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ABSTRACT

Automatic facial expression recognition has attracted significant attention over the

past decades due to its importance in a wide range of applications such as human-

computer interaction (HCI), image or video understanding and affective computing.

Although substantial progress has been achieved for certain scenarios (such as frontal

faces in strictly controlled laboratory settings), accurate recognition of facial expres-

sions in realistic environments remains unsolved for the most part. The research

presented in this thesis investigates solutions to three major issues: collecting a large

amount of realistic training data from the Web, devising several novel facial features

and a multi-modal recognition algorithm, and exploring facial expression recognition

on image sequences.

The problem of lacking realistic training data is the first focus of the thesis. The

majority of existing facial expression datasets are collected under controlled environ-

ments, which cannot represent the diverse set of variations found in the real world.

Since it is often costly to collect a large amount of training examples, they also suffer

from common limitations of being small in size. This thesis proposes to solve the

problem by utilizing a web search based framework to collect realistic facial expres-

sion dataset from the Web. By adopting an active learning based method to remove

noisy images from search results returned by commercial search engines, the proposed
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approach minimizes the human efforts during the dataset construction and maximizes

the scalability for future research.

Another focus is on developing robust facial feature extraction methods. Due to

the high intraclass variations and interclass similarities, effective feature extraction

is vital to facial expression recognition. The extracted features should represent dif-

ferent types of facial expressions in a way which is not significantly affected by age,

gender, or appearance of the subjects. It is also desirable to have features which

are robust to face localization errors and occlusions. In the thesis, three novel facial

feature extraction methods are introduced, namely Multiscale-WLD (MWLD), Spa-

tially enhanced Local Binary Pattern (SLBP) and Local Patch Pattern (LPP). The

first two features exploit the spatial layout of local texture patterns. LPP is proposed

to tackle the problem of facial expression recognition in unconstrained environments.

Comprehensive experiments on a range of benchmark datasets demonstrate their ef-

fectiveness.

The problem of facial feature combination is solved using a novel spectral em-

bedding based feature fusion framework. By assuming that facial expression features

extracted from one type of expressions form a manifold embedded in a high dimen-

sional feature space, a neighborhood graph is constructed to encode the structure of

the manifold locally. After the Laplacian matrices associated with the neighborhood

graph from each view are combined, a unified low dimensional feature space is ob-

tained by performing spectral analysis of the combined matrix. The experimental

results clearly demonstrate the effectiveness of the proposed feature fusion framework

on realistic facial expression data.
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Lastly, we systematically investigate how the number of frames of a facial expres-

sion sequence can affect the performance of facial expression recognition algorithms,

since facial expression sequences may be captured under different frame rates in re-

alistic scenarios. A facial expression keyframe selection method is proposed based

on keypoint based frame representation. Experimental results indicate that the pro-

posed keyframe selection method can reduce the number of frames without clearly

compromising recognition accuracy.
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CHAPTER 1

INTRODUCTION

This thesis investigates the problem of automatic facial expression recognition,

with the ultimate goal to identify facial expressions in unconstrained environments.

The chapter introduces the motivations behind our work and its objectives. Then the

challenges involved in automatic facial expression recognition are discussed. Finally,

it is concluded with a discussion of the major contributions and an outline of the

structure of the thesis.

1.1 Motivations

Facial expression is the most expressive way for human to communicate emotions

and signal intentions, which conveys non-verbal communication cues in human face

to face interactions. Previous studies [8] have demonstrated that faical expression

accounts for more than 50 percent to the effect of a spoken message. Facial ex-

pression recognition aims to identify emotional states of humans from faces. It is a

main component of the emerging affective computing, which focuses on understand-

ing the affective states of users and responding accordingly to the affecting signals.

Automatic facial expression recognition systems also play an important role for the

next generation human computing interaction where the user interfaces are argued to
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be human centered, and they are capable of sensing and reacting to user’s affective

feedbacks in a more natural way.

Although recognizing facial expressions is a relatively effortless task for the ma-

jority of human beings, it is a very challenging task for a computer. One reason is

that it has been observed that the variations among the images depicting the same

expressions due to the change of illumination and view directions are almost always

larger than variations from the change in facial expressions. These variations are in-

creased by additional factors such as occlusion, gender, and even ethnic origins. Such

appearance variations make it difficult to locate facial regions and extract the inher-

ent facial expression features. Under unconstrained environments, these variations

become even greater thus harder to model than under well controlled environments.

Feature extraction is a crucial step in facial expression recognition and largely

determines the effectiveness of the performance. Therefore, different types of features

and selecting a suitable type for facial expression representation play an essential role

in designing facial expression recognition systems. During the past decades, a large

number of facial expression features have been proposed. However, only relatively

few recent studies consider the combination of different features. In addition, most

of these comparisons are evaluated based on posed datasets rather than realistic data

which leads to our next point.

Most datasets used in previous studies are collected under highly constrained

laboratory environments. The resulting facial expression data cannot fully reflect the

variations found in real world, such as illumination, intensity and poses. Therefore,

most existing datasets are not optimal for evaluating facial expression recognition

systems toward real world applications.
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1.2 Objectives

The ultimate goal of this thesis is to investigate facial expression recognition in

unconstrained environments. Despite the effort of researchers over a couple of decades,

this problem has remained unsolved for the most part. Toward the goal, the objectives

of this thesis can be split into three parts which will be pursued separately.

The first objective is to deal with the problem of lacking training data. The

majority of the existing facial expression datasets were collected under controlled

environments which can not represent the diverse set of variations found in the real

world. Since it is often costly to collect a large amount of training examples, they

also suffer from common limitations of being small in terms of both the number of

human subjects and images which can lead to over-fitting problems in many learning

algorithms and result in poor recognition performance. In this thesis, we aim to

develop method that is able to construct large scale facial expression image dataset

from web images with minimum human efforts.

The second objective is to investigate novel feature extraction methods. Due to

the high intraclass variations and interclass similarities, effective feature extraction is

vital to facial expression recognition. The extracted features should represent different

types of facial expressions in a way which is not significantly affected by age, gender,

or appearance of the subject. It is also desirable to have features which are robust to

face localization errors and occlusions.

The third objective is to investigate feature selection and combination methods

for facial expression recognition. It is commonly acknowledged that the performance

of facial expression recognition can benefit from a combination of multiple features.

However there is often no obvious way to select and combine different types of features.
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If redundant or noisy features are chosen at the expense of discriminant features,

the recognition performance can be adversely affected. To make the matter worse,

facial expression features are typical of very high dimension. A simple concatenation

of different features may greatly increase the computation cost and lead to inferior

results. Therefore the third objective of this thesis is to investigate methods that can

combine different facial expression features to form a more descriptive representation.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• A web search based framework is proposed to build a realistic facial expres-

sion dataset to solve the problem of lacking training and testing data. The

dataset contains a diverse set of human subjects and imaging environments.

By adopting an active learning based method to remove noisy images from the

search results returned by commercial search engines, the proposed approach

minimizes the human efforts during the dataset construction and maximizes the

scalability for future research. To the best of our knowledge, there exist very

limited studies in the literature on building general facial expression datasets

using web images.

• Development of three novel facial expression features, namely Multiscale Weber

Local Descriptor (MWLD), Spatially enhanced Local Binary Patterns (SLBP)

and Local Patch Patterns (LPP). The first two features are developed to en-

code the spatial layout of local texture patterns. LPP is proposed to tackle

the problem of unconstrained facial expression recognition by combining local

feature descriptors extracted from neighboring patches to form a second order
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representation. Experiments on a range of benchmark datasets demonstrates

their effectiveness.

• A spectral embedding based feature fusion framework is proposed to tackle

the problem of facial expression feature selection and combination. By as-

suming that facial expression features extracted from one type of expressions

form a manifold embedded in a high dimensional feature space, a neighborhood

graph is constructed to encode the structure of the manifold locally. After the

Laplacian matrices associated with the neighborhood graph from each view are

combined, a unified low dimensional feature space is obtained by performing

spectral analysis of the combined matrix.

• Systematic investigations are performed on how the number of frames of a facial

expression sequence can affect the accuracy of facial expression recognition. A

facial expression keyframe selection method is proposed based on keypoint based

frame representation.

1.4 Organization of the thesis

The reminder of this thesis is organized as follows.

Chapter 2 presents a general overview of different aspects of automatic facial

expression recognition and describes the state of art in this area.

Chapter 3 proposes a search based framework to harvest facial expression images

from the web to address the problem of lacking a large-scale facial expression dataset

that is collected under real world conditions. This chapter includes details about the

implementation of the method as well as comprehensive experiments demonstrating

the benefits of adapting realistic images for training the facial expression algorithms.
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Chapter 4 presents two novel facial feature extraction algorithms to handle fa-

cial expression images that are collected in highly unconstrained conditions using

the framework discussed in the previous chapter. The first feature incorporates the

spatial contextual information into the famous LBP descriptor using a shape context

based representation. The other one combines local feature descriptors extracted

from neighboring patches to form a second order representation. Both features are

more descriptive and robust in the presence of noise, which are commonly observed

in practical environments.

Chapter 5 focuses on the feature selection and combination methods. Due to the

high dimensionality, direct manipulation on facial expression feature descriptors is

highly computationally expensive and often results in suboptimal recognition perfor-

mance. Inspired by approaches from related domains, we propose a framework that

treats feature selection and fusion as a multiview dimension reduction problem and

aim to find a unified low dimensional subspace that captures information from all

sources (i.e. different feature spaces) by preserving local geometric properties of the

original features.

Chapter 6 presents the frame selection method that is able to choose a small subset

of frames to represent a facial expression sequence, such that the computational cost

can be greatly reduced without sacrificing the recognition accuracy.

Finally, Chapter 7 summarizes our work and key findings, and provides some

suggested directions for future research.
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CHAPTER 2

STATE-OF-THE-ARTS IN FACIAL EXPRESSION
RECOGNITION

This chapter reviews the state-of-the-arts in automatic facial expression recogni-

tion, with particular attention to the works relevant to our own investigations. Facial

expression has been systematically studied for over 150 years. To our knowledge, the

earliest publication with regard to facial expression analysis can be traced to 1862

[1] (see Figure 2.1). The interest of using facial expression as a key clue to human

emotions is renewed since 1960s, when Ekman linked expression to a group of univer-

sal emotions shared by all human beings [9]. The ideas of using facial expressions to

measure human emotions become the mainstream for the past 30 years in psychology

research. In 1978, Suwa et al . [10] proposed the first approach to automatic facial

expression analysis by tracking the motion of 20 identified spots on image sequences.

Since then, numerous systems have been developed to automatically analysis facial

expressions from static images and dynamic image sequences. The early works have

been summarized by Samal and Lyengar [11], Pantic and Rothkrantz [12], Fasel and

Luettin [13], Tian et al. [14]. Recent advances are surveyed by Zeng et al. [8].
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Figure 2.1: The earliest systematic investigation of facial expressions [1]
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Figure 2.2: The three main components of a typical facial expression recognition
system

The general approach to automatic facial expression recognition can be divided

into three components as shown in Figure 2.2. The first is face detection and reg-

istration. It involves the process of locating face regions from input data, and align

the faces to a common coordinate system. The second component is facial feature

extraction and representation which is responsible for extracting and representing the

facial changes caused by facial expressions. The last component is facial expression

classification. The facial changes can be identified as facial action units or proto-

typic emotional expressions. In the following sections, we review the relevant work

according to these three components.

2.1 Face Detection and Registration

The face detection and registration problem involves identifying the presence of

faces in an image and determining the locations and scales of the faces. The accuracy

of face detection and registration is particularly important in realistic conditions,

where the presence of face in a scene and the global locations of the face are not
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known a priori. This section reviews the eye finding and face normalization tasks.

Emphasis is placed on the most recent advances in the field. Readers can refer to [15]

for previous works.

A typical face detection algorithm [2, 16, 17, 18] performed the detection in the

following steps. Given a set of training images acquired in a fixed pose (e.g. frontal

or near-frontal), histogram equalization or standardization is performed to minimize

the effects of illumination. After this pre-processing step, certain face patterns are

extracted with knowledge based or learning based methods. Here the knowledge based

methods model the face patterns by some explicit rules, such as facial components,

face textures or skin color; the learning based methods model the face patterns by

learning from a set of data with some discriminant functions. With the extracted face

patterns, the system scans through the entire image to locate the faces. This scanning

process can be repeated at various coarser scales of the original image in order to find

faces at different scales. The raw detected face regions are further processed to remove

the overlapping matches. This section will focus on the cascade based face detectors

due to its dominance in the recent literature.

The AdaBoost based face detector by Viola and Jones [2] is arguably the most

commonly used face detector in automatic face recognition and expression analysis.

