialize bandwidths

combineIndices=[]; % initalize record or

combinations

while nWavelengths > 2 % always have at least

two wavelengths

 newUncertainty=zeros(1,nWavelengths-1); % allocate space for

uncertainty info

 for j=1:(nWavelengths-1) % try combining each

adjacent pair of wavelengths in turn

 newW3D= curW3D; % using a copy of the

matrix ...

 newW3D(:,j,:)= newW3D(:,j,:) + newW3D(:,j+1,:); % combine (sum) matrix

for one pair of wavelengths

 i=(1:nWavelengths)~=(j+1); % identify element to

be removed

 newW3D= newW3D(:,i,:); % remove from matrix

 [tmp1,tmp2]= determineOptimalTimes(newW3D, X, T, D, R); % calc uncertainty for

new system matrix

% tmp2=tmp2/sqrt(nWavelengths-1); %TESTING

 newIntegrationTimes{j}=tmp1;

 newUncertainty(j)=tmp2

 end

 [minUncertainty,j]= min(newUncertainty); % select reduced

wavelength that most reduced uncertainty

 if minUncertainty < finalUncertainty % keep it only if

better than best so far

 combineIndices=[combineIndices,j]; % update

record of combinations

 finalUncertainty=minUncertainty % update

uncertainty

 optimalTimes=newIntegrationTimes{j}; % udate

integration times

 curW3D(:,j,:)= curW3D(:,j,:) + curW3D(:,j+1,:); % combine as

before but with current

 i=(1:nWavelengths)~=(j+1); % identify

element to be removed

 curW3D= curW3D(:,i,:); % remove extra

wavelength from matrix

optimalWavelengths(j)=(optimalWavelengths(j)*optimalBandwidths(j)+optimalWavelengths(j+1)*optimal

Bandwidths(j+1))/(optimalBandwidths(j)+optimalBandwidths(j+1)); % combine wavelengths (new is

weighted average of combined)

 optimalBandwidths(j)=optimalBandwidths(j)+optimalBandwidths(j+1); % sum two

188

bandwidths together

 optimalWavelengths=optimalWavelengths(i); % remove extra

wavelength

 optimalBandwidths=optimalBandwidths(i); % remove extra

bandwidth

 nWavelengths=nWavelengths-1; % reflect

reduction in number of wavelengths

 else

 break; % if nothing better -

stop

 end

end

Published with MATLAB® R2017a

function [optimalTimes, optimalWavelengths, optimalBandwidths, newW3D, combineIndices,

finalUncertainty, initalUncertainty] = determineOptimalTimesAndWavelengthsForEM(curW3D, X, T,

D, R, curWavelengths, curBandwidths)

[nDetectors,nWavelengths,nVoxels]=size(curW3D);

[optimalTimes,initalUncertainty]=determineOptimalTimesForEM(curW3D,X,T,D,R); % start by

determining optimal time distribution when using all wavelengths

%initalUncertainty=initalUncertainty/sqrt(nWavelengths); %TESTING

finalUncertainty=initalUncertainty % initialize final

(i.e. minimum) uncertainty

optimalWavelengths=curWavelengths; % initialize final

optimal wavelengths

optimalBandwidths=curBandwidths; % initialize bandwidths

combineIndices=[]; % initalize record or

combinations

while nWavelengths > 2 % always have at least

two wavelengths

 newUncertainty=zeros(1,nWavelengths-1); % allocate space for

uncertainty info

 for j=1:(nWavelengths-1) % try combining each

adjacent pair of wavelengths in turn

 newW3D= curW3D; % using a copy of the

matrix ...

