5 research outputs found

    Dynamic neighbourhood cellular automata.

    Get PDF
    We propose a definition of cellular automaton in which each cell can change its neighbourhood during a computation. This is done locally by looking not farther than neighbours of neighbours and the number of links remains bounded by a constant throughout. We suggest that dynamic neighbourhood cellular automata can serve as a theoretical model in studying algorithmic and computational complexity issues of ubiquitous computations. We illustrate our approach by giving an optimal, logarithmic time solution of the Firing Squad Synchronization problem in this setting

    Complexity-Theoretic Aspects of Expanding Cellular Automata

    Get PDF
    The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between existing ones. The respective polynomial-time complexity class is shown to coincide with ttp(NP){\le_{tt}^p}(\mathsf{NP}), that is, the class of decision problems polynomial-time truth-table reducible to problems in NP\mathsf{NP}. An alternative characterization based on a variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Finally, XCAs with alternative acceptance conditions are considered and classified in terms of ttp(NP){\le_{tt}^p}(\mathsf{NP}) and the Turing machine polynomial-time class P\mathsf{P}.Comment: 19 pages, 3 figure

    Complexity-theoretic aspects of expanding cellular automata

    Get PDF
    The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. An XCA is a one-dimensional cellular automaton which can dynamically create new cells between existing ones. The respective polynomial-time complexity class is shown to coincide with ttp≤^{p}_{tt}(NP), that is, the class of decision problems polynomial-time truth-table reducible to problems in NP. An alternative characterization based on a variant of non-deterministic Turing machines is also given. In addition, corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Finally, XCAs with alternative acceptance conditions are considered and classified in terms of ttp≤^{p}_{tt}(NP) and the Turing machine polynomial-time class P

