39,222 research outputs found

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    Reconfigurable Computing: innovative technology for scientific community

    Get PDF
    43 p.Reconfigurable Computing marks a revolutionary and hot topic that bridges the gap between the separate worlds of hardware and software design. The key feature of reconfigurable computing is its groundbreaking ability to perform computations in hardware to increase performance while retaining the flexibility of a software solution. Reconfigurable computers serve as affordable, fast, and accurate tools for developing designs ranging from single chip architectures to multi-chip and embedded systems. Given the architecture and design flexibility, reconfigurable computing has catalyzed the progress in hardware-software code sign technology and a vast number of application areas such as scientific computing, biological computing, artificial intelligence, signal processing, security computing and control oriented design. We give an overview of the hardware architectures of reconfigurable computing machines, and the software that targets these machines, such as compilation tools. Also, we consider the issues involved in run-time reconfigurable systems, which re-use the configurable hardware during program executio

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Study and Design of Reconfigurable Wireless and Radio- Frequency Components Based on RF MEMS for Low-Power Applications

    Get PDF
    This chapter intends to deal with the challenging field of communication systems known as reconfigurable radio-frequency systems. Mainly, it will present and analyze the design of different reconfigurable components based on radio-frequency microelectromechanical systems (RF MEMS) for different applications. This chapter will start with the description of the attractive properties that RF MEMS structures offer, giving flexibility in the RF systems design, and how these properties may be used for the design of reconfigurable RF MEMS-based devices. Then, the chapter will discuss the design, modeling, and simulation of reconfigurable components based on both theoretical modeling and well-known electromagnetic computing tools such as ADS, CST-MWS, and HFSS to evaluate the performance of such devices. Finally, the chapter will deal with the design and performance assessment of RF MEMS-based devices. Non-radiating devices, such as phase shifter and resonators, which are very important components in the hardware RF boards, will be addressed. Also, three types of frequency reconfigurable antennas, for the three different applications (radar, satellite, and wireless communication), will be proposed and evaluated. From this study, based on theoretical design and electromagnetic computing evaluation, it has been shown that RF MEMS-based devices can be an enabling solution in the design of the multiband reconfigurable radio-frequency devices
    corecore