 newW3D(:,j,:)= newW3D(:,j,:) + newW3D(:,j+1,:); % combine (sum) matrix

for one pair of wavelengths

 i=(1:nWavelengths)~=(j+1); % identify element to

be removed

 newW3D= newW3D(:,i,:); % remove from matrix

 [tmp1,tmp2]= determineOptimalTimesForEM(newW3D, X, T, D, R); % calc uncertainty

for new system matrix

% tmp2=tmp2/sqrt(nWavelengths-1); %TESTING

 newIntegrationTimes{j}=tmp1;

 newUncertainty(j)=tmp2

 end

 [minUncertainty,j]= min(newUncertainty); % select reduced

189

wavelength that most reduced uncertainty

 if minUncertainty < finalUncertainty % keep it only if

better than best so far

 combineIndices=[combineIndices,j]; % update

record of combinations

 finalUncertainty=minUncertainty % update

uncertainty

 optimalTimes=newIntegrationTimes{j}; % udate

integration times

 curW3D(:,j,:)= curW3D(:,j,:) + curW3D(:,j+1,:); % combine as

before but with current

 i=(1:nWavelengths)~=(j+1); % identify

element to be removed

 curW3D= curW3D(:,i,:); % remove extra

wavelength from matrix

optimalWavelengths(j)=(optimalWavelengths(j)*optimalBandwidths(j)+optimalWavelengths(j+1)*optimal

Bandwidths(j+1))/(optimalBandwidths(j)+optimalBandwidths(j+1)); % combine wavelengths (new is

weighted average of combined)

 optimalBandwidths(j)=optimalBandwidths(j)+optimalBandwidths(j+1); % sum two

bandwidths together

 optimalWavelengths=optimalWavelengths(i); % remove extra

wavelength

 optimalBandwidths=optimalBandwidths(i); % remove extra

bandwidth

 nWavelengths=nWavelengths-1; % reflect

reduction in number of wavelengths

 else

 break; % if nothing better -

stop

 end

end

Published with MATLAB® R2017a

function [optimalTimes, estNoise, U] = determineOptimalTimesForEM(W3D, X, T, D, R)

 [nDetectors,nWavelengths,nVoxels]= size(W3D);

 W=reshape(W3D,nDetectors*nWavelengths,nVoxels); % reshape into 2D weight matrix

 U=EMerrorMatrix1(W,X,160); % calculate Barrett's inverse

 U3D=reshape(U',nDetectors,nWavelengths,nVoxels); % make it look like W3D

 for j=1:nWavelengths

 Wj=squeeze(W3D(:,j,:)); % extract W for wavelength j

 Uj=squeeze(U3D(:,j,:))'; % extract and invert Barrett's error inverse for

wavelength j

 Uj2=Uj.^2; % uncertainties sum in quadrature so weights are squared

 Y=Wj*X; % estimated measurements for specified source

distribution

 % calculate parameters for equations (see OptimalTimeCalculation_v9.doc)

190

 Q(j)=mean(Uj2*Y);

 QD(j)=mean(sum(Uj2*D,2));

 QR(j)=mean(sum(Uj2*R,2));

 end

 f=sqrt(Q+QD); f=f/sum(f); % initial estimate of f

 for i=1:20 % iterate 20 times (very

likely convergent)

 f=sqrt(Q+QD+(QR./f)); f=f/sum(f); % update estimate of f

 end

 optimalTimes= f * T; % convert fractions to

actual times

 estNoise=sqrt(sum((Q+QD+(QR./optimalTimes)) ./ optimalTimes)); % estimated noise

end

Published with MATLAB® R2017a

function [a,b_prime] = em_w_noise(niter,b,m,n,a)

[r,c]= size(m);

m_prime= bsxfun(@rdivide,m,sum(m,1))';

if nargin < 5

 a= ones(c,1) * (sum(b) / c);

end

for i=1:niter

 b_prime= m * a + n;

 e= b ./ b_prime;

 a= a .* (m_prime * e);

end

Published with MATLAB® R2017a

function [U,a] = EMerrorMatrix1(W,X,niter)

% U= bsxfun(@rdivide,W,sum(W,1))';

