494 research outputs found

    Modeling of Facial Wrinkles for Applications in Computer Vision

    Get PDF
    International audienceAnalysis and modeling of aging human faces have been extensively studied in the past decade for applications in computer vision such as age estimation, age progression and face recognition across aging. Most of this research work is based on facial appearance and facial features such as face shape, geometry, location of landmarks and patch-based texture features. Despite the recent availability of higher resolution, high quality facial images, we do not find much work on the image analysis of local facial features such as wrinkles specifically. For the most part, modeling of facial skin texture, fine lines and wrinkles has been a focus in computer graphics research for photo-realistic rendering applications. In computer vision, very few aging related applications focus on such facial features. Where several survey papers can be found on facial aging analysis in computer vision, this chapter focuses specifically on the analysis of facial wrinkles in the context of several applications. Facial wrinkles can be categorized as subtle discontinuities or cracks in surrounding inhomogeneous skin texture and pose challenges to being detected/localized in images. First, we review commonly used image features to capture the intensity gradients caused by facial wrinkles and then present research in modeling and analysis of facial wrinkles as aging texture or curvilinear objects for different applications. The reviewed applications include localization or detection of wrinkles in facial images , incorporation of wrinkles for more realistic age progression, analysis for age estimation and inpainting/removal of wrinkles for facial retouching

    Cultural-based visual expression: Emotional analysis of human face via Peking Opera Painted Faces (POPF)

    Get PDF
    © 2015 The Author(s) Peking Opera as a branch of Chinese traditional cultures and arts has a very distinct colourful facial make-up for all actors in the stage performance. Such make-up is stylised in nonverbal symbolic semantics which all combined together to form the painted faces to describe and symbolise the background, the characteristic and the emotional status of specific roles. A study of Peking Opera Painted Faces (POPF) was taken as an example to see how information and meanings can be effectively expressed through the change of facial expressions based on the facial motion within natural and emotional aspects. The study found that POPF provides exaggerated features of facial motion through images, and the symbolic semantics of POPF provides a high-level expression of human facial information. The study has presented and proved a creative structure of information analysis and expression based on POPF to improve the understanding of human facial motion and emotion

    Head Tracking via Robust Registration in Texture Map Images

    Full text link
    A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported

    A dynamic texture based approach to recognition of facial actions and their temporal models

    Get PDF
    In this work, we propose a dynamic texture-based approach to the recognition of facial Action Units (AUs, atomic facial gestures) and their temporal models (i.e., sequences of temporal segments: neutral, onset, apex, and offset) in near-frontal-view face videos. Two approaches to modeling the dynamics and the appearance in the face region of an input video are compared: an extended version of Motion History Images and a novel method based on Nonrigid Registration using Free-Form Deformations (FFDs). The extracted motion representation is used to derive motion orientation histogram descriptors in both the spatial and temporal domain. Per AU, a combination of discriminative, frame-based GentleBoost ensemble learners and dynamic, generative Hidden Markov Models detects the presence of the AU in question and its temporal segments in an input image sequence. When tested for recognition of all 27 lower and upper face AUs, occurring alone or in combination in 264 sequences from the MMI facial expression database, the proposed method achieved an average event recognition accuracy of 89.2 percent for the MHI method and 94.3 percent for the FFD method. The generalization performance of the FFD method has been tested using the Cohn-Kanade database. Finally, we also explored the performance on spontaneous expressions in the Sensitive Artificial Listener data set

    EEVEE : the Empathy-Enhancing Virtual Evolving Environment

    Get PDF
    Empathy is a multifaceted emotional and mental faculty that is often found to be affected in a great number of psychopathologies, such as schizophrenia, yet it remains very difficult to measure in an ecological context. The challenge stems partly from the complexity and fluidity of this social process, but also from its covert nature. One powerful tool to enhance experimental control over such dynamic social interactions has been the use of avatars in virtual reality (VR); information about an individual in such an interaction can be collected through the analysis of his or her neurophysiological and behavioral responses. We have developed a unique platform, the Empathy-Enhancing Virtual Evolving Environment (EEVEE), which is built around three main components: (1) different avatars capable of expressing feelings and emotions at various levels based on the Facial Action Coding System (FACS); (2) systems for measuring the physiological responses of the observer (heart and respiration rate, skin conductance, gaze and eye movements, facial expression); and (3) a multimodal interface linking the avatar's behavior to the observer's neurophysiological response. In this article, we provide a detailed description of the components of this innovative platform and validation data from the first phases of development. Our data show that healthy adults can discriminate different negative emotions, including pain, expressed by avatars at varying intensities. We also provide evidence that masking part of an avatar's face (top or bottom half) does not prevent the detection of different levels of pain. This innovative and flexible platform provides a unique tool to study and even modulate empathy in a comprehensive and ecological manner in various populations, notably individuals suffering from neurological or psychiatric disorders.Canadian Foundation for Innovation Natural Sciences and Engineering Research Council of Canada to PLJ Canadian Institutes of Health Research Fonds de recherche du Québec – Sant

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    Towards Realistic Facial Expression Recognition

    Get PDF
    Automatic facial expression recognition has attracted significant attention over the past decades. Although substantial progress has been achieved for certain scenarios (such as frontal faces in strictly controlled laboratory settings), accurate recognition of facial expression in realistic environments remains unsolved for the most part. The main objective of this thesis is to investigate facial expression recognition in unconstrained environments. As one major problem faced by the literature is the lack of realistic training and testing data, this thesis presents a web search based framework to collect realistic facial expression dataset from the Web. By adopting an active learning based method to remove noisy images from text based image search results, the proposed approach minimizes the human efforts during the dataset construction and maximizes the scalability for future research. Various novel facial expression features are then proposed to address the challenges imposed by the newly collected dataset. Finally, a spectral embedding based feature fusion framework is presented to combine the proposed facial expression features to form a more descriptive representation. This thesis also systematically investigates how the number of frames of a facial expression sequence can affect the performance of facial expression recognition algorithms, since facial expression sequences may be captured under different frame rates in realistic scenarios. A facial expression keyframe selection method is proposed based on keypoint based frame representation. Comprehensive experiments have been performed to demonstrate the effectiveness of the presented methods
    • …
    corecore