The basic idea of the approach is to train a cascade classifier (see Figure 2.3) for

haar-like rectangular features. The detector then scans an image at different scales

and positions by a sub-window, and the regions accepted by the classifier are declared

as faces. The haar-like rectangular features can be efficiently computed with integral

images [2], which allows the approach to achieve real time detection speed. To further

increase the detection speed while retaining the accuracy, AdaBoost [19] was used to
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Figure 2.3: A classifiers cascade with 3 levels [2]

select the representative haar-like features. Moreover instead of training a single

strong classifier, a number of weak classifiers are constructed. The weak classifiers

are combined into a cascade. The motivation is that simple classifiers at the beginning

of the cascade can efficiently rejects non-face regions, while stronger classifiers later in

the cascade simply need to classify the more face-like regions. The final face detector

with 38 layers achieves impressive accuracy and very rapid detection speed.

Several extensions have made to [2] for detecting faces from different views (e.g.

frontal and profile, faces with in plane rotations) [20, 21, 22]. In [20], separator Viola-

Jones face detectors [2] were trained for different fixed views of the faces. The face

detection is performed by estimating the view of each detection window with a deci-

sion tree constructed using features described in [2]. Based on the predicted view, the

detection windows are passed to the corresponding Viola-Jones face detectors. The
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union of all detected regions are reported as faces. Li et al. [21] proposed a modified

AdaBoost algorithm for learning face and non-face classifiers. To efficiently detect

multi-view faces, the classifiers are organized in a coarse-to-fine, simple-to-complex

pyramid-like structures. In [22], a width-first-search tree structure for constructing

face detector was proposed which is reported to obtain significant improvements in

speed and accuracy for multi-view face detections. In [20, 21, 22, 23, 24], the original

four type of Haar-like features were extended to represent complex or multi-view face

patterns.

Despite the excellent detection speed, Viola-Jones face detector has the drawback

of long training time. Some methods have been proposed to address this issue. In

[2], the classification learning algorithm is AdaBoost, which does feature selection

and classifier training simultaneously. Wu et al. [25] used a greedy feature selection

algorithm to determine the set of features before training the cascade classifier, they

reported that the training efficiency can be greatly increased with this approach. In

[26], Pham and Cham proposed an online learning algorithm that learns asymmetric

boosted classifiers with significant improvements in training time.

There are a few other face detection approaches besides the cascade face detectors

in the recent literature, including the component-based face detector using Naive

Bayes classifiers [18], the face detectors using support vector machines [27], the face

detectors trained with positive image only [28], and the energy-based method that

simultaneously detects faces and estimates the poses [29].
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2.2 Facial Feature Extraction and Selection

After the presence and location of a face are detected, the next step is to extract

the representative features about the shown facial expression. Obtaining effective

facial expression features from the detected face image is crucial for successful facial

expression recognition. The optimal features should minimize within-class variations

of expression while maximizing across-class variations. The common facial expression

features can be divided into two groups: geometric features and appearance features.

Geometric features represent the shape and location of facial components or pre-

defined facial feature points (see Figure 2.4), which are extracted to form a feature

vector to represent the face geometry. Appearance features represent the skin texture

changes of the face, such as wrinkles and furrows, which are normally obtained by

applying image filters (such as Gabor wavelets) to a face image.

Figure 2.4: Geometric Features [3] vs. Appearance Features [4]
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Geometric Feature Extraction

Geometric facial features have been widely used for facial representation [6, 30, 31,

32, 33, 34], where shapes and locations of facial components or facial feature points

are extracted to represent the face geometry. In [30], 34 fiducial points are used to

represent a face image. The fiducial points are manually selected at facial landmarks

(eg. corners of mouth, inner eye canthus), and the image coordinates of these points

are used as features. Hence each face image is represented by a vector of 68 elements.

Figure 2.5: ASM: The top row of images are manually labeled for training, the bottom
row shows the point distribution model(PDM) learned by PCA [5]

Active shape models (ASM) (see Figure 2.5) proposed by Cootes et al. [35] repre-

sent the shape of an object using a number of landmark points, and capture the shape

variations of the object with a point distribution model (PDM) which is constructed

by principal component analysis (PCA). Active shape models allow to simultaneously

determine shape, scale and pose by fitting appropriate point distribution models to
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objects of interest. Huang et al. [36] used a point distribution model to represent

the shape of a face, where shape parameters were estimated by employing a gradient-

based method. Most of ASM-based facial expression approaches use a single ASM

face model to represent one type of expressions. Naturally the models learnt from

face images in a specific view(eg. frontal view) cannot work on the other views(eg.

profile view). Wan et. al [37] extends the ASM to represent faces in different views

by modelling the shape of face counters and facial components separately. The basic

idea is that the shape of face contours will be much more similar than the individual

face components in different views. To represent the facial components, three models

are used depending on the face’s orientation: frontal view model, left profile view

model and right profile view model.

Tian et al. [6] proposed a Multistate Face Component Model to detect and track

changes of facial components in near front images, see Figure 2.6. They used a three-

state lip model to describe the lip states: open, closed and tightly closed. A two-state

model is used for each of the eyes: open or closed. Each brow and cheek has a one-

state model. This model is used to represent facial movements in an image sequence

by measuring the states transition of corresponding facial components.

In an image sequence, the facial movements can be modeled by measuring the

geometrical displacement of facial feature points between the current frame and the

initial frame. In [38], 20 facial points were manually selected and the facial movements

are represent by features calculated from the tracked facial points. In [39], they

extended the approach by proposing a fully automatic facial movement detection

system that can automatically localize facial points in the initial frame and recognize

the facial movements using the most representative features selected by AdaBoost.
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Figure 2.6: Multistate Face Component Model [6]

One may note here that, to extract geometric features, it usually requires accu-

rate and reliable facial feature detection and tracking. The automatic detection and

tracking of facial features is still an open problem in many real life situations, and

relying on manual labor on such task is very time expensive and error prone. This

motivates the use of appearance based features for facial expression analysis.
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Appearance Feature Classification

The appearance feature models the appearance change of faces. Holistic spa-

tial analysis including Principal Component Analysis (PCA)[40], Linear Discrimi-

nant Analysis (LDA) [41], Independent Component Analysis (ICA) [42], and Gabor

wavelet [43] have been applied to the whole face or specific face regions to extract the

facial appearance changes. Different techniques are explored by Donato et al . [44]

to represent face images for facial movement recognition, including PCA, ICA, LDA,

Local Feature Analysis and local schemes such as Gabor wavelet representation and

local principal components. They reported that best performance can be achieved

with Gabor wavelet representation and Independent Component Analysis.

Gabor filters are widely used to extract the facial appearance changes as a set

of multiscale and multiorientation coefficients. Ford [45] applied a family of Gabor

wavelets at five spatial frequencies and eight orientations to the whole face image. In

order to provide robustness to lighting conditions and to image shifts, they used a

representation in which the outputs of two Gabor filters in quadrature are squared

and summed. This representation is known as Gabor energy filters which models

complex cells of the primary visual cortex [46]. The Gabor filters can also be applied

to specific locations on a face [4, 30, 47, 48].

Since the computation of Gabor-wavelet representation is both time and memory

intensive, Ojala et al. [49] proposed the Local Binary Pattern (LBP) as a computa-

tional effective texture description. The original LBP operator labels the pixels of an

image by thresholding a 3 x 3 neighborhood of each pixel with the center value and

considering the results as a binary number. The derived binary numbers can be used

to represent texture primitives, see Figure 2.7. In order to capture dominant features
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with large scales, the original LBP operator was later extended to use neighborhood

of different sizes [50]. Using circular neighborhoods and bilinearly interpolating the

pixel values allow any radius and number of pixels in the neighborhood. The LBP his-

togram contains information about the distribution of the local micro-patterns, such

as edges and spots, over the whole image. Therefore, face images can be effectively

represented by LBP histograms as shown in [7, 51, 52]. Shan et al. [53] performed a

comprehensive study on facial expression recognition using LBP features. Different

machine learning methods are exploited to classify expressions on several databases,

including Support Vector Machines (SVM), Linear Discriminant Analysis (LDA) and

linear programming. They also tested the LBP features for low-resolution facial ex-

pression recognition.

Figure 2.7: Texture primitives represented by LBP [7]

Alternatively, Wang et al. [54] used four Haar-like rectangle features for facial

expressions recognition. These features are originally proposed by Viola et al. [2]

for face detection. Hence the ability for distinguishing different facial expression is

limited. Jung et al. [55] present new types of Haar-like rectangle features that are

suitable for facial expression recognition.
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2.3 Facial Expression Classification

The facial expression recognition component is responsible for interpreting the

extracted facial features and mapping the face images to some pre-defined categories,

which is essential a classification task. Different classifiers has been applied to tackle

this task, including Neural Network [56], Bayesian Network (BN) [57], Support Vector

Machine (SVM) [58], rule-based classifiers [34], Hidden Markov Models(HMM) [59].

The approaches can be divided into two groups: frame based recognition which only

relies on a single frame with or without a reference frame; image sequence based

approaches exploited the temporal behaviors of facial expressions.

Expression representation

There are generally two models for expression representation: discrete category

model and Facial Action Coding System (FACS) model. As its name suggests, dis-

crete category model describes expressions in terms of discrete categories. The most

popular example of this description is the prototypical (basic) emotion categories, in-

cluding happiness, sadness, surprise, anger, fear, and disgust [9, 60, 61]. All emotion

related expression can be described by one of the prototypical expressions and Ekman

et al. [9] claim that these six prototypical expressions can be perceived in the same

way across all human ethnicities and cultures. A large percent of automatic facial

expression analysis systems focus on recognizing these prototypical emotions.

The Facial Action Coding System (FACS) [62] is designed to detect subtle changes

in terms of Action Units (AU) in facial features. Any types of facial expression can

be represented by a combination of Action Units. The Facial Action Coding System

(FACS) is comprised of 44 Action Units, see Figure 2.8 for some example Action
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Units. As actions units are independent of interpretation, they can be used for any

high level decision making process, such as facial expression recognition.

Figure 2.8: Sample Action Units [62]

Frame based recognition

Frame based recognition relies on a single frame with or without a reference frame

for expression recognition. In general, any machine learning algorithm is applicable

for this task. In [43], the principal components of the feature vectors from training

images were analyzed by LDA to form discriminant. A test face image was classified

by projecting the input vector of the image along the discriminant vectors. The

proposed method was trained and tested on JAFFE [43] dataset. The recognition

rate was reported to be 92%.
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Bartlett et al. [58] performed systematic comparison of different techniques in-

cluding AdaBoost, SVM and LDA for facial expression recognition. Best results were

obtained by selecting a subset of Gabor filters using AdaBoost and training SVM on

the outputs of the selected filters. Shan et al. [53] compared the different learning

algorithms using the LBP features and achieved the best performance with SVM.

LBP features were further compared to Gabor wavelet features using SVM on the

Cohn-Kanade [63] dataset, and they reported that the recognition rate of LBP +

SVM was slightly higher than Gabor + SVM.

Tian et al. [6] proposed to use a three-layer neural network with one hidden layer

to recognize Action Units. Separate networks are used for the upper and lower face.

When Action Units are occur in combination, multiple output nodes are excited.

Pantic and Rothkrantz [64] proposed to use rule-based reasoning to recognize action

units and their combinations.

Image Sequence based recognition

Hidden Markov Models (HMMs) have been widely used to model the temporal

information. Cohen et al. [65] proposed a multilevel HMMs classifier for recognizing

facial expression and segmenting long image sequence to different expression segments.

The first level is comprised of independent HMMs related to different emotions. The

output state sequence is used as the input of the higher level HMM which enables

the segmentation.

Dynamic Bayesian Networks (DBN) have also been exploited for image sequence

based expression recognition [32, 66]. Kaliouby and Robinson [32] propose to use

multi-level DBN classifier to model complex mental states as a number of interacting

facial and head displays. Zhang and Ji [66] propose to use DBN and multi-sensory
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information fusion technique to model the temporal information of facial expression

in image sequences.

Lee et al. [67] proposed a framework to learn a decomposable generative model

to represent and analysis facial motions. The learned model can generate different

dynamic facial appearance for different people and for different emotions.

2.4 Summary

As disscused in this chpater, numerous approaches to automatic facial expression

recognition have been proposed. However, only relatively few recent studies consider

the problem in unconstrained environments, and the problem has remained unsolved

for the most part. As one major problem faced by the litearture is the lack of realistic

training and testing data, we tackle the problem by starting developing methods that

are able to construct large scale facial expression image datset form web images with

minimum human efforts. Various novel facial expression features are then proposed

to address the challenges imposed by the newly collected dataset. Finally, a feature

cmbination method is propsed to combine the proposed facial expression features to

form a more descriptive representation.
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CHAPTER 3

HARVESTING WEB IMAGES FOR REALISTIC FACIAL
EXPRESSION RECOGNITION

3.1 Introduction

Facial expression image dataset is essential for the research of automatic facial

expression analysis, as it is required to learn facial expression models and to evaluate

recognition algorithms. Over the past decades, several facial expression datasets such

as CK [63, 68] and JAFFE [43] have been made available to the public [4, 64]. They

have played a significant role to address the issues of lacking facial expression data.

