2,977 research outputs found

    Reconstructing WKB from topological recursion

    Get PDF
    We prove that the topological recursion reconstructs the WKB expansion of a quantum curve for all spectral curves whose Newton polygons have no interior point (and that are smooth as affine curves). This includes nearly all previously known cases in the literature, and many more; in particular, it includes many quantum curves of order greater than two. We also explore the connection between the choice of ordering in the quantization of the spectral curve and the choice of integration divisor to reconstruct the WKB expansion.Comment: 68 pages, 9 figures. v2: published version (improved presentation

    Convergence of algorithms for reconstructing convex bodies and directional measures

    Get PDF
    We investigate algorithms for reconstructing a convex body KK in Rn\mathbb {R}^n from noisy measurements of its support function or its brightness function in kk directions u1,...,uku_1,...,u_k. The key idea of these algorithms is to construct a convex polytope PkP_k whose support function (or brightness function) best approximates the given measurements in the directions u1,...,uku_1,...,u_k (in the least squares sense). The measurement errors are assumed to be stochastically independent and Gaussian. It is shown that this procedure is (strongly) consistent, meaning that, almost surely, PkP_k tends to KK in the Hausdorff metric as k→∞k\to\infty. Here some mild assumptions on the sequence (ui)(u_i) of directions are needed. Using results from the theory of empirical processes, estimates of rates of convergence are derived, which are first obtained in the L2L_2 metric and then transferred to the Hausdorff metric. Along the way, a new estimate is obtained for the metric entropy of the class of origin-symmetric zonoids contained in the unit ball. Similar results are obtained for the convergence of an algorithm that reconstructs an approximating measure to the directional measure of a stationary fiber process from noisy measurements of its rose of intersections in kk directions u1,...,uku_1,...,u_k. Here the Dudley and Prohorov metrics are used. The methods are linked to those employed for the support and brightness function algorithms via the fact that the rose of intersections is the support function of a projection body.Comment: Published at http://dx.doi.org/10.1214/009053606000000335 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Entwinement and the emergence of spacetime

    Get PDF
    It is conventional to study the entanglement between spatial regions of a quantum field theory. However, in some systems entanglement can be dominated by "internal", possibly gauged, degrees of freedom that are not spatially organized, and that can give rise to gaps smaller than the inverse size of the system. In a holographic context, such small gaps are associated to the appearance of horizons and singularities in the dual spacetime. Here, we propose a concept of entwinement, which is intended to capture this fine structure of the wavefunction. Holographically, entwinement probes the entanglement shadow -- the region of spacetime not probed by the minimal surfaces that compute spatial entanglement in the dual field theory. We consider the simplest example of this scenario -- a 2d conformal field theory (CFT) that is dual to a conical defect in AdS3 space. Following our previous work, we show that spatial entanglement in the CFT reproduces spacetime geometry up to a finite distance from the conical defect. We then show that the interior geometry up to the defect can be reconstructed from entwinement that is sensitive to the discretely gauged, fractionated degrees of freedom of the CFT. Entwinement in the CFT is related to non-minimal geodesics in the conical defect geometry, suggesting a potential quantum information theoretic meaning for these objects in a holographic context. These results may be relevant for the reconstruction of black hole interiors from a dual field theory.Comment: v2: Sec. 4.3 amende

    Turan's method and compressive sampling

    Full text link
    Turan's method, as expressed in his books, is a careful study of trigonometric polynomials from different points of view. The present article starts from a problem asked by Turan: how to construct a sequence of real numbers x(j) (j= 1,2,...n) such that the almost periodic polynomial whose frequencies are the x(j) and the coefficients are 1 are small (say, their absolute values are less than n d, d< given) for all integral values of the variable m between 1 and M= M(n,d) ? The best known answer is a random choice of the x(j) modulo 1. Using the random choice as Turan (and before him Erd\"os and Renyi), we improve the estimate of M (n, d) and we discuss an explicit construction derived from another chapter of Turan's book. The main part of the paper deals with the corresponding problem when R / Z is replaced by Z / NZ, N prime, and m takes all integral values modulo 1 except 0. Then it has an interpretation in signal theory, when a signal is representad by a function on the cyclic goup G = Z / NZ and the frequencies by the dual cyclic group G^ : knowing that the signal is carried by T points, to evaluate the probability that a random choice of a set W of frequencies allows to recover the signal x from the restriction of its Fourier tranform to W by the process of minimal extrapolation in the Wiener algebra of G^(process of Cand\`es, Romberg and Tao). Some random choices were considered in the original article of CRT and the corresponding probabilities were estimated in two preceding papers of mine. Here we have another random choice, associated with occupancy problems

    Tracing evolutionary links between species

    Full text link
    The idea that all life on earth traces back to a common beginning dates back at least to Charles Darwin's {\em Origin of Species}. Ever since, biologists have tried to piece together parts of this `tree of life' based on what we can observe today: fossils, and the evolutionary signal that is present in the genomes and phenotypes of different organisms. Mathematics has played a key role in helping transform genetic data into phylogenetic (evolutionary) trees and networks. Here, I will explain some of the central concepts and basic results in phylogenetics, which benefit from several branches of mathematics, including combinatorics, probability and algebra.Comment: 18 pages, 6 figures (Invited review paper (draft version) for AMM

    An Achievable Rate-Distortion Region for the Multiple Descriptions Problem

    Full text link
    A multiple-descriptions (MD) coding strategy is proposed and an inner bound to the achievable rate-distortion region is derived. The scheme utilizes linear codes. It is shown in two different MD set-ups that the linear coding scheme achieves a larger rate-distortion region than previously known random coding strategies. Furthermore, it is shown via an example that the best known random coding scheme for the set-up can be improved by including additional randomly generated codebooks

    DUDE-Seq: Fast, Flexible, and Robust Denoising for Targeted Amplicon Sequencing

    Full text link
    We consider the correction of errors from nucleotide sequences produced by next-generation targeted amplicon sequencing. The next-generation sequencing (NGS) platforms can provide a great deal of sequencing data thanks to their high throughput, but the associated error rates often tend to be high. Denoising in high-throughput sequencing has thus become a crucial process for boosting the reliability of downstream analyses. Our methodology, named DUDE-Seq, is derived from a general setting of reconstructing finite-valued source data corrupted by a discrete memoryless channel and effectively corrects substitution and homopolymer indel errors, the two major types of sequencing errors in most high-throughput targeted amplicon sequencing platforms. Our experimental studies with real and simulated datasets suggest that the proposed DUDE-Seq not only outperforms existing alternatives in terms of error-correction capability and time efficiency, but also boosts the reliability of downstream analyses. Further, the flexibility of DUDE-Seq enables its robust application to different sequencing platforms and analysis pipelines by simple updates of the noise model. DUDE-Seq is available at http://data.snu.ac.kr/pub/dude-seq
    • …
    corecore