 [M,N]= size(W);

 a=ones(size(X))*mean(X); % a is Nx1

% a=X;

 U=zeros(N,M); % U is NxM

 s=sum(W)'; % s is Nx1

 Y=W*X; % Y is Mx1

 WT=W'; % WT is NxM

 for i=1:niter

 Wa=(W*a)'; % Wa is 1xM

 B=diag(1./s)*WT*diag(1./Wa); % B is NxM

 A=B*W*diag(a); % A is NxN

 OmA=eye(N,N)-A;

 U=B+(OmA*U);

 e=Y./(Wa');

191

 a=a.*(WT*e);

 a=a./s;

 end

end

Published with MATLAB® R2017a

function [M] = expandCombines(combineIndices, M)

 for k=numel(combineIndices):-1:1

 [s1,s2,s3]=size(M);

 newM=zeros(s1,s2+1,s3);

 j=combineIndices(k);

 i=(1:(s2+1))~=(j+1);

 newM(:,i,:)= M;

 newM(:,j+1,:)=newM(:,j,:);

 M=newM;

 end

end

Published with MATLAB® R2017a

function [sensitivity, darkCurrent, readNoise] = IVIS200parameters(FOVsetting, pixBin, fstop,

detectorArea)

 % parameters desccribing an IVIS 200

 FOVdim_cm.A=3.9; FOVdim_cm.B=6.5; FOVdim_cm.C=13; % FOV in cm for height

settings A, B, C, D, E

 FOVdim_cm.D=19.5; FOVdim_cm.E=26;

 CCDdim_cm=2.6; % CCD dimension in cm

 CCDdim_pix= 1920 / pixBin; % CCD dimension in pixels

(note: CCD is 2048x2048 but only 1920x1920 used)

 darkCurrent=105.6; % in counts/second/cm^2 (spec

is 100), here the cm^2 is measured on the CCD itself

 readNoise=6.3848; % in counts/pixel RMS for

binning=1 (spec is 5)

 refSensitivity=6.1e-5; % sensitivity in

(counts/photon) at height C, f1, binning=1

 refH=51.2; % height of focal point in cm

above object when reference sensitivity was determined

 refA=6.35; % radius of aperature in cm at

f1

 heightChangeFactor= FOVdim_cm.(FOVsetting) / FOVdim_cm.C; % height change is

proportional to FOV change, reference setting is C

 H= refH * heightChangeFactor; % new height

 A= refA * (1.0 / fstop); % new aperature radius

 acceptanceAngleChangeFactor= atan2(A,H) / atan2(refA,refH); % acceptance angle change

relative to reference

192

 imagePixelArea= (10 * FOVdim_cm.(FOVsetting) / CCDdim_pix)^2; % size of pixel in mm^2 in

imagespace

 sizeRatio= imagePixelArea / detectorArea; % pixels per virtual detector

 % composite parameters of interest

 sensitivity= refSensitivity * pixBin^2 * acceptanceAngleChangeFactor * sizeRatio; % in

(counts/photon)

 darkCurrent= darkCurrent * CCDdim_cm^2/CCDdim_pix^2 / sizeRatio; % in

counts/second/detector

 readNoise= readNoise * sqrt(sizeRatio); %

readNoise goes down with sqrt of the increase in detector size

end

Published with MATLAB® R2017a

classdef VoxelClusterList < handle

 properties

 ImageSpace % 3D matrix of zeros and ones where the ones define the interior or

the imaged object

 ImageSpaceDims % size of the original ImageSpace for which this cluster list is

defined

 VoxelIndices % indices into ImageSpace of voxels within object

 MemberList % handle to object array of type VoxelClusterMember

 PPlength % projection profile length (i.e. the number of rows in W)

 end

 methods

 function n = countValid(obj)

 n= 0;

 m= numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 n=n+1;

 end

 end

 end

 function obj = VoxelClusterList(ImageSpace,POIvalues,W)