However, these datasets are generally of a small scale comprising mostly of photos

collected under controlled environments from a very small number of human subjects,

which results in the fact that they are not ideal for evaluating expression recognition

algorithms in realistic settings due to the following two reasons:

• They suffer from common limitations of being small in terms of both the number

of subjects and images and fail to represent the diverse set of variations found in

the real world [69]. Consequently, despite the promising performance reported

[53], facial expression recognition algorithms trained on such datasets cannot

be applied in practice.
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• The datasets are not sufficiently challenging to unveil the capabilities of compre-

hensive facial expression recognition algorithms. For example, some rudimen-

tary algorithms are able to match the performance of many state-of-art systems

on these datasets due to the well controlled data acquisition environments [51].

The benefits of utilizing a more advanced algorithm may not be thoroughly

studied.

There is a clear demand for a comprehensive large-scale facial expression dataset

that is collected under real world conditions [8, 69]. Ideally, the data need to be

collected manually to ensure the quality. However, obtaining such data is a tedious

and time-consuming task that requires tremendous efforts which are proportional to

the dataset size. Nowadays, the prosperity of the Internet and Web technologies

brings us a large quantity of web images containing faces. These face images are

taken by people all over the world, hence typically span a wide range of image settings

and cover a large number of human subjects with different ages, genders and ethnic

groups. Moreover, a large number of web images are associated with related textual

descriptions, such as surrounding texts, title, and URL. Together these form a solid

foundation on which high quality facial expression image datasets can be obtained

with limited user supervisions.

Motivated by the above observations, in this chapter we address the demand on

realistic facial expression image datasets and propose a search based framework to

harvest realistic facial expression images from the Web. Specifically, our framework

consists of two major components as shown in Fig. 3.1: initial keyword based search

and active learning based refinement of search results. Firstly, given emotional key-

words corresponding to one facial expression, we use image search engines to obtain a
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Keywrods:

“Happiness Face”

“Joyful Face”

“Gladness Face”

...
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Active Selection of 

Uncertain Samples
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Model Training 

and Validation
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...

Figure 3.1: Overview of the active learning based framework for constructing facial
expression datasets.

raw dataset Sraw consisting of images that are potentially relevant to the expression.

In our experiment, Google is used for simplicity. However, it should be noted that our

framework is flexible for using multiple and differnt image search engines. As most

of the commercial search engines handle image search based on text analysis while

ignoring the actual visual content, Sraw is too noisy to be used directly for training

the facial expression recognition methods. Hence rather than treat all images in Sraw

as positive samples for the class of interest, we secondly use a binary Support Vector

Machine (SVM) classifier as a post-detector to select images visually relevant to the

query expression (keyword). The SVM classifier is learned from a training set that is

constructed by pool-based active learning [70]. The goal of the classifier is, for each

input image, to predict the presence of the facial expression of interest. Since the

active learning algorithm selects examples to be labeled, it requires much less human

effort during the classifier training. The final facial expression dataset is composed

of images selected by the SVM classifier.
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The newly collected facial expression dataset is very challenging for the Local

Binary Pattern (LBP) [53] and Weber Local Descriptor (WLD) [71] based facial

expression descriptors due to the level of variation in the data. Therefore, we propose

a novel facial expression feature based on WLD and histogram contextualization [72]

for multiscale analysis of facial expressions.

In summary, the main contributions are as follows:

1. We propose a web search based framework to build a realistic facial expression

dataset from the Web that contains a diverse set of human subjects and imaging

environments. Our approach is designed to minimize the human efforts during

the dataset construction and to maximize the scalability of the dataset for future

research. To the best of our knowledge, there are very limited studies in the

literature about building general facial expression datasets from web images.

2. We adopt an active learning based method to remove noisy images from the

search results returned by commercial search engines.

3. We propose an efficient facial expression feature based on the recent WLD de-

scriptor for multiscale analysis of faces, namely Multiscale-WLD. In addition,

spatial context is taken into account while histogram features are formed. Vari-

ous experimental results demonstrate that Multiscale-WLD is more robust than

other widely used descriptors such as conventional WLD and LBP.

4. We conduct comprehensive experiments to demonstrate that our facial expres-

sion dataset outperform other existing datasets in terms of generalization capa-

bilities.
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The rest of the chapter is organized as the follows. Section 3.2 briefly reviews the

related works. Sections 3.3 and 3.4 explain in detail the text based image collection

and content based image refinement approaches. Section 3.5 presents our Multiscale-

WLD based facial expression feature. Section 3.6 discusses the experimental settings

and results. Finally, concluding remarks are addressed in Section 3.7.

3.2 Related Work

In this section, we review the relevant literature on image understanding and facial

expression image feature extraction.

3.2.1 Image Understanding from Web Images

Training data acquisition is a key challenge in the development of large scale com-

puter vision and pattern recognition applications. In most cases, the cost of manual

data labeling is prohibitive due to the amount and range of the data. Therefore in

the recent years, there have been emerging interests in harvesting data or mining

knowledge from the Web.

A few approaches in this domain are related to our framework. Fergus et al . [73]

utilized images returned by Google image search to learn object categories automat-

ically. In their work, images were modeled as a mixtures of latent topics, which were

learned from Google image search results by an extended probabilistic Latent Seman-

tic Analysis (pLSA) model. Then top ranked image search results were used to select

a subset of topics corresponding to the object category of interest, and an object

classifier was built using these topics. However its performance might be strongly

affected by the accuracy of top ranked Google image search results, as it relies on

these images to select representative latent topics for each category. Li et al . [74] also
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aimed to collect an object category dataset from images returned by search engines

and learn the object category models simultaneously. They employed a Hierarchical

Dirichlet Process (HDP) model that was learned via an incremental learning process,

which gave their framework ability to incorporate novel images without being fully

re-trained. Hence the approach was more scalable than the work of Fergus et al .

[73]. Similarly, Collins et al . [75] applied a boosting based classifier to select relevant

images from image search results. To minimize the required number of supervised

training examples, the classifier utilized active learning and online learning to update

its model during the training process.

While the above works focus on utilizing the visual information, some other works

also exploit the meta data surrounding the web images. Berg and Forsyth [76] aimed

to build an animal dataset using Google search. They applied Latent Dirichlet Allo-

cation (LDA) model to learn a set of latent topics from surrounding texts of images

returned by Google image search, and select visual exemplars (images) for each topic

based on the nearby words of the images. Visual information obtained from visual

exemplars was then incorporated with textual information to build a classifier, which

can be used to determine whether a new image depicts an animal. This method

requires users to label visual exemplars as relevant or background. To completely

automate the data collection and cleaning tasks, Schroff et al . [77] proposed to use

a simple Bayesian posterior estimation to re-rank the image search results based on

textual information. The top ranked images were selected to build a training set.

A SVM classifier, learned from the training set, was adopted to re-rank the image

search results based on the visual information. Other recent work aiming at building

datasets from web images require manual data collection and cleaning [78, 79].
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As in the domain of facial expression analysis, to our best knowledge, there exists

only two such datasets, GENKI dataset [69] and Static Facial Expressions In The

Wild (SFEW) dataset [80]. The GENKI dataset was developed for smile detection,

therefore it only provides the ground-truth data for one type of facial expression. Also

the images had to be manually labeled. These limitations make the GENKI dataset

impractical for the research of general purpose facial expression analysis. The SFEW

dataset [80] was collected from movies and covered six basic expressions angry, disgust,

fear, happy, sad, surprise and neutral. However, it also required human annotators

to manually label all the data. To address this issue, here we attempt to construct a

semi-automatic framework by harvesting facial expression images from the Web that

can be scaled to support diverse types of facial expressions.

3.2.2 Facial Feature Extraction

Face representation has been studied intensively for automatic expression recog-

nition over the past decades, and a variety of approaches have been presented. In

general, these approaches can be divided into two groups: geometric based approaches

[6, 30, 38, 39] and appearance based approaches [42, 53, 81, 82, 83].

Geometric based facial expression feature extracts the shape and locations of fa-

cial components to represent the face geometry. In an early work by Zhang et al .

[30], 34 fiducial points were utilized to represent a face image. The fiducial points

were manually selected at facial landmarks and the image coordinates of these points

were used as features, which results in a 68-dimension feature vector. Tian et al . [6]

proposed a Multistate Face Component Model to detect and track changes of facial

components in near frontal face images. This model represented facial movements
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by measuring the state transitions of corresponding facial components. In an image

sequence, the facial movements could be modeled by measuring the geometrical dis-

placement of facial feature points between the current frame and the initial frame.

Valstar et al . [38] manually selected 20 facial points and recognized Facial Action

Units (AUs) by classifying features calculated from tracked facial points. Their ex-

periments demonstrated that the facial representation based on tracked facial points

was well suited for facial expression analysis. This approach was further extended

by adopting a fully automatic facial movement detection system that could automat-

ically localize facial points in the initial frame and recognize the facial movements

using the most representative features selected by AdaBoost [39]. However, extract-

ing geometric features usually requires accurate and reliable facial feature detection

and tracking. The automatic detection and tracking of facial features is still an open

problem in many real world situations, and relies on manual labor which is very time

expensive and error prone. Therefore, appearance based features for facial expression

analysis have also been investigated.

Appearance based facial expression features model the appearance change of faces,

such as wrinkles and furrows, by directly utilizing pixel values. Holistic spatial anal-

ysis including Principal Component Analysis (PCA) [40, 84], Linear Discriminant

Analysis (LDA) [41], and Independent Component Analysis (ICA) [42] has been ap-

plied to the whole face or specific face regions to extract the facial appearance changes.

Typically these methods project face images onto a subspace, find a set of basis im-

ages, and represent faces as a linear combination of those basis images. The Active

Appearance Models (AAM) [85] was also applied to facial expression recognition,
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which used PCA to model both shape and texture variations. The models can be fit-

ted to new images by varying the shape and texture parameters within limits learned

from a training set. Abboud et al . [86] applied LDA to the AAM parameters to

obtain the most discriminative features and represent facial expression images. Sung

et al . [87] combined the AAM with Active Shape Models (ASM) [35] to reduce the

average model fitting errors. Ashraf et al . [88] utilized AAM derived representations

for recognizing facial expression of pain.

In recent years, researchers have turned toward local descriptor based facial ex-

pression features as local descriptors have been shown to be more robust to oc-

clusion, misalignment and moderate pose changes than traditional holistic methods

[81, 82, 83, 89]. Ojala et al . [49] proposed the Local Binary Pattern (LBP) as a com-

putational effective texture descriptor. The original LBP operator labels the pixels

of an image by thresholding a 3× 3 neighborhood of each pixel with the center value

and considering the results as a binary number, and use the derived binary number to

represent texture primitives. In order to capture dominant features at a large scale,

the original LBP operator was later extended to use neighborhood of different sizes.

Using circular neighborhoods and bi-linearly interpolating the pixel values allow any

radius and number of pixels in the neighborhood [50]. The LBP histogram contains

information about the distribution of the local micro-patterns. Thus face images can

be effectively represented by LBP histograms as shown in these works [53, 90]. Shan

et al . [53] performed a comprehensive study on facial expression recognition using

LBP features. Different machine learning methods have been employed to classify

expressions on several datasets, including SVM, Linear Discriminant Analysis (LDA)

and linear programming. It is argued that LBP is more robust and efficient than
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Gabor wavelet features. By combining Gabor filtering with LBP, Local Gabor Phase

Patterns (LGBP) [66] was proposed to extended LBP to multiple resolutions and

orientations. Xie et al . proposed Local Gabor XOR Pattern [91] to exploit the Gabor

phase information. Recently, Chen et al . [71] proposed the Weber Local Descriptor

(WLD) for face detection. WLD characterizes texture information of an image by

considering the ratio of changes in pixel intensity. Different to LBP, it uses the gra-

dient orientations to describe the direction of edges. In addition to LBP and WLD,

some other local descriptors originally proposed for object recognition tasks were also

used for facial representation, such as SIFT [92], Histogram of Oriented Gradients

(HOG) [93], and Haar-like rectangle features [54].

3.3 Text-based Web Image Search

In this section, we describe the procedures for collecting the initial pool of weakly

labeled images from the Web. We rely on text based image search engines to obtain

the initial image set which is motivated by the fact that the human face related

images are usually accompanied with emotional text information. Although it is

often the case that the retrieved images are not semantically relevant to the query

keyword, there still exist a considerable number of images with correct information

on facial expressions. For the scope of this chapter, interests are placed on the seven

basic facial expression categories including happiness, sadness, surprise, fear, disgust,

anger and neutral [94]. The initial list of query keywords are intuitively formed by

these category names.

Most of image search engines restrict the number of images to be returned. For

example, Google only returns the top 1,000 images for each query, in which there also
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exist quite a number of dead links. If one keyword is used for one facial expression,

we can only collect a very limited number of training images. In order to overcome

this restriction, we formulate emotionally related text queries using an affective-based

lexical datasets - WordNet-Affect [95] which models the affective words or synsets in

a hierarchical structure. Under a category parent in the hierarchy, the affective words

are semantically and emotionally similar. For example, joy, gladness, and cheerfulness

are affective words under a same category, and share very similar affective meaning

of happiness. Hence these affective words are also included in the query keywords list

as shown in Table 3.1. To further increase the number of potential training images,

the queries can also be performed on different image search engines and online image

sharing web sites in the future. Since only the human face related images are of our

interest, the above query keywords have been expanded with face related terms such

as face and expression. As a result, a raw dataset, denoted as Sraw, is created from

straightforward web image search.