    Sublinear-Time Cellular Automata and Connections to Complexity Theory

    Get PDF
    Im Gebiet des verteilten Rechnens werden Modelle untersucht, in denen sich mehrere Berechnungseinheiten koordinieren, um zusammen ein gemeinsames Ziel zu erreichen, wobei sie aber nur über begrenzte Ressourcen verfügen — sei diese Zeit-, Platz- oder Kommunikationskapazitäten. Das Hauptuntersuchungsobjekt dieser Dissertation ist das wohl einfachste solche Modell überhaupt: (eindimensionale) Zellularautomaten. Unser Ziel ist es, einen besseren Überblick über die Fähigkeiten und Einschränkungen des Modells und ihrer Varianten zu erlangen in dem Fall, dass die gesamte Bearbeitungszeit deutlich kleiner als die Größe der Eingabe ist (d. h. Sublinear-Zeit). Wir führen unsere Analyse von dem Standpunkt der Komplexitätstheorie und stellen dabei auch Bezüge zwischen Zellularautomaten und anderen Gebieten wie verteiltes Rechnen und Streaming-Algorithmen her. Sublinear-Zeit Zellularautomaten. Ein Zellularautomat (ZA) besteht aus identischen Zellen, die entlang einer Linie aneinandergereiht sind. Jede Zelle ist im Wesentlichen eine sehr primitive Berechnungseinheit (nämlich ein deterministischer endlicher Automat), die mit deren beiden Nachbarn interagieren kann. Die Berechnung entsteht durch die Aktualisierung der Zustände der Zellen gemäß derselben Zustandsüberführungsfunktion, die gleichzeitig überall im Automaten angewendet wird. Die von uns betrachteten Varianten sind unter anderem schrumpfende ZAs, die (gewissermaßen) dynamisch rekonfigurierbar sind, sowie eine probabilistische Variante, in der jede Zelle mit Zugriff auf eine faire Münze ausgestattet ist. Trotz überragendem Interesse an Linear- und Real-Zeit-ZAs scheint der Fall von Sublinear-Zeit im Großen und Ganzen von der wissenschaftlichen Gemeinschaft vernachlässigt worden zu sein. Wir arbeiten die überschaubare Anzahl an Vorarbeiten zu dem Thema auf, die vorhanden ist, und entwickeln die daraus stammenden Techniken weiter, sodass deren Spektrum an Anwendungsmöglichkeiten wesentlich breiter wird. Durch diese Bemühungen entsteht unter anderem ein Zeithierarchiesatz für das deterministische Modell. Außerdem übertragen wir Techniken zum Beweis unterer Schranken aus der Komplexitätstheorie auf das Modell der schrumpfenden ZAs und entwickeln neue Techniken, die auf probabilistische Sublinear-Zeit-ZAs zugeschnitten sind. Ein Bezug zu Härte-Magnifizierung. Ein Bezug zu Komplexitätstheorie, die wir im Laufe unserer Untersuchungen herstellen, ist ein Satz über Härte-Magnifizierung (engl. hardness magnification) für schrumpfende ZAs. Hier bezieht sich Härte-Magnifizierung auf eine Reihe neuerer Arbeiten, die bezeugen, dass selbst geringfügig nicht-triviale untere Schranken sehr beeindruckende Konsequenzen in der Komplexitätstheorie haben können. Unser Satz ist eine Abwandlung eines neuen Ergebnisses von McKay, Murray und Williams (STOC, 2019) für Streaming-Algorithmen. Wie wir zeigen kann die Aussage dabei genauso in Bezug auf schrumpfende ZAs formuliert werden, was sie auch beweisbar verstärkt. Eine Verbindung zu Sliding-Window Algorithmen. Wir verknüpfen das verteilte Zellularautomatenmodell mit dem sequenziellen Streaming-Algorithmen-Modell. Wie wir zeigen, können (gewisse Varianten von) ZAs von Streaming-Algorithmen simuliert werden, die bestimmten Lokalitätseinschränkungen unterliegen. Konkret ist der aktuelle Zustand des Algorithmus vollkommen bestimmt durch den Inhalt eines Fensters fester Größe, das wenige letzte Symbole enthält, die vom Algorithmus verarbeitet worden sind. Dementsprechend nennen wir diese eingeschränkte Form eines Streaming-Algorithmus einen Sliding-Window-Algorithmus. Wir zeigen, dass Sliding-Window-Algorithmen ZAs sehr effizient simulieren können und insbesondere in einer solchen Art und Weise, dass deren Platzkomplexität eng mit der Zeitkomplexität des simulierten ZA verbunden ist. Derandomisierungsergebnisse. Wir zeigen Derandomisierungsergebnisse für das Modell von Sliding-Window-Algorithmen, die Zufall aus einer binären Zufallsquelle beziehen. Dazu stützen wir uns auf die robuste Maschinerie von Branching-Programmen, die den gängigen Ansatz zur Derandomisierung von Platz-beschränkten Maschinen in der Komplexitätstheorie darstellen. Als eine Anwendung stellen sich Derandomisierungsergebnisse für probabilistische Sublinear-Zeit-ZAs heraus, die durch die oben genannten Verknüpfung erlangt werden. Vorhersageproblem für Pilz-Sandhaufen. Ein letztes Problem, das wir behandeln und das auch einen Bezug zu Sublinear-Zeitkomplexität im Rahmen von Zellularautomaten hat (obwohl nicht zu Sublinear-Zeit-Zellularautomaten selber), ist das Vorhersageproblem für Sandhaufen-Zellularautomaten. Diese Automaten sind basierend auf zweidimensionalen ZAs definiert und modellieren einen deterministischen Prozess, in dem sich Partikel (in der Regel denkt man an Sandkörnern) durch den Raum verbreiten. Das Vorhersageproblem fragt ob, gegeben eine Zellennummer yy und eine initiale Konfiguration für den Sandhaufen, die Zelle mit Nummer yy irgendwann vor einer gewissen Zeitschranke einen von Null verschiedenen Zustand erreichen wird. Die Komplexität dieses mindestens zwei Jahrzehnte alten Vorhersageproblems ist für zweidimensionelle Sandhaufen bemerkenswerterweise nach wie vor offen. Wir lösen diese Frage im Wesentlichen für eine neue Variante von Sandhaufen namens Pilz-Sandhaufen, die von Goles u. a. (Phys. Lett. A, 2020) vorgeschlagen worden ist. Unser Ergebnis ist besonders relevant, weil es innovative Erkenntnisse und neue Techniken liefert, die für die Lösung des offenen Problems im allgemeinen Fall von hoher Relevanz sein könnten
    corecore