 % VoxelClusterList Constructor

 % ImageSpace is a 3D matrix of zeros and ones where the ones define the interior or

the imaged object

 % POIvalues is a vector with elements corresponding to the 1's in ImageSpace and

containing the POI (Parameter of Interest)

 if nargin ~= 0

 obj.ImageSpace= ImageSpace;

 obj.ImageSpaceDims= size(ImageSpace);

 obj.VoxelIndices= find(ImageSpace == 1);

 obj.MemberList= VoxelClusterMember(ImageSpace,POIvalues,W);

 obj.PPlength= size(W,1);

 end

 end

193

 function [ValidImg] = extractAllValid(obj)

 % Should regenerate ImageSpace (used for debugging)

 ValidImg= zeros(obj.ImageSpaceDims);

 m=numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 n= numel(obj.MemberList(i).VoxelList);

 if n ~= obj.MemberList(i).Volume

 error('VoxelList size and Volume mismatch');

 end

 for j=1:n

 [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j));

 ValidImg(ix,iy,iz)= ValidImg(ix,iy,iz) + 1;

 end

 end

 end

 end

 function [POIimg] = extractPOIimg(obj)

 % Creates 3D image of POI values

 POIimg= zeros(obj.ImageSpaceDims);

 m=numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 p= obj.MemberList(i).POI;

 v=obj.MemberList(i).Volume;

 for j=1:v

 [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j));

 POIimg(ix,iy,iz)= p;

 end

 end

 end

 end

 % returns POI value for each cluster

 function [POIvalues] = extractPOIvalues(obj)

 % Creates 3D image of POI values

 n= obj.countValid();

 POIvalues= zeros(n,1);

 m=numel(obj.MemberList);

 j=1;

 for i=1:m

 if obj.MemberList(i).ValidFlag

 POIvalues(j)= obj.MemberList(i).POI;

 j=j+1;

 end

 end

 end

 function [valueList] = imageToValueList(obj, image)

 n= obj.countValid();

 valueList= zeros(n,1);

194

 j=1;

 m=numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 v=obj.MemberList(i).Volume;

 for k=1:v

 ii= obj.MemberList(i).VoxelList(k);

 valueList(j)= valueList(j) + image(ii);

 end

 valueList(j)= valueList(j) / v;

 j=j+1;

 end

 end

 if numel(valueList) ~= (j-1)

 keyboard;

 end

 end

 function [image] = valueListToImage(obj, valueList)

 image= zeros(obj.ImageSpaceDims);

 j=1;

 m=numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 v=obj.MemberList(i).Volume;

 for k=1:v

 ii= obj.MemberList(i).VoxelList(k);

 image(ii)= valueList(j);

 end

 j=j+1;

 end

 end

 if numel(valueList) ~= (j-1)

 keyboard;

 end

 end

 function [W] = extractW(obj)

 % Creates W matrix

 m=numel(obj.MemberList);

 n=0; for i=1:m, if obj.MemberList(i).ValidFlag==1, n=n+1; end, end

 W= zeros(obj.PPlength,n);

 size(W)

 j=1;

 for i=1:m

 if obj.MemberList(i).ValidFlag

 W(:,j)= obj.MemberList(i).ProjectionProfile;

 j=j+1;

 end

 end

 if n ~= (j-1)

 keyboard;

 end

195

 end

 function [POIvalues] = extractCompressedPOI(obj)

 % Predicts what each cluster's POI value will be if compressed

 n= obj.countValid();

 POIvalues= zeros(n,1);

 m=numel(obj.MemberList);

 j=1;

 for i=1:m

 if obj.MemberList(i).ValidFlag

 p= obj.MemberList(i).POI;

 v= obj.MemberList(i).Volume;

 p= v * p.^2;

 n= numel(obj.MemberList(i).NeighborList);

 for k=1:n

 ii= obj.MemberList(i).NeighborList(k);

 if obj.MemberList(ii).ValidFlag

 tmpP= obj.MemberList(ii).POI;

 tmpV= obj.MemberList(ii).Volume;

 p= p + tmpV * tmpP.^2;

 v= v + tmpV;

 end

 end

 p= sqrt(p / v) / v;