Table 3.1: A list of keywords used for text based facial expression image search.

Original Keyword Extended Keywords

Anger fury, infuriation, umbrage, indignation, annoyance,
huffiness, dander

Disgust shame, dislike, repugnance, nausea
Fear scare, panic, horror, creeps, apprehension
Happiness joy, amusement, gladness, rejoicing, cheerfulness,

exhilaration, elation
Sadness cheerlessness, sorrow, misery, weepiness, depression,

forlornness, melancholy
Surprise astonishment, amazement, shock
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3.4 Content-based Refinement

3.4.1 Face Registration

Despite the efforts described in Section 3.3, many images in Sraw still do not

contain any face or are of low quality for training purpose (e.g . lack of frontal face).

The well known Viola-Jones face detector [2] is utilized to remove these noisy images.

After faces are detected, we firstly perform automatic eye localization on the de-

tected face region in order to align different face image data into a common coordinate

system based on eye locations. For this task, we adopt the Average of Synthetic Exact

Filters (ASEF) [96] which is a class of correlation filters. Then we align and normalize

the faces based on the detected eye locations and the distance between the two eyes.

Similar to the practice of Shan et al . [53], facial images of 110×115 pixels are cropped

from the original frames and are used to construct the initial facial expression dataset

denoted as Sface.

3.4.2 Active Learning based Refinement

The face registration process described in Section 3.4.1 removes most of images

not containing frontal faces. However, a fairly large proportion of the remaining face

images are still not related to the query expression. For example, the search results

may contain sad face images for the query of happiness. In order further improve the

quality of Sface, we have to further select images that are semantically relevant to the

query expression. Thus for each category of facial expression of interest, we apply a

binary SVM classifier that is learned from a training set constructed by a pool-based

active learning method.
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Support Vector Machine

Given a training dataset D = {(xi, yi)}li=1, where l is the size of the dataset,

xi ∈ Rn is a feature vector and yi ∈ {−1,+1} is the class label of xi. Support Vector

Machine (SVM) finds a hyperplane in the form of w · x + b = 0 that maximizes the

margin of separation between two data classes −1 and +1. Maximizing the margin is

a problem of constrained optimization that can be solved by Lagrange method. Thus

w can be solved as [97]:

w =
l∑

i=1

αiyixi, (3.1)

where the coefficients αi is a Lagrange multiplier. A non-zero αi indicates that xi

associated with αi is a support vector. New data point xnew can now be classified by

the decision function:

f(xnew) = sign

(
l∑

i=1

αiyi(xi · xnew) + b

)
, (3.2)

where positive (negative) utput means xnew belongs to the positive (negative) class.

It is often the case that two classes are not linearly separable, therefore SVM uses

a kernel function to perform non-linear mapping of the data into a higher dimensional

feature space, and finds a linear separating hyperplane with the maximum margin to

separate the data in this high dimensional space. The radial basis function (RBF)

kernel given in Eq. 3.3 is used in our experiments.

k(x, y) = exp(−γ‖x− y‖2) (3.3)

And the decision function in Eq. 3.2 can be rewritten to:

f(xnew) = sign

(
l∑

i=1

αiyik(xi, xnew) + b

)
, (3.4)
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where the dot product is substituted by the kernel function k(xi, xnew). In our exper-

iment, grid searching is used to find the optimal parameters of SVM.

Pool-based Active Learning with SVM

Active learning aims to reduce the number of labeled examples required to train

a classifier. This is achieved by selecting the most informative unlabeled examples to

require human labeling. The key challenge here is how to select the next unlabeled

instances to interact with users. Following the settings in [98], we use an uncertainty

sampling based approach that chooses the unlabeled examples with least classifica-

tion certainty. Though SVM does not give the probability of prediction directly, the

probability can be estimated by using a Sigmoid function [99]. In a binary classifi-

cation problem, the method is equivalent to find the data points with the smallest

margin to the decision hyperplane.

Given a seed training dataset D that contains labeled expression images, a un-

labeled dataset P , and a validation dataset V . Initially, D only contains a small

number of randomly selected examples. The workflow of the algorithm is as follows:

1. Train an SVM classifier with D;

2. Perform the classification on P and compute the class membership probability

estimates;

3. Remove the images with the lowest classification certainty to query the user,

and add the actively selected images along with user provided labels to D. In

our experiments, five images are returned to the user for manual labeling;

36



4. Evaluate the model by performing classification on the manually labled valida-

tion dataset V ;

5. Go back to step (1) and repeat until the user is satisfied or the images have

been exhausted.

3.5 Multiscale-WLD Based Facial Expression Feature

Previous studies have shown that facial images can be effectively described as a

composition of micro-texture patterns, such as edges, spots and flat areas [53, 100].

Hence in this work, we propose to represent a facial image by its local textures and

the spatial layout of the textures. The spatial layout is captured by partitioning a

facial image into grids (as shown in Fig. 3.3) and each grid is represented with WLD

to capture its local texture. The local descriptors are then concatenated to form a

global description of the face. In the following sub-sections, we will describe our facial

feature in detail.

3.5.1 Weber Local Descriptor

The Weber’s law [101] states that the smallest change in the intensity of a stimulus

capable of being perceived is proportional to the intensity of the original stimulus.

This implies that the ratio of the change in the intensity of the stimulus reflects the

magnitude of human perception of the stimulus. Based on such motivation, the Weber

Local Descriptor (WLD) was recently developed by Chen et al . [71] to characterize

texture information of an image by considering the ratio of changes in pixel intensity

which can be considered as stimulus information for visual perception.
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WLD is comprised of two components, differential excitation and orientation.

Differential excitation ξ(xc) measures the ratio of change in pixel intensity between a

center pixel xc against its neighbors. It is computed in the following way [71]:

ξ(xc) = arctan

[
p−1∑
i=0

(
xi − xc
xc

)]
, (3.5)

where xi denotes the ith neighbors of xc and p is the number of neighbors (8 in the

case of 3×3 neighborhoods). The arctan function is applied to smooth out the results.

Differential excitation ξ(xc) captures the local salient visual patterns. For example,

a high ξ(xc) value indicates that xc potentially belongs to an edge or a spot as there

is a strong difference in pixel intensity between xc and its neighbors.

The orientation component θ(xc) of WLD is the gradient orientation of the pixel

xc. It is computed as [71]:

θ(xc) = arctan

(
x7 − x3
x5 − x1

)
, (3.6)

where x1, x3, x5 and x7 are neighbors pixels of xc as shown in Fig. 3.2. The orientation

component is then quantized into T dominant orientations.

After labeling the image with WLD, a 2D WLD histogram of the labeled image

can be defined as:

Hwld(c, t) =
I−1∑
i=0

J−1∑
j=0

I
(
ξ (xi,j) = c

)
I
(
θ (xi,j) = t

)
, c ∈ C, t ∈ T (3.7)

where I×J is the dimensionality of the image, xi,j is the pixel at location (i, j) in the

image coordinates, T is the number of dominant orientations as mentioned above,

C is the number of bins of the differential excitation histogram in each dominant

orientation θt, and

I(A) =

{
1 if A is true,
0 otherwise.

(3.8)
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Figure 3.2: Illustration of neighborhood pixels used for extracting the WLD descriptor
of xc.
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Figure 3.3: Multiscale-WLD Facial Expression Feature.

Note that in this 2D histogram, each column corresponds to a dominant orientation,

and each cell Hwld(c, t) corresponds to the frequency of a certain differential excitation

interval on a dominant orientation θt. The size of the interval is controlled by two

user defined parameters M and S. The 2D histogram is further encoded into a 1D

histogram by concatenating all of the cells Hwld(c, t). Therefore the size of the final

descriptor is T ×M × S.
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3.5.2 Multiscale-WLD Based Face Representation

As faces can be seen as a composition of micro texture patterns [53, 100], it

is intuitive to use WLD to represent facial images. However, a WLD histogram

computed over a global face image does not capture the spatial locations of the micro

texture patterns since the patterns tend to be averaged over the whole image area

which will reduce the discriminative power of the WLD descriptor for facial expression

recognition. Hence in order to overcome this issue, we divide a face image equally into

N rectangular regions R1, R2, ..., RN (Fig. 3.3), and a histogram Hn(n = 1, 2, ..., N)

is computed independently for each sub-region.

When perceiving facial expressions, human beings pay more attention to some

face regions (e.g . eyes and mouth) than others [53]. In order to take this observation

into account, each region can be assigned a weight wn(n = 1, 2, ..., N) according to

the importance of the region in human perception. The resulting N histograms are

then concatenated into a single spatially enhanced histogram:

H =
{
wnHn

}
, where n = 1, 2, ..., N. (3.9)

The histogram H effectively encodes both the local texture appearance and the global

spatial relationships among facial regions.

Multiscale analysis is achieved by down-sampling the original face image to form

an image pyramid followed by applying a WLD operator with fixed neighborhood

size of 3× 3 pixels. A spatially enhanced histogram is computed at each level of the

pyramid. The final Multiscale-WLD feature vector is formulated by concatenating

the histograms extracted at different scales. Since encoding not only the micro struc-

tures of a face image but also the macro structures which provides a more extensive
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description than the basic WLD operator, the Multiscale-WLD is more robust. The

distance between two Multiscale-WLDs reflects the extent to which two facial images

contain similar textures within corresponding spatial regions.

In summary, our Multiscale-WLD based facial expression feature is formed as

follows:

HM−WLD =
{
H1, H2, ..., HR−1, HR

}
, (3.10)

where R is the number of different scales and Hr is a spatially enhanced histogram

computed using (3.9). The dimension of the Multiscale-WLD based descriptor equals

to R × N ×M × T × S, where R denotes the number of scales that a face image

will be analyzed at, N denotes the number of rectangular regions that a face image

will be divided into, M , T , and S are WLD parameters, in which T determines the

number of dominant orientations of the WLD orientation components, and M and S

control the size of the interval of the WLD differential excitation components on a

certain dominant orientation.

3.5.3 Contextualized Multiscale-WLD Based Face Represen-
tation

As a histogram based feature, the Multiscale-WLD based face representation lacks

the ability to capture the spatial contextual information among the patterns. In or-

der to address this issue, we extend the Multiscale-WLD by utilizing contextualized

histogram [72] to encode spatial context in our face feature. The contextualized his-

togram CH is constructed by comparing an image indexed by the bins of a histogram

H with a set of predefined structures, followed by counting the occurrence of differ-

ent structures for each bin of H. As in [72], 30 predefined structures are used in this

chapter where each structure defines a homogeneity pattern and a different shape.

41



Hence, the dimension of the contextualized Multiscale-WLD is becoming to 30 times

of that of the original Multiscale-WLD descriptor. PCA is then applied to reduce the

dimensionality for better classification performance.

3.6 Experiments and Discussions

3.6.1 Experimental Settings

Our experiments were conducted on 7 categories of universal facial expressions

[94]: happiness, sadness, anger, fear, disgust, surprise and neutral. After removing

non-face images, the number of images in each category varies from 2000 to 2500

images in image set Sface. For each category, a facial expression classifier is trained

from Sface using SVM with active learning where the following three datasets were

utilized:

1. Validation Set Gv: This will be used as the verification dataset to determine the

stopping criteria for active learning, as well as a realistic facial expression image

dataset to be compared with other well established facial expression datasets in

Section 3.6.3. In total, 350 images (50 images for each of the 7 categories) are

randomly drawn from the initial face dataset Sface and manually labeled.

2. Seed Training Sets: Seed training sets are the initial training data used in active

learning (see Section 3.4.2). Each facial expression category has a seed training

set. The positive examples are manually labeled and the negative examples are

uniformly-randomly drawn from other seed positive training sets. The number

of positive examples and negative examples are equal, which is set to 20 images

for each category in our experiment.
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3. Active Learning Pools: It is comprised of all remaining images in Sface, one

for each category of facial expressions. The number of images in each category

varies from 1900 to 2400.

