1,789 research outputs found

    Cloud-based Recommendation Systems: Applications and Solutions

    Get PDF
    Recommender systems have become extremely common in recent years, and are applied in a variety of applications. They help businesses increase their sales and customer satisfaction. More and more computing applications including recommender systems, are being deployed as cloud computing services. This papers presents some of the most common recommendation applications and solutions which follow SaaS, PaaS or other cloud computing service models. They are provided both from academia and business domain and use recent data mining, machine learning and artificial intelligence techniques. The tendency of these kind of applications is towards SaaS service model which seems the most appropriate especially for businesses

    Graph-RAT: Combining data sources in music recommendation systems

    Get PDF
    The complexity of music recommendation systems has increased rapidly in recent years, drawing upon different sources of information: content analysis, web-mining, social tagging, etc. Unfortunately, the tools to scientifically evaluate such integrated systems are not readily available; nor are the base algorithms available. This article describes Graph-RAT (Graph-based Relational Analysis Toolkit), an open source toolkit that provides a framework for developing and evaluating novel hybrid systems. While this toolkit is designed for music recommendation, it has applications outside its discipline as well. An experiment—indicative of the sort of procedure that can be configured using the toolkit—is provided to illustrate its usefulness

    Predicting Categorical Information for New Content in Application Recommender Systems

    Get PDF
    Generally, the present disclosure is directed to predicting categorical information for newly created content in an application recommender system. In particular, in some implementations, the systems and methods of the present disclosure can include or otherwise leverage one or more machine-learned models to predict categorical information of new applications in an applications marketplace based on screenshots of such new applications in the applications marketplace

    Building an Ontology-Based Framework for Tourism Recommendation Services

    Get PDF
    The tourism product has an intangible nature in that customers cannot physically evallfate the services on offer until practically experienced. This makes having access to ;credible;"i\nd authentic information about tourism products before the actual experience very valuable. An Ontology being a formal, explicit specification of concepts of a domain provides a viable platform for the development of credible knowledge-based tourism information services. In this paper, we present an approach aimed at enabling assorted intelligent reco=endations services in tourism support systems using ontologies. A suite of tourism ontologies was developed and engaged to enable a prototypical e-tourism system with various knowledge-based reco=endation capabilities. A usability evaluation of the system yields encouraging results as a demonstration of the viability of our approach

    Contextual Model-Based Collaborative Filtering for Recommender Systems

    Get PDF
    Recommender systems have dramatically changed the way we consume content. Internet applications rely on these systems to help users navigate among the ever-increasing number of choices available. However, most current systems ignore that user preferences can change according to context, resulting in recommendations that do not fit user interests. Context-aware models have been proposed to address this issue, but these models have problems of their own. The ever-increasing speed at which data are generated presents a scalability challenge for single-model approaches. Moreover, the complexity of these models prevents small players from adapting and implementing contextual models that meet their needs. This thesis addresses these issues by proposing the (CF)2 architecture, which uses local learning techniques to embed contextual awareness into collaborative filtering (CF) models. CF has been available for decades, and its methods and benefits have been extensively discussed and implemented. Moreover, the use of context as filtering criteria for local learning addresses the scalability issues caused by the use of large datasets. Therefore, the proposed architecture enables the creation of contextual recommendations using several models instead of one, with each model representing a context. In addition, the architecture is implemented and evaluated in two case studies. Results show that contextual models trained with a small fraction of the data resulted in similar or better accuracy compared to CF models trained with the total dataset. Moreover, experiments indicate that local learning using contextual information outperforms random selection in accuracy and in training time

    Predictive Accuracy of Recommender Algorithms

    Get PDF
    Recommender systems present a customized list of items based upon user or item characteristics with the objective of reducing a large number of possible choices to a smaller ranked set most likely to appeal to the user. A variety of algorithms for recommender systems have been developed and refined including applications of deep learning neural networks. Recent research reports point to a need to perform carefully controlled experiments to gain insights about the relative accuracy of different recommender algorithms, because studies evaluating different methods have not used a common set of benchmark data sets, baseline models, and evaluation metrics. The dissertation used publicly available sources of ratings data with a suite of three conventional recommender algorithms and two deep learning (DL) algorithms in controlled experiments to assess their comparative accuracy. Results for the non-DL algorithms conformed well to published results and benchmarks. The two DL algorithms did not perform as well and illuminated known challenges implementing DL recommender algorithms as reported in the literature. Model overfitting is discussed as a potential explanation for the weaker performance of the DL algorithms and several regularization strategies are reviewed as possible approaches to improve predictive error. Findings justify the need for further research in the use of deep learning models for recommender systems
    corecore