 POIvalues(j)= p;

 j=j+1;

 end

 end

 end

 function compress(obj, pThreshold)

 % Combine clusters having a predicted POI value above the specified threshold, witgh all

of its neighbors

 pass= 1;

 while 1

 fprintf(1,'pass #%d\n',pass);

 pass= pass + 1;

 POIvalues= extractPOIvalues(obj);

 [mx,iV]= max(POIvalues);

 if mx < pThreshold

 break;

 end

 m=numel(obj.MemberList);

 j=0;

 for i=1:m

 if obj.MemberList(i).ValidFlag

 j=j+1;

 end

 if j==iV

 iM=i;

 break;

 end

 end

196

 merge(obj,iM);

 end

 end

 function merge(obj, memIndex)

 % merges cluster identified by memIndex with all of its neighboring clusters

 if obj.MemberList(memIndex).ValidFlag == 0

 error('something fucked up');

 end

 nl= obj.MemberList(memIndex).NeighborList;

 n= numel(nl); % number of neighboring clusters

 fprintf(1,'merging ID %d with %d neighbors\n',memIndex,n);

 p= obj.MemberList(memIndex).POI;

 v= obj.MemberList(memIndex).Volume;

 p= v * p^2;

 pp= obj.MemberList(memIndex).ProjectionProfile;

 pp= v * pp;

 for k=1:n

 nk=nl(k); % nk is the cluster ID of the kth neighbor

 tmpP= obj.MemberList(nk).POI;

 tmpV= obj.MemberList(nk).Volume;

 v= v + tmpV;

 p= p + tmpV * tmpP^2;

 tmpPP= obj.MemberList(nk).ProjectionProfile;

 if numel(pp) ~= numel(tmpPP), keyboard; end

 pp= pp + tmpV * tmpPP;

 obj.MemberList(memIndex).VoxelList=

unique([obj.MemberList(memIndex).VoxelList,obj.MemberList(nk).VoxelList]); % add neighbor's

voxels

 % copy over neighbor's neighbors

 i= obj.MemberList(memIndex).NeighborList ~= nk; % flags identifying all

other neighbors

 j= obj.MemberList(nk).NeighborList ~= memIndex; % flags identifying kth

neighbor's neighbors excluding current

 % flags i allow removal of kth neighbor from list

 % flags j allow addition of kth neighbor's neighbors excluding the current so it

doesn't consider itself to be a neighbor

 obj.MemberList(memIndex).NeighborList=

unique([obj.MemberList(memIndex).NeighborList(i);obj.MemberList(nk).NeighborList(j)]);

 % remove kth neighbor from list

 obj.MemberList(nk).ValidFlag= 0; % mark kth neighbor as

invalid

 % remove references to kth neighbor from its neighbors replacing with a reference

to the current

 nl2= obj.MemberList(nk).NeighborList;

 nn= numel(nl2);

 for m=1:nn

 i= nl2(m); % i is mth neighbor of kth neighbor

 j= (nl2 == nk); % find reference to kth neighbor within mth neighbor's list

 obj.MemberList(i).NeighborList(j)= memIndex; % replace with reference to

current

 end

 end

197

 obj.MemberList(memIndex).Volume= numel(obj.MemberList(memIndex).VoxelList);

 obj.MemberList(memIndex).POI= sqrt(p / v) / v;

 obj.MemberList(memIndex).ProjectionProfile= pp / v;

 end

 function hist = clusterSizeHist(obj)

 hist= zeros(1,1);

 m=numel(obj.MemberList);

 for i=1:m

 if obj.MemberList(i).ValidFlag

 n= obj.MemberList(i).Volume;

 if n > numel(hist)