In our experiments, the facial expression images are represented by Multiscale-

WLD features. We denote the Multiscale-WLD feature as M −WLDM,T,S
R,N . Here, N

is experimentally set to 5× 5, R is set to 3 and each face image is down-sampled at

scale σ = 0.6, M is set to 2, T is set to 6, and S is set to 4. The weight value for

each region is empirically set according to our observation. The weighting scheme is

symmetric with respect to the center y-axis as shown in Fig. 3.4. This yields a 3600-

dimensional feature vector for each face image. In Section 3.6.7, we study the impact

of different parameter settings. The dimension for Contextualized Multiscale-WLD

facial feature (CM-WLD) is 10800, and PCA is applied to reduce the dimension to

400. The effectiveness of CM-WLD is analyzed in Section 3.6.6.

1.0

0.2

0.4

0.6

0.8

Figure 3.4: The weighting scheme used in our experiments.
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We also compare the proposed Multiscale-WLD facial feature with LBP descriptor,

which has been widely used in facial expression recognition. Following [90], we use the

59-bin LBP u2
8,2 operator. Similar to WLD, each facial image is segmented into a grid

of 5× 5 regions. We compute a LBP u2
8,2 operator for each of the 25 regions, yielding

a 1475-dimensional feature vector (59 × 25) for each face image. Multiscale-LBP is

realized by down-sampling the images into three resolution at scale σ = 0.6 which

gives a 4425-dimensional feature vector (3× 59× 25).

3.6.2 Quality of Our Dataset

In order to evaluate the quality of the data collected with our method, we pro-

duce a facial expression dataset Gw. Specifically, we apply the actively learned facial

expression classifiers to Google image search results, and select the top-ranked 100

images for each expression according to the estimated classification certainty. Some

true and false positive images from the resulting dataset are shown in Fig. 3.5. The

precision of the 100 images for each expression is compared with that of the top 100

images returned by Google image search. As can be seen in Fig. 3.6, our dataset

significantly outperforms Google image search for all 7 categories of facial expressions.

3.6.3 Diversity of Our Dataset

We demonstrate the diversity of our dataset by comparing the performance of

facial expression recognition algorithms trained with our dataset to the performance

of the recognition algorithms trained with other well established facial expression

datasets, JAFFE[4] and Cohn-Kanade DFAT (CK) [63]. For this purpose, we use

the actively collected facial expression dataset Gw (see Section 3.6.1) as our realistic
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Figure 3.5: Images from our actively collected facial expression dataset Gw.

training dataset and Gv as our realistic verification dataset. The JAFFE dataset con-

tains 213 images of the seven basic facial expressions which were posed by 10 Japanese

females. It is the most trivial dataset over the three, and serves as the baseline in the

experiments. The Cohn-Kanade DFAT dataset consists of approximately 500 images

from 100 subjects ranged in age from 18 to 30 years, of which 65% are female. The

distribution of the ethnic groups is: 81% Euro-American, 13% Afro-American and

6% other groups. An overview of the evaluation datasets is shown in Table 3.2. All
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Figure 3.6: Precision of images in Gw (blue and red, the left two bars) compared to
first 100 Google image search results (green, the right bar).

face images are resized to a fixed size of 110 x 150 pixels. Histogram equalization is

performed to remove the illumination effect in the images.

Here we provide a walk through of the facial expression recognition algorithm used

for evaluating the facial expression datasets. Given a set of training images, we first

extract the local texture features to represent the facial expressions. Then we train

an SVM classifier for each facial expression. Since SVM was originally developed

for binary classification, in order to extend SVM for multi-class classification, we use

the One-Versus-All approach, which trains a binary classifier to classify one class

of interest (positive) versus all other classes (negative). These independent SVM

classifiers are used to provide seven predictions of the presence or absence of the facial
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Table 3.2: Statistics of the evaluation datasets used in the experiments. The columns
of Male and female show the percentage of male subjects and female subjects respec-
tively.

Images Subjects Female Male

Gv 350 328 59.2% 40.8%
JAFFE 213 10 100% 0%
CK 500 100 65% 35%

expression in unseen face images and the class with the greatest class-membership

probability estimation value is output as the recognized facial expression.

In our experiments, we perform the 5-fold cross validation for CK and JAFFE.

For our dataset, the classifiers are trained on Gw and evaluated on Gv. The confusion

matrix of the classification results are reported in Tables 3.3, 3.4 and 3.5, where each

row represents a set of images corresponding to a type of expression and each column

represents the percentage of the images that is classified into a type of expression. It is

observed that the results have some key similarities across the three datasets, but also

some interesting differences. The happiness and neutral expressions are consistently

better recognized than the rest types of the expressions. However they are mostly

misclassified into each other which suggests that these two expressions share some

appearances to a certain extent. It is also noted that the classifiers are mostly confused

by the following three types of expressions: sadness, fear and anger. Interestingly,

these three types of expressions are relatively difficult to be distinguished by human

beings [102]. Another observation is that the disgust and surprise expressions are

comparatively well classified on the CK and JAFFE datasets, but not so well on
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our dataset. It is believed that these two expressions are over exaggerated in the

posed facial expression datasets (CK and JAFFE). In a real world environment which

our dataset Gw is trying to resemble, the difference among them is subtle, which

makes them difficult to be well recognized. Finally, it is noted that there is a strong

connection between Gw and the classification performance. The better classification

results are achieved when there is less noise in the training dataset.

The cross-dataset classification results are reported in Table 3.6. As can be seen,

the recognition algorithm performs well for the JAFFE and CK dataset with over

90% classification accuracy rate, but the performance is not ideal on our dataset Gw.

This suggests that Gw is much more challenging to the facial expression recognizer

compared to the other two datasets since it is collected in much more diverse imaging

conditions and contains a much larger variety of subjects (e.g . 350 face images from

328 different people). We then perform the cross dataset experiments. Specifically,

we train the classifiers using the Multiscale-WLD features obtained from face images

belong to one dataset and test the classifiers on the other two datasets. As shown in

Table 3.6, the recognition performance of the classifiers trained with our web facial

images does not vary significantly across different datasets. Because we preprocess the

images in the same way, the only difference between them is that they were collected

under different controlled environments. The poor generalization ability of JAFEE

and CK datasets suggests that the facial expression classifiers trained on a dataset

with uniformly controlled environment only works well for the same dataset. On the

other hand, it shows that our dataset is much more diverse compared to JAFFE and

CK as the decrease of classification performance is minimal for our dataset. Therefore,

it is more difficult to train the classifiers with our dataset, which may explain that
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the classification performance are similar for all three datasets even though JAFFE

and CK datasets are relatively easy to handle compared to Gw.

Table 3.3: Confusion matrix for the classification results on our Gw. The classifiers
are trained on Gw and evaluated on Gv.

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 51.2% 13.5% 10.7% 6.5% 0.0% 8.0% 10.2%
Disgust 17.9% 43.8% 8.9% 6.0% 2.0% 13.7% 7.7%
Fear 14.4% 10.0% 37.0% 4.7% 4.0% 8.2% 21.8%
Happiness 5.0% 5.6% 3.6% 67.5% 11.8% 5.6% 1.0%
Neutral 4.5% 3.3% 5.0% 12.0% 54.4% 16.7% 4.1%
Sadness 14.7% 5.4% 8.2% 11.5% 11.2% 43.9% 5.3%
Surprise 9.5% 10.7% 17.4% 7.4% 3.1% 8.2% 43.7%

Table 3.4: Confusion matrix for the 5-fold cross validation results on the CK dataset.

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 95.0% 3.2% 0.0% 1.0% 0.8% 0.0% 0.0%
Disgust 1.0% 97.4% 1.1% 0.0% 0.0% 0.0% 0.6%
Fear 0.6% 0.0% 86.1% 4.7% 6.9% 1.6% 0.0%
Happiness 0.0% 0.0% 0.0% 98.8% 1.4% 0.0% 0.0%
Neutral 0.0% 0.0% 0.0% 1.0% 98.6% 0.4% 0.0%
Sadness 1.6% 0.0% 0.0% 0.0% 2.5% 95.7% 0.0%
Surprise 0.0% 0.0% 2.0% 0.4% 0.0% 0.0% 97.5%

3.6.4 Active Learning vs Passive Learning

In this section, we perform experiments to investigate the reduction in number of

training examples required for active learning to obtain similar classification accuracy
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Table 3.5: Confusion matrix for the 5-fold cross validation results on the JAFFE
dataset.

Anger Disgust Fear Happiness Neutral Sadness Surprise

Anger 83.5% 6.2% 2.0% 1.5% 3.9% 1.0% 1.9%
Disgust 5.5% 86.5% 0.0% 4.5% 2.1% 1.2% 0.0%
Fear 4.0% 2.5% 82.4% 7.0% 4.0% 0.0% 0.0%
Happiness 0.0% 0.0% 1.6% 92.5% 5.8% 0.0% 0.0%
Neutral 4.0% 0.0% 0.0% 5.5% 89.4% 0.0% 1.0%
Sadness 7.2% 4.8% 5.0% 0.0% 2.6% 79.6% 1.0%
Surprise 0.0% 3.2% 5.8% 5.0% 0.0% 0.0% 86.0%

Table 3.6: Comparison of recognition performance when training and testing happen
on the same and different datasets. We use Gw as our training dataset and Gv as our
evaluation dataset.

Training
Testing

Our Gv CK JAFFE

Our Gw 48.8% 49.3% 45.1%
Cohn-Kanade (CK) 26.4% 95.6% 35.3%
JAFFE 24.2% 35.4% 85.7%

as passive learning. The passive learning is performed by randomly selecting 5 images

from the learning pool, in contrast to the active learning where images are “actively”

selected based on their rankings. We focus the study on the category of happiness

facial expression images for illustration purposes. For both learning approaches, we

begin with a pool of 25 randomly selected labeled examples. At each round of learning,

we select 5 images to query user for labels based on the estimated classification
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certainty for the active learning approach, while selecting 5 random images for passive

learning. The learned classifiers is then evaluated on Gv. We report the results of

classification accuracy after each iteration of learning in Fig. 3.7. It can be noted

that there is no much difference in classification accuracy during the first few rounds

of learning, which is mainly because we start with the same seed training set for both

approaches and the proportion of actively selected examples is far fewer than the

number of randomly selected examples. However, as the number of learning rounds

increases, it becomes evident that active learning reduces the significant number of

training examples required to obtain similar classification accuracy. In particular, the

classification accuracy of active learning with 150 images is better than the passive

learning with roughly 300 images as shown in Fig. 3.7.

3.6.5 Benchmarks with Near Frontal Face Images

Facial images in JAFFE and CK datasets are captured strictly at frontal view.

However, the images in our web dataset Gw are varied in pose with approximately of

±15◦ against the front view. This motivates us to study its impacts on near-frontal

facial expression recognition. The experiment is performed by training three sets of

facial expression recognition classifiers for the three datasets (JAFFE, CK and Gw)

respectively, and evaluating each set on a benchmark dataset. We use the same facial

expression recognition algorithms as discussed in Section 3.6.2. And BU-3DFE is

used as the benchmark dataset, which is a 3D facial expression dataset [103]. The

BU-3DFE dataset contains 100 subjects, of which 56% are female and 44% are male,

ranging from 18 years to 70 years old with a variety of ethnic backgrounds. For

each subject, the dataset captures six universal expressions (happiness, disgust, fear,
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Table 3.7: Benchmark results on BU-3DFE dataset with classifiers trained on Gw,
JAFFE and CK respectively.

Gw JAFFE CK

Classification Accuracy 58.2% 34.7% 38.9%

angry, surprise and sadness) with four levels of intensity plus the neutral expression.

In our experiment, we generate 9 facial images for each subject by rotating and

projecting the 3D expression models with the strongest intensity. Each facial image

corresponds to one near-frontal facial view with 3 yaw angles (−15◦, 0◦, +15◦) and 3

pitch angles (−15◦, 0◦, +15◦). Totally we have 6300 facial images. We believe that

the combination of yaw and pitch angels is able to resemble the near-frontal facial

views typically found in realistic environments.

As shown in Table 3.7, the classifiers trained onGw outperform the other two coun-

terparts by a great margin (more than 20%). The result demonstrates the benefits of

training facial expression algorithms using datasets with large variations of imaging

conditions. It also suggests that a diverse dataset be required to further develop facial

expression recognition system that will be practical in realistic environments.

3.6.6 Effectiveness of Multiscale-WLD Based Facial Feature

In this section, we compare our Multiscale-WLD face descriptor with the original

Singlescale-WLD descriptor. As described in Section 3.5, the Multiscale-WLD de-

scriptor is extracted at three image scales by factors of 1 (original resolution), 0.6,

and 0.3 in both horizontal and vertical dimensions. Meanwhile, the Singlescale-WLD
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descriptor is obtained from the image at its original resolution. We use the same WLD

parameter settings for both descriptors, and no weighting for local region is used for

this experiment. We perform the test on all three evaluation datasets and the result

is reported in Table 3.8. Multiscale-WLD yields clearly higher recognition rates than

the original approach, which provides evidence that the discrimination power of the

Multiscale-WLD facial feature outperforms the single scale based descriptor due to

its ability in capturing and encoding textures with different sizes from facial images.

The Multiscale-WLD descriptor is also compared with the Contextualized Multiscale-

WLD descriptor. It is noted that the Contextualized Multiscale-WLD descriptor out-

performs its conventional counterparts on Gv dataset while underperforming on CK

and JAFFE. The result suggests that incorporating the local spatial relationships

between the patterns into the descriptor can help reduce the issues caused by incon-

sistent face alignment which is commonly found in our dataset. However, the benefits

cannot be readily determined when the face images are collected in a well controlled

environments (i.e. JAFFE and CK).

