27,578 research outputs found

    A 3D Visual Interface for Critiquing-based Recommenders: Architecture and Interaction

    Get PDF
    Nowadays e-commerce websites offer users such a huge amount of products, which far from facilitating the buying process, actually make it more difficult. Hence, recommenders, which learn from users' preferences, are consolidating as valuable instruments to enhance the buying process in the 2D Web. Indeed, 3D virtual environments are an alternative interface for recommenders. They provide the user with an immersive 3D social experience, enabling a richer visualisation and increasing the interaction possibilities with other users and with the recommender. In this paper, we focus on a novel framework to tightly integrate interactive recommendation systems in a 3D virtual environment. Specifically, we propose to integrate a Collaborative Conversational Recommender (CCR) in a 3D social virtual world. Our CCR Framework defines three layers: the user interaction layer (3D Collaborative Space Client), the communication layer (3D Collaborative Space Server), and the recommendation layer (Collaborative Conversational Recommender). Additionally, we evaluate the framework based on several usability criteria such as learnability, perceived efficiency and effectiveness. Results demonstrate that users positively valued the experience

    A Personalized System for Conversational Recommendations

    Full text link
    Searching for and making decisions about information is becoming increasingly difficult as the amount of information and number of choices increases. Recommendation systems help users find items of interest of a particular type, such as movies or restaurants, but are still somewhat awkward to use. Our solution is to take advantage of the complementary strengths of personalized recommendation systems and dialogue systems, creating personalized aides. We present a system -- the Adaptive Place Advisor -- that treats item selection as an interactive, conversational process, with the program inquiring about item attributes and the user responding. Individual, long-term user preferences are unobtrusively obtained in the course of normal recommendation dialogues and used to direct future conversations with the same user. We present a novel user model that influences both item search and the questions asked during a conversation. We demonstrate the effectiveness of our system in significantly reducing the time and number of interactions required to find a satisfactory item, as compared to a control group of users interacting with a non-adaptive version of the system

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202

    The benefits of opening recommendation to human interaction

    Get PDF
    This paper describes work in progress that uses an interactive recommendation process to construct new objects which are tailored to user preferences. The novelty in our work is moving from the recommendation of static objects like consumer goods, movies or books, towards dynamically-constructed recommendations which are built as part of the recommendation process. As a proof-of-concept we build running or jogging routes for visitors to a city, recommending routes to users according to their preferences and we present details of this system

    Implementing a Chatbot Music Recommender System Based on User Emotion

    Get PDF
    The use of chatbots has become increasingly popular in recent years, as more organisations try to improve and streamline their customer service operations. One area which has been gaining momentum is the use of chatbots for music recommendation. Such systems utilise AI technologies to deliver personalised music recommendations to users via conversational interfaces. Chatbot music recommender systems present several benefits namely; they provide a personalised and natural experience which can be engaging for the users. Moreover, the users can engage in a dialogue whereby the system can better interpret the user context and preferences. This work presents the development of a chatbot personalised music recommender system, based on Natural Language Processing (NLP) techniques, coupled with a web interface that can provide song recommendations based on the user’s emotions

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202
    corecore