 hist= [hist;zeros(n-numel(hist),1)];

 end

 hist(n)= hist(n) + 1;

 end

 end

 end

 function img = clusterSizeImage(obj)

 img= zeros(obj.ImageSpaceDims);

 for i=1:numel(obj.MemberList)

 if obj.MemberList(i).ValidFlag

 n= numel(obj.MemberList(i).VoxelList);

 if n ~= obj.MemberList(i).Volume

 error('VoxelList size and Volume mismatch');

 end

 for j=1:n

 [ix,iy,iz]= ind2sub(obj.ImageSpaceDims,obj.MemberList(i).VoxelList(j));

 img(ix,iy,iz)= n;

 end

 end

 end

 end

 end

end

Published with MATLAB® R2017a

classdef VoxelClusterMember < handle

 properties

 ValidFlag % flag effectively allowing cluster member deletion (e.g. during

merger)

 Volume % the volume of this cluster in voxels (i.e. the number of voxels

in this cluster)

 VoxelList % list of image space indices of the voxels within this cluster

 POI % the parameter of interest associated with each cluster

 NeighborList % list of indices into VoxelClusterList identifying clusters that

are neighbors to this one

198

 Origin % 3D location of origin voxel within cluster (for debugging

purposes)

 ProjectionProfile % column from W matrix corresponding to this cluster

 end

 methods

 function obj = VoxelClusterMember(ImageSpace,POIvalues,W)

 % ImageSpace is a 3D matrix of zeros and ones where the ones define the interior or the

imaged object

 % POIvalues is a vector with elements corresponding to the 1's in ImageSpace and

containing the POI (Parameter of Interest)

 if nargin ~= 0

 [nX,nY,nZ] = size(ImageSpace); % get dimensions of the image space

 lastN= nX*nY*nZ; % last index

 Neighbors= [-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX,...

 [0,-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX]-(nX*nY),...

 [0,-1,-1-nX,-nX,+1-nX,+1,+1+nX,+nX,-1+nX]+(nX*nY)]; % determine relative

indices within ImageSpace of 26 neighbors

 VoxelIndices= find(ImageSpace == 1); % get indices of all voxels within

the imaged object

 N= numel(VoxelIndices); % how many are there

 if numel(POIvalues) ~= N

 error('The number of POIvalues must match the number of ones in ImageSpace');

 end

 if size(W,2) ~= N

 error('The number of columns in W must match the number of ones in ImageSpace');

 end

 obj(N,1) = VoxelClusterMember; % create one cluster member for each

and every voxel

 % create a cluster for each voxel within the object

 for i = 1:N

 obj(i,1).ValidFlag= 1; % initially all

cluster members are valid

 obj(i,1).Volume = 1; % initially just one

voxel

 obj(i,1).VoxelList= [VoxelIndices(i)]; % this is the index

of the one voxel within ImageSpace

 tmpNeighborList= VoxelIndices(i) + Neighbors; % get all 6 neighbor

indices even if outside ImageSpace

 j= find(tmpNeighborList >=1 & tmpNeighborList <= lastN); % find those outside

ImageSpace

 tmpNeighborList= tmpNeighborList(j); % remove them

 j= find(ImageSpace(tmpNeighborList) == 1); % find those outside

the object

 tmpNeighborList= tmpNeighborList(j); % remove those too

 obj(i,1).NeighborList= find(ismember(VoxelIndices,tmpNeighborList)); % find

corresponding indices into cluster MemberList

 obj(i,1).POI= POIvalues(i); % assign associated

POI value

 obj(i,1).ProjectionProfile= W(:,i); % assign associated

column of W

 [ix,iy,iz]= ind2sub([nX,nY,nZ],obj(i,1).VoxelList); % Origin is redundant

to the original element in VoxelList

199

 obj(i,1).Origin= [ix,iy,iz];

 end

 end

 end

 end

end

Published with MATLAB® R2017a