To gain better understanding on the WLD based facial representation, we com-

pare it with Local Binary Pattern (LBP) descriptor. The results shown in Table. 3.8

indicate that the WLD based representations are more robust than LBP based repre-

sentations. Moreover, compared with their single-scale counterparts, both Multiscale-

WLD and Multiscale-LBP achieves better recognition performance.

3.6.7 Impact of Parameter Settings

As discussed in Section 3.5, there are six parameters that should be selected to

optimize the performance of Multiscale-WLD based facial representation. Of them,
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Table 3.8: A comparison of 5-fold cross validation results for different WLD and LBP
based facial feature on different evaluation datasets.

S-WLD M-WLD CM-WLD S-LBP M-LBP

Gv 57.6% 59.9% 60.5% 46.3% 48.8%
JAFFE 83.1% 85.7% 84.9% 83.5% 84.9%
CK 92.6% 95.7% 91.3% 92.0% 92.5%

three original WLD parameters (M , T , S) control the dimensions of a WLD descrip-

tor, N determines the number of regions that a facial image will be divided into, R

denotes the number of scales that a facial image will be analyzed at and σ is its scale

factor. In this section, we study the impact of each parameter by varying their values

one at a time while fixing the other ones. For instance, when N is the interest of

study, we only vary the value of N while fixing the values of all other parameters. The

experiment is performed using the dataset Gv in a 5-fold cross-validation manner.

The parameters M , T , and S determines the discriminability and statistical re-

liability of the WLD descriptor [71]. One should note that the experiment is per-

formed at original image resolution. The experimental results in Figs. 3.8(a), 3.8(b)

and 3.8(c) show that the overall performance is not necessarily affected, though the

changes of these parameters result in significant difference in the dimension of the

WLD descriptor. This suggests that WLD based facial representation is very robust

with respect to the change of parameters.

The size N is a trade-off between computational complexity, discriminative power

and tolerance against face localization errors. Fig. 3.8(d) shows its effects. As N

increases, both the discriminative power and computational complexity increase. This
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trend continues to a point that the proposed method starts to become sensitive to a

small change in face localization (25 in Gv), from where the discriminability starts

to decline. This is because the proposed methods computes histograms over local

regions so a small change in face registration relative to the grid only causes changes

in the labels on the borders of the local regions. Therefore as the number of region

N increases, the method becomes more prone to the localization errors.

Varying the size of R and σ enables Multiscale-WLD to deal with textures at

different scales. A large value can increase the redundant information while a small

value can cause loss of important information. Figs. 3.8(c) and 3.8(f) illustrate their

minor impacts to the recognition accuracy.

3.7 Conclusion

In this chapter, we present a semi-automatic and scalable framework for harvest-

ing facial expression images from the Web. The use of active learning minimizes

human efforts required for data collection and cleaning. In addition, a novel facial

feature based on Weber Local Descriptor (WLD) and histogram contextualization

is proposed for multi-resolution analysis of faces. Our comprehensive experimental

results on several benchmark datasets demonstrate that the proposed facial feature

is robust, and the framework is capable of constructing diverse and high quality fa-

cial expression datasets. Compared to other popular datasets collected in controlled

laboratory environments, the state-of-the-art facial expression recognition algorithm

trained using our dataset shows better generalization. Our work is one step further

toward more advanced affective analysis of realistic multimedia data.
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Figure 3.7: Comparison of classification performance between active learning and
passive learning for happiness expression in Gv. The classification accuracy is defined
as the ratio of the number of correctly classified images to the total number of images
in the test dataset.
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CHAPTER 4

FACIAL EXPRESSION FEATURES

In this chapter, two novel facial feature extraction algorithms are presented to

handle facial expression images that are collected using the search based framework

discussed in the previous chapter. The first feature, namely spatially enhanced local

binary pattern, incorporates the spatial contextual information into the famous LBP

descriptor using a shape context based representation. The other one, namely Local

Patch Pattern, combines local feature descriptors exracted from neighboring patches

to form a second order representation. Experiment results show that both features are

more descriptive and robust in the presence of noise, which are commonly observed

in practical environments.

4.1 Spatially enhanced Local Binary Pattern

4.1.1 Introduction

Texture analysis plays an important role for many applications in image process-

ing and computer vision, such as facial expression recognition, image segmentation,

content based image retrieval, and medical imaging. Various methods have been pro-

posed for texture feature extraction over the past decades [104, 105]. In particular,

LBP based approaches have drawn significant attentions due to LBP’s discriminative
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power and computational simplicity. The original LBP operator proposed by Ojala et

al . [106] labels each pixel of an image with a binary number formed by thresholding

the 3×3 neighborhood of each pixel against the intensity of the pixel into a series of 0s

and 1s. The histogram of LBPs captures the distribution of the local micro-patterns

and is able to characterize texture content.

Since scale and rotation are important in representing texture content, the origi-

nal LBP operator has been extended to address such two issues. In order to capture

dominant features at different scales, the original LBP operator was extended to use

neighborhood of various sizes. Using circular neighborhoods and bi-linearly interpo-

lating the pixel values allow any radius and any number of pixels in the neighborhood

[50]. Another variant has considered the different shapes for the neighborhood calcu-

lation. The circular definition of neighborhood in the original LBP has been replaced

by ellipse, parabola, hyperbola and archimedean spiral of different sizes [107]. To ob-

tain rotation invariance, a bitwise shift was performed on the binary pattern until the

binary value was matched with one of 36 rotation invariant patterns [106]. It has also

been shown that a subset of LBPs can be used to describe most patterns occurring

in images; hence, the dimensionality of LBP descriptors can be greatly reduced [108].

Many other variants to the original LBP operator have also been proposed. Tan

and Triggs [109] quantized the difference between a pixel and its neighbors into three

levels (instead of 2 values as in the original LBP) with a three-valued code in order

to reduce LBP’s sensitivity to noise in near-uniform image regions. Nanni et al .

[107] extended this idea by using a five-value encoding in order to obtain a more

robust descriptor. Alternatively, the neighborhood pixels were thresholded against

their median and mean values, instead of the center pixel, to reduce the effect of
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noise [110]. Xie et al . [91] proposed Local Gabor XOR Pattern to exploit the Gabor

phase information by extracting LBP from images convolved with the Gabor filters.

Recently, Guo et al . [111] proposed the Local Configuration Pattern (LCP) which

integrates both the image microscopic configuration and the occurrences of the local

binary patterns.

Figure 4.1: Illustration of the spatial distribution of a same texture pattern in four
different texture images. It demonstrates the importance of spatial information in
describing textures.

However, the spatial distribution (i.e. structure) of the local micro-patterns has

not been exploited, which has been proved to be an important property of texture

[108] (see Figure 4.1). Since shape context [112] is very good at characterizing the

spatial relationship among the sample points along a contour, we propose a novel

texture descriptor, namely spatially enhanced LBP, by utilizing shape context based

representation to encapsulate the spatial distribution of LBPs. In order to make our

texture descriptor invariant to rotation, the original shape context is adapted to the

local property of each pixel. Firstly, a LBP-coded image is constructed with the LBP

operator for a given image, where each pixel value corresponds to the binary value
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of the LBP extracted from the pixel at the same location of the given image. A

sample case is shown in Fig. 4.2 where the circulation starts at the top-left position.

Secondly, shape context is extracted to capture the spatial distribution of the local

binary patterns. At each sampling point in the LBP-coded image, one modified shape

context histogram is constructed, where each bin of the histogram contains a sub-

histogram of the LBPs that fall within the area covered by the bin. We use a dense

sampling approach in our experiments. Finally, shape context histograms extracted

at all the sampling points are concatenated to form a texture descriptor.

The main contributions of the proposed method are summarized as follows: 1) We

propose a novel texture descriptor to encapsulate the spatial distribution of the local

binary patterns in a global context. Experimental results show that the proposed

method outperforms the original LBP in various well known texture databases under

different imaging conditions. 2) We solve the rotation invariance problem of the shape

context descriptor by rotating its coordinate system based on the dominant gradient

orientation within the neighborhood.

4.1.2 Local Binary Pattern

The original LBP operator undertaken at each pixel labels the neighbor pixels of

each pixel by thresholding a circular neighborhood with radius of R pixels with the

center pixel tc’s grayscale intensity value (see Fig. 4.2). Formally, the LBP operator

is defined as follows:

LBP (P,R) =
P−1∑
i=0

u(ti − tc)2i, (4.1)

where P denotes the number of pixels in the neighborhood, R is the radius in pixels of

the circular neighborhood, ti and tc are the intensity values of the neighbor i and the
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Figure 4.2: A sample illustration of applying the original LBP operator to a pixel,
where the circulation starts at the top-left position.

center pixel, respectively, and u(x) is a step function, i.e. u(x) = 1 when x ≥ 0 and

u(x) = 0 otherwise. A pattern is called uniform when containing at most two bitwise

transitions from 0 to 1, or vice versa when the binary string is considered circular.

For example, 00001100 and 11110111 are uniform patterns. Rotation invariance is

achieved by recognizing that LBP (P,R) originates from particular rotation-invariant

patterns.

4.1.3 Modified Shape Context Descriptor

Shape context (SC) captures the spatial relationship among the sample points

along a shape contour. Specifically, the shape context for a sampling point pi is a

histogram computed by partitioning an image with a log-polar coordinate system,

where the sampling point is the origin of the coordinate system and the value of

each bin in the histogram equals to the number of sample points fall within the

corresponding partition as shown in Fig. 4.4.
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However, shape context is not invariant to rotation. That is, when a shape is

rotated, the shape context of a sampling point will also change, since the starting

angle of the log-polar coordinate does not change adaptively. In order to achieve

rotation invariance, the starting angle of the log-polar coordinate for a sampling

point will be aligned to the dominant gradient orientation in the neighborhood of

pi. In addition, for a given sampling point pi, instead of counting the number of

sample points within a bin for a binary shape image, we construct a sub-histogram of

the local binary patterns within the partition corresponding to the bin for a texture

image.

4.1.4 Spatially Enhanced LBP

Figure 4.3: Illustration of a LBP coded face image.

There are three major steps to compute the spatially enhanced LBP descriptor

for a given image: obtaining LBP-coded image, computing modified shape context

descriptor for each sampling point, and forming the final texture descriptor. Let
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Figure 4.4: Illustration of computing the shape context for the sampling point (i.e.
the origin of the log-polar coordinate system).

Hi denote the modified shape context descriptor for the i-th sampling point. The

final texture descriptor is the concatenation of all the Hi. That is, H = {Hk}, k =

0, 1, ..., K − 1, where K is the number of sampling points.

Note that the placement of sampling points can be modified and optimized accord-

ing to specific applications. In our experiment, a dense sampling of K points is used

and shown to give a good overall classification accuracy. A weighting scheme can be

also applied to each histogram Hk based on its importance for a better classification

performance.

4.1.5 Experiments

To evaluate the performance of the proposed approach, three widely used texture

image datasets were used as in [111]: 1) The Outex TC 00012 dataset [50] contains

9120 images representing 24 different texture classes captured under different illumi-

nation conditions and rotations. We used 20 images of each texture class for training

and the rest 8640 images for testing. 2) The KTH-TIPS2 dataset [113] contains 4752
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images from 11 different texture classes. Each texture class has 4 physical samples

and each sample has 108 images that are obtained at 9 different scales and 12 different

illumination and rotation settings. Similar to [111], the 108 images from one sample

were randomly selected from each class for training and other images were used for

testing. This was repeated 500 times with different training and testing sets. 3)

The Columbia-Utrecht (CUReT) dataset [114] consists of 61 different texture classes,

where each class has 205 images with different viewpoints and illuminations. Half of

the images of each texture class were used for training and the other half for testing.

In our experiment, we selected the original LBP operator with different parameters

as the baseline. They were also used to construct LBP-coded images. In order to

compute the modified shape context descriptor, 16 equally spaced sampling points

were placed on a given image. For each sampling point, a modified shape context

histogram was constructed with Nθ equally spaced angle bins and Nd logarithmic

spaced distance bins. Grid search was used to optimize the two parameters Nθ and

Nd, the optimal values were found to be Nθ = 6 and Nd = 3. The support vector

machine (SVM) was used as the classifier and the kernel for the SVM is the Gaussian

Radial Basis Function (RBF).

The experimental results with the three databases are reported in Table. 4.1.

As observed, the proposed method consistently outperform the conventional LBP

operators. In particular, the performance is increased more than 4% (the largest im-

provement among the three datasets) in the most challenging database KTH-TIPS2,

which demonstrates that the proposed method is more robust against varying illumi-

nation and pose conditions.
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To study the influence of the rotation invariant property of the modified shape

context descriptor, LBP-coded images were obtained using the LBP riu2
16,2 operator as

it was shown to be robust across all the three testing databases. The results reported

in Table. 4.2 show that the rotation invariant shape context descriptor outperforms

its conventional counterpart by a considerable margin in all test databases, which

indicates it is essential to adapt the conventional shape context.

