3,343 research outputs found

    Reconstructing 3D face shapes from single 2D images using an adaptive deformation model

    Get PDF
    The Representational Power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. In this contribution, a novel approach is proposed to increase the RP of the 3D reconstruction PCA-based model by deforming a set of examples in the training dataset. By adding these deformed samples together with the original training samples we gain more RP. A 3D PCA-based model is adapted for each new input face image by deforming 3D faces in the training data set. This adapted model is used to reconstruct the 3D face shape for the given input 2D near frontal face image. Our experimental results justify that the proposed adaptive model considerably improves the RP of the conventional PCA-based model

    Adaptive face modelling for reconstructing 3D face shapes from single 2D images

    Get PDF
    Example-based statistical face models using principle component analysis (PCA) have been widely deployed for three-dimensional (3D) face reconstruction and face recognition. The two common factors that are generally concerned with such models are the size of the training dataset and the selection of different examples in the training set. The representational power (RP) of an example-based model is its capability to depict a new 3D face for a given 2D face image. The RP of the model can be increased by correspondingly increasing the number of training samples. In this contribution, a novel approach is proposed to increase the RP of the 3D face reconstruction model by deforming a set of examples in the training dataset. A PCA-based 3D face model is adapted for each new near frontal input face image to reconstruct the 3D face shape. Further an extended Tikhonov regularisation method has been

    FML: Face Model Learning from Videos

    Full text link
    Monocular image-based 3D reconstruction of faces is a long-standing problem in computer vision. Since image data is a 2D projection of a 3D face, the resulting depth ambiguity makes the problem ill-posed. Most existing methods rely on data-driven priors that are built from limited 3D face scans. In contrast, we propose multi-frame video-based self-supervised training of a deep network that (i) learns a face identity model both in shape and appearance while (ii) jointly learning to reconstruct 3D faces. Our face model is learned using only corpora of in-the-wild video clips collected from the Internet. This virtually endless source of training data enables learning of a highly general 3D face model. In order to achieve this, we propose a novel multi-frame consistency loss that ensures consistent shape and appearance across multiple frames of a subject's face, thus minimizing depth ambiguity. At test time we can use an arbitrary number of frames, so that we can perform both monocular as well as multi-frame reconstruction.Comment: CVPR 2019 (Oral). Video: https://www.youtube.com/watch?v=SG2BwxCw0lQ, Project Page: https://gvv.mpi-inf.mpg.de/projects/FML19

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Modeling Caricature Expressions by 3D Blendshape and Dynamic Texture

    Full text link
    The problem of deforming an artist-drawn caricature according to a given normal face expression is of interest in applications such as social media, animation and entertainment. This paper presents a solution to the problem, with an emphasis on enhancing the ability to create desired expressions and meanwhile preserve the identity exaggeration style of the caricature, which imposes challenges due to the complicated nature of caricatures. The key of our solution is a novel method to model caricature expression, which extends traditional 3DMM representation to caricature domain. The method consists of shape modelling and texture generation for caricatures. Geometric optimization is developed to create identity-preserving blendshapes for reconstructing accurate and stable geometric shape, and a conditional generative adversarial network (cGAN) is designed for generating dynamic textures under target expressions. The combination of both shape and texture components makes the non-trivial expressions of a caricature be effectively defined by the extension of the popular 3DMM representation and a caricature can thus be flexibly deformed into arbitrary expressions with good results visually in both shape and color spaces. The experiments demonstrate the effectiveness of the proposed method.Comment: Accepted by the 28th ACM International Conference on Multimedia (ACM MM 2020
    • …
    corecore