Table 4.1: Classification accuracy of our method compared with LBP.

KTH-TIPS2 Outex CUReT

LBP u2
8,1 50.72% 58.94% 85.42%

LBP u2
16,2 49.87% 58.15% 81.12%

LBP u2
24,3 49.58% 50.33% 81.05%

LBP riu2
8,1 48.15% 75.25% 85.48%

LBP riu2
16,2 50.01% 78.89% 85.76%

LBP riu2
24,3 47.80% 78.63% 85.00%

LBP u2
8,1 + SC 54.15% 65.45% 85.57%

LBP u2
16,2 + SC 49.16% 65.00% 82.17%

LBP u2
24,3 + SC 46.95% 60.14% 78.55%

LBP riu2
8,1 + SC 52.30% 78.37% 87.01%

LBP riu2
16,2 + SC 54.13% 79.20% 87.15%

LBP riu2
24,3 + SC 52.94% 79.77% 86.90%

Table 4.2: Influence of rotation invariance.

KTH-TIPS2 Outex CUReT

Rotation Invariant SC 54.13% 79.20% 87.15%
Conventional SC 53.95% 75.94% 84.80%
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Table 4.3: Influence of rotation invariance.

JAFFE CK GWI

Conventional LBP 84.13% 89.50% 46.05%
LBP + SC 85.27% 89.73% 48.60%

We also study the proposed method for facial expression recognition. Three

datasets are used in our experiments:JAFFE [4], COhn-Kanade DFAT (CK) [68],

and the facial expression dataset constructed using Google web image search with

our image collection framework discussed in Chapter 3. The JAFFE dataset contains

213 images of seven basic facial expressions which were posed by 10 Japanese females.

The CK dataset consists of approximately 500 images from 100 subjects ranged in age

from 18 to 30 years, of which 65The GWI facial expression dataset includes 50 images

for each of the seven basic facial expressions. We compare the proposed method with

conventional LBP, and the bet results are reported in Figure 4.3.

4.1.6 Summary

In this section, we presented a texture feature extraction method by taking the

spatial distribution of the local binary patterns into account in a global context with a

shape context based approach. We also achieved the rotation invariance of the shape

context descriptor of a sampling point by rotating its coordinate system according

to the dominant gradient orientation within the neighborhood of the sampling point.

The proposed method has been evaluated against the conventional LBP descriptor

with three widely used benchmark datasets: Outex, KTH-TIPS2 and CUReT. Ex-

perimental results demonstrate the superior performance of our proposed descriptor
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in texture classification, in particular with challenging texture datasets. It would be

promising to extend the proposed idea to other LBP variants.

4.2 Local Patch Pattern

4.2.1 Introduction

Automatic facial expression recognition has attracted significant attention over the

past decades due to its importance in a wide range of applications such as human-

computer interaction (HCI), image or video understanding, and affective computing.

The state-of-art facial expression recognition methods are able to achieve impressive

accuracy in tightly controlled laboratory settings, where face images are normally

acquired in near frontal pose under strict lighting requirements. However, the perfor-

mance degrades abruptly in highly unconstrained conditions akin to those found in

the real world, thus limiting their practical use [8].

One major factor affecting the performance of existing facial expression recognition

methods in practical environments is the difficulty of handling the diverse head pose

variations. In general, head pose variations can be divided into two categories: those

resulting from in-plane rotations and those produced by out-plane rotations. The

former occurs when the head tilts to the left or right without turning, as shown in the

first row of Figure 4.5. The whole frontal faces are visible and toward the camera, but

they are not necessarily upright. The latter refers to cases where the faces are turned

away from the camera as depicted in the second row of Figure 4.5. Some parts of the

faces are occluded, thereby the rotated faces tend to be less informative and more

diverse in appearances. The intra-class variations introduced by head poses together

with some other factors are often more pronounced than the inter-class differences
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caused by different types of facial expressions, which can be attributed to the reasons

behind the decrease in recognition performance.

Figure 4.5: Illustrations of the two types of head pose variations. The first row shows
the head pose variations caused by in-plane rotations and the second row shows the
out-plane variations.

It has been widely acknowledged in the literature that incorporating face align-

ment procedures in the facial expression recognition pipeline can effectively remove

some undesired intra-class variations (such as head poses described above) and greatly

improve the recognition performance [115]. However, face alignment has to be typ-

ically performed either manually or by training algorithms with samples that have

been hand-labeled with facial components. Due to the amount of supervision required

by these methods, the alignment procedures are not always feasible in practical set-

tings. In addition, most face alignment methods are known to fail when large pose

variations are presented [116], even manual alignment is prone to human errors. The

misalignment may change the underlying semantic meanings of face images and neg-

atively affect the subsequent expression recognition accuracy.
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In this work, instead of requiring precise alignments of faces, we investigate ap-

proaches to model facial expression as an orderless collection of visual words, namely

bag-of-visual-words (BOVW) model. The orderless property is a double-edged sword.

The good part is that discarding the spatial information of the visual words allows

a degree of face misalignment and pose variations, making it ideal for practical envi-

ronments. The downside is that it limits the descriptive power for representing facial

expressions, thus it requires to work with more discriminative features for robust

codebook construction. To utilize the positive effects and to limit the negative im-

pacts, we propose a a novel local texture descriptor for BOVW based facial expression

recognition, namely Local Patch Pattern (LPP). The LPP descriptor aggregates the

statistics about the distributions of texture patterns around the neighborhood of a

keypoint. The idea is inspired by the Local Binary Pattern (LBP). However, instead

of using the pixel values directly, we propose to combine the local texture descriptors

extracted from neighboring patches for more robust feature representation. LPP can

be used in conjunction with any histogram based local texture features. In this work,

the SIFT descriptor is used to capture the local distribution of textures within a

patch.

In summary, the main contribution of our work can be highlighted as the follows:

1. A novel local descriptor, i.e. LPP, is proposed to aggregate the texture pat-

terns around a keypoint by combining local texture descriptors extracted from

neighboring patches in a way inspired by the Local Binary Pattern. The patch

based approach allows LPP to be more descriptive and robust in the presence

of noise and illumination changes which are commonly observed in practical

environments.
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2. We propose a bag-of-words based facial expression recognition framework. Our

method can tolerate face misalignments that are caused by face registration

errors. Although it requires only rough localization of faces which can be easily

obtained using popular face detectors such as Viola-Jones face detector [2], the

recognition performance is comparable to state-of-art methods relying on precise

face alignments.

3. We conduct comprehensive experiments to investigate the BOW based face

representations for expression recognition using the proposed feature comparing

to conventional SIFT descriptor. Experimental results demonstrate that the loss

of spatial information (due to the BOW approach) does not severely degrade

the recognition performance when adequate feature (e.g . LPP) is used; and it

allows a certain degree of face misalignments and pose variations which can

benefit practical applications. Further experiments also show that our method

can deal with multiview expression recognition to some extent.

The rest of this section is organized as follows. In Section 4.2.2, we review the

related works and introduce the motivations of this work. In Section 4.2.3, the BOW

based framework for facial expression recognition is described, which is followed by

presenting the proposed LPP descriptor. In Section 4.2.4, experimental results on

two publicly available databases are reported and discussed to demonstrate the effec-

tiveness of the proposed method.
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4.2.2 Related Work

Near-frontal facial expression recognition

Near-frontal facial expression recognition has been studied intensively over the

past decades, and a variety of approaches have been presented. In general, these

approaches can be divided into two groups based on the features used: geometric

based approaches [6, 30, 38, 39] and appearance based approaches [42, 81, 82, 83,

100, 117]. For details, please refer to Section 3.2.2.

Multiview facial expression recognition

Most of the existing methods focus on the near-frontal facial expression recogni-

tion since facial expression datasets primarily capture frontal view face images only.

Recent datasets such as BU-3DFE [103] allows investigation of multiview facial ex-

pression recognition, and a few researchers [116, 118, 119, 120] have begun to explore

this fascinating area. Based on the BU-3DFE datasets, they synthesized multiview fa-

cial images by rotating the 3D facial expression models in the database to the desired

poses and projecting them onto a 2D image plane.

By using the synthesized multiview facial images, Hu et al . [118] investigated

the problem of facial expression recognition from non-frontal views with five pan an-

gles, namely 0◦, 30◦, 45◦, 60◦ and 90◦, respectively. They combined the geometric

features, defined by the location of 83 manually labeled facial feature points, and var-

ious classifiers such as nearest neighbor and the support vector machine to recognize

six universal facial expressions. Zheng et al . [116] studied the same problem with

the same five pan angles. Instead of using the geometric features, they employed the
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texture features, defined as the scale-invariant feature transform (SIFT) feature vec-

tors. They divided a facial image into subregions, and then extracted SIFTdescriptors

from each subregion in the image. They proposed a novel method for feature selec-

tion based on the minimization of an upper bound of the Bayes error and reduced

the dimensionality of the SIFT feature vectors. The reduced-dimensional feature vec-

tors were then classified with the k-nearest-neighbor (KNN) classifier. Rudovic et

al . [120] proposed an approach to multiview facial expression recognition based on

a set of 39 manually labeled facial points. The facial points were projected into a

low dimensional manifold by multi-class Linear Discriminant Analysis (LDA), and

a Gaussian Mixture Model was used to estimate the head pose. They proposed a

Coupled Scaled Gaussian Process Regression (CSGPR) model to learn the mapping

between a discrete set of non-frontal poses and the frontal pose. Facial expression

recognition was achieved by applying a multi-class support vector machine classifier

to the pose-normalized facial points. Moore et al . [119] investigated Local Binary

Patterns (LBP) and its variants for multiview facial expression recognition, and use

it for pose normalization. Instead of using a set of manually labeled facial feature

points, they adopt a dense uniform sampling approach and use a multi-class support

vector machine to learn pose and pose dependent facial expression classifiers.

4.2.3 LPP based facial expression representation

Bag-of-words model represents faces as an orderless collection of visual words,

where each visual word is formed by a group of similar local descriptors. The order-

less property allows the representation to be invariant to face misalignments and pose

variations to a certain degree, making it ideal for practical environments. However,
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ignoring the spatial relationship will limit the descriptive power for representing fa-

cial expressions. In order to exploit the benefits of BOW model while maintaining

sufficient recognition accuracy, we use the LPP descriptor in conjunction with SIFT

for a more descriptive face representations. In the following, we first describe the

workflow of the bag-of-words based facial expression recognition framework. A re-

view of the SIFT descriptor is followed in Section 4.2.3 and we present the proposed

LPP descriptor in Section 4.2.3.

Workflow of the Framework

0

1

2

3

4

5

6

(a) Face Detection (b) Feature Extraction (c) Codebook Construction (d) Face Representation

Figure 4.6: Workflow of the BOW based framework for facial expression recognition.
The red crosses in (b) refer to the densely sampled keypoint locations, and the different
shapes in (c) refer to different visual words obtained using KNN.

The workflow of the proposed BOW based framework for facial expression recogni-

tion is presented in Figure 4.6. First, face detection is performed using the Viola-Jones

[2] face detector for each input image, and the detected face regions are cropped. The

proposed method works on the raw output of the face detector and does not require

any other preprocessing steps such as face alignment. We then compute the LPP de-

scriptors densely sampled on the cropped face image with a fixed step size. It should

be noted that when the step size is small, there will be significant overlap between
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neighboring descriptors. Subsequently in an offline step, the contextualized SIFT

descriptors randomly selected from a set of training images are quantized to build a

visual vocabulary using approximate K-means clustering. The clustering approach is

based on calculating data-to-cluster distances using the Approximate Nearest Neigh-

bor algorithm, and each cluster center represent a visual word. The effects of the

sampling step size w and the vocabulary size v will be discussed in Section 4.2.4. Fi-

nally, each feature descriptor can be mapped to the nearest visual word, and a given

face image can be represented as a histogram counting the occurrences of each visual

word in the image.

LBP

The LBP descriptor captures the first order circular derivative pattern of an image,

which is a micro texture pattern generated by concatenating the binary gradient

directions [49]. It labels the pixel of the image by thresholding a circular neighborhood

with radius of R pixels with the center pixel tc’s value in grayscale, and considering

the results as a binary number. Formally, the LBP operator is defined as follows:

LBP (P,R) =

p−1∑
i=0

u(ti − tc)2i,

where P denotes the number of pixels in the neighborhood, R is the radius in pixels

of the circular neighborhood, ti and tc are the intensity in grayscale of the neighbor

i and the center pixel respectively. u(x) is a step function, i.e. u(x) = 1 when x ≥ 0

and u(x) = 0 otherwise. Using circular neighborhoods and bi-linearly interpolating

the pixel values allow any radius R and number of pixels P in the neighborhood [50].
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SIFT

The SIFT descriptor encodes local gradient information in the neighborhoods of

some keypoint locations. For each keypoint, there are three steps to calculate its

SIFT descriptor. Firstly, gradient magnitudes m(x, y) and orientations θ(x, y) are

computed in a 16× 16 pixels sampling region centered on the interest point location

using pixel difference:

m(x, y) = √
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2, (4.2)

θ(x, y) = tan−1
(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
, (4.3)

where L is the Gaussian smoothed image, x and y are pixel coordinates. In order to

reduce the influence introduced by small changes in the position of the window, the

gradient magnitudes are weighted with a Gaussian weighting function with σ equals

to one half the width of descriptor window. The weights are reduced smoothly from

center to the edge. Smaller weights are assigned to the gradients that are far from the

center of the descriptor as they are most likely to be affected by registration errors.

Next, the weighted gradient magnitudes are accumulated into an orientation his-

togram with 8 orientation bins at a step size of 45◦ over 4 × 4 pixels regions. Soft

assignment of values to adjacent histogram bins is performed by trilinear interpolation

to reduce the effects of location and dominant orientation mis-estimation. Specifi-

cally, each gradient magnitude into a bin is multiplied by a weight of 1 − d for each

dimension, where d is the distance between the corresponding gradient orientation

and the orientation the bin represents. For each keypoint, a 4×4 array of orientation

histograms are computed. The raw descriptor is obtained by concatenating the array
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of orientation histograms, resulting a 4 × 4 × 8 = 128 dimensional feature vector.

The peaks of the gradient orientation in the sampling region correspond to the dom-

inant orientation of the keypoint. Orientation invariance is achieved by rotating the

coordinates of the descriptor and the gradient orientation relative to its dominant

orientation.

The last step is to normalize the raw feature vector to reduce the effects of illu-

mination change. The vector is first normalized to unit length to enhance variance in

contrast change, as the change in contrast is equivalent to multiply the pixel values

by a constant which will cause the gradient magnitudes to be multiplied by the same

constant. The feature vector is invariant to brightness changes as they are computed

using pixel difference, so a constant added or removed from pixel values will not affect

the gradient values. The non-linear illumination changes such as camera saturation

can cause a large change in relative magnitudes for certain gradients [92]. The influ-

ence of large gradients are reduced by thresholding all dimensions of the unit vector to

a value of no more than 0.2 and, the resulting vector is once again normalized to unit

length to make the feature vector more robust to non-linear illumination changes.

LPP

LBP considers the spatial context in pixel level which is not sufficient to deal

with the high intraclass variations and interclass similarities of facial expressions. To

address this issue, we extract the LPP descriptor which is formed by aggregating SIFT

descriptors extracted from neighboring patches around a keypoint. Besides encoding

the local gradient distribution within a single patch like SIFT, the LPP descriptor

also considers the relationship among the gradient distributions extracted from its

neighboring regions.
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Figure 4.7: Illustration of the LPP descriptor. The red dot in the center indicates
the keypoint.

The descriptor is obtained in two steps. At the first step, SIFT descriptors are

extracted from five patches in a cross shaped neighborhood of each key point, as

shown in Figure 4.7. The red point in the middle refers to the sampling point p,

which is also the center point of the center region. The center patch is a square

with a size of n × n pixels. Assume the sampling point has a coordinate of (0, 0),

the center point for the left and right patches are at (−m
2
, 0) and (m

2
, 0) respectively.

Both of them have a size of m × n pixels. The top and bottom patches have their

centers at (0, m
2

) and (0,−m
2

) with a size of n×m pixels. The influence of the patch

size parameters m and n will be investigated in Section 4.2.4. Five SIFT descriptors

are extracted from the five patches individually, which will be used as the pooling

candidates for deriving the LPP descriptor.

At the second step, the proposed LPP descriptor is formed by combing the SIFT

descriptors obtained at the previous step. The objective is to construct a more descrip-

tive feature representation that preserves the neighborhood information. We define
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four operations to combine the descriptors, namely average neighborhood (AN ), max

neighborhood (MN ), average contrast (AC ) and max contrast (MC ). The average

neighborhood operation labels the sampling point by averaging the center descriptor

with its four neighbors, i.e. the SIFT descriptors extracted from the left, right, top

and bottom patches as shown in Figure 4.7. Formally, it is defined as follows:

hAN =
1

5

(
4∑
i=1

si + sc

)
, (4.4)

where si stands for the ith neighboring SIFT descriptor obtained from the first step

and sc refers to the center descriptor. The max neighborhood operation is performed

by assigning each bin of the histogram hMN the largest value out of the associated

bins from the five pooling descriptors, formally:

hMN
j = max(sc,j, s1,j, · · · , s4,j), for j = 1, · · · , 128, (4.5)

where si,j refers to the jth bin of the SIFT descriptor (histogram) extracted from the

ith neighboring patches and sc,j refers to the jth bin of the center SIFT descriptor.

In the contrast based pooling operations, the four neighboring SIFT descriptors are

normalized by substracting the center descriptor. Formally, the average contrast

operation is defined as follows:

hAC =
1

4

4∑
i=1

(si − sc) , (4.6)

where hpi refers to the neighboring SIFT descriptors at sampling point p and hpc is the

center descriptor. And the maximum contrast operation is defined as follows:

hMC
j = max(s1,j − sc,j, · · · , s4,j − sc,j), forj = 1, · · · , 128. (4.7)
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4.2.4 Experiments

Datasets

Two publicly available datasets are used in our experiments: Cohn-Kanade DFAT

(CK+) [68] and BU-3DFE [103] dataset. The Cohn-Kanade DFAT dataset consists

of approximately 500 images from 100 subjects ranged in age from 18 to 30 years, of

which 65% are female. The distribution of the ethnic groups is: 81% Euro-American,

13% Afro-American and 6% other groups. The BU-3DFE dataset is a 3D facial ex-

pression dataset [103]. It contains 100 subjects, of which 56% are female and 44% are

male, ranging from 18 years to 70 years old with a variety of ethnic backgrounds. For

each subject, the dataset captures six universal expressions (happiness, disgust, fear,

angry, surprise and sadness) with four levels of intensity plus the neutral expres-

sion. In our experiment, we generate 7 facial images for each subject by rotating and

projecting the 3D expression models with the strongest intensity. Each facial image

corresponds to one facial view with 7 yaw angles (−45◦, −30◦, −15◦, 0◦, +15◦, +30◦,

+45◦). In total we have 4900 facial images. We believe that the combination of yaw

angels is able to resemble the pose variations typically found in realistic environments.

An overview of the evaluation datasets is shown in Table 4.4.

Experimental Settings

The experiments were conducted on 7 categories of universal facial expressions:

happiness, sadness, anger, fear, disgust, surprise and neutral. The original face images

are cropped using the Viola-Jone face detector [2] before feature extraction. The LPP

descriptor works on the raw output of the face detector, and no other face alignment

procedures are performed. The conventional SIFT descriptor is used as a benchmark.
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Table 4.4: Statistics of the evaluation datasets used in the experiments. The columns
of Male and female show the percentage of male subjects and female subjects respec-
tively.

Images Subjects Female Male

CK+ 500 100 65% 35%
BU − 3DFE 4900 100 56% 44%

In order to allow for a fair comparison, the parameters in both methods are optimized

empirically during a series of preliminary experiments. The effects of the parameter

settings will be discussed in the following sections.

We also compare the proposed method with LBP descriptor, which has been

widely used in facial expression recognition. The LBP descriptor captures the first

order circular derivative pattern of an image, which is a micro texture pattern gen-

erated by concatenating the binary gradient directions [49]. It labels the pixel of the

image by thresholding a circular neighborhood region with the center pixel’s value

in grayscale, and considering the results as a binary number. Following our previous

work [121, 122], we use the 59-bin LBP u2
8,2 operator. As the LBP based face repre-

sentation assumes faces are well aligned, we perform automatic eye localization on

faces detected by the Viola-Jones face detector. For this task, we adopt the Average

of Synthetic Exact Filters (ASEF) [96] which is a class of correlation filters. Then we

align and normalize the faces into a common coordinate system based on the detected

eye locations and the distance between the two eyes.
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Support Vector Machine (SVM) is used as the classifier, and one SVM classifier

is trained for each facial expression. The radial basis function (RBF) kernel given in

Equation 4.8 and the histogram intersection kernel given in Equation 4.9 are ued in

our experiments.

k(x, y) = exp
(
−γ‖x− y‖2

)
(4.8)

k(a, b) =
n∑
i=1

min (ai, bi) (4.9)

SVM was originally developed for binary classification. In order to extend SVM

for multi-class classification, we use the One-Versus-All approach, which trains a

binary classifier to classify one class of interest (positive) versus all other classes

(negative). These independent SVM classifiers are used to provide seven predictions

of the presence or absence of the facial expression in unseen face images and the

class with the greatest class-membership probability estimation value is output as the

recognized facial expression. In our experiment, the dataset is randomly divided into

6 partitions of roughly equal number of subjects belonging to each facial expression

class. We use 4 partitions for training and 1 partition for estimating the parameters

of the SVM classifier. After the parameters are fixed, the SVM classifier is applied

to the last partition which is unseen during the training process of the classifier. The

process is repeated 5 times, and the average recognition performance on the test sets

are reported as the final result.

Parameter Settings

There are four parameters that need to be selected to optimize the performance of

the proposed bag-of-words facial expression recognition framework. The parameter w

and v introduced in Section 4.2.3 controls the dense sampling step size and vocabulary
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Figure 4.8: Impact of parameter settings. The y-axis denotes the recognition accu-
racy. The red solid line corresponds to the results obtained using Histogram Inter-
section kernel and the blue dotted line corresponds to the results obtained using the
RBF kernel.

(codebook) size, respectively. The parameter m and n introduced in Section 4.2.3

determines the pooling neighborhood size. We study the effects of each parameter by

varying their values one at a time while fixing all the others. For example, when w is

being studied, we only alter the value of d and keep the value of k and r unchanged.

We report the results on the CK+ database, as it is one of the most widely used

benchmark in the literature.

The results reported in Figure 4.8(a) demonstrate the impacts of w. As can be

seen, the recognition performance increases considerably as the sampling step size

decreases from 8 pixels to 2 pixels. Since computational efficiency is not the focus of

this work, a dense sample step size of 2 is used in the subsequent experiments.

The vocabulary size v determines the descriptive power of the proposed method.

If v is set to small, dissimilar feature descriptors can be mapped into the same visual

word leading to the decrease in recognition performance. With a large value, the

method becomes more descriptive but less robust to noises as similar feature are more
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Table 4.5: Frontal facial expression recognition results on CK+

RBF Histogram Intersection

LPP 67.47% 69.81%
SIFT 54.10% 60.66%
LBP 60.50% 60.52%

LPP (aligned) 74.60% 76.24%
LBP (aligned) 89.52% 89.52%

likely to be mapped to different visual words. In our experiments, it is found that

the recognition performance is increased linearly with v, peaked when v = 400. From

that point, the performance starts to decline for larger vocabulary sizes. The result

suggests that a vocabulary size of 400 is the optimal trade-off between descriptive

power and tolerance to noises.

Varying the size of m and n changes the size of the patches from where the LPP

descriptor will be extracted. With a fixed sampling step size, a larger value of m or

n will increase redundant information between the neighboring descriptors while a

small value can cause loss of important details. Figure 4.8(c) shows their impacts to

the recognition accuracy.

Frontal Facial Expression Recognition

In this section, we evaluate the proposed LPP descriptor for frontal facial expres-

sion recognition. The experimental results obtained from the CK dataset are shown

in the first three rows in Table 4.5. It is clear that the BOW based facial expression

framework using LPP descriptor clearly outperforms the conventional SIFT and LBP
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when no face alignment is performed. The result indicates that our proposed exten-

sion to the conventional SIFT descriptor is effective for facial expression recognition,

especially in the presence of severe face misalignment. Another interesting observation

comes from the comparisons between the two kernels used in SVM. The histogram

intersection kernel consistently outperforms the RBF kernel, which indicates that it

is very effective for histogram based features.

It is also worth to note that the performance of LBP is slightly worse than the

other two methods. One reason is that LBP utilizes the pixel value which is sensitive

to change. Additionally, LBP based facial expression representation relies on accurate

face alignment. The significant misalignment existed in our testing data will change

the semantic meaning of the underlying pixels thus negatively affect the recognition

accuracy. To make a more fair comparison, we perform the face alignment procedures

as described in Section 4.2.4. The experimental results on aligned faces are reported in

the last two rows of Table 4.5. As expected, the proposed method is outperformed by

the LBP based method, since it completely ignores the spatial information. However,

our method performs consistently in both experiments, suggesting that it is more

robust to face misalignments. This attribute makes it more suitable for practical use.

Multiview Facial Expression Recognition

The experiments are performed on the BU-3DFE dataset. The multiview facial

expression images are obtained by rotating and projecting the 3D expression models,

resulting in 7 different poses corresponding to (−45◦, −30◦, −15◦, 0◦, +15◦, +30◦,

+45◦) yaw angels. Pose estimation is normally performed before recognition, so a view

dependent facial expression classifier can be trained for each view individually. We

test LPP descriptors obtained using different configurations defined in Section 4.2.3

85



50.00%

52.00%

54.00%

56.00%

58.00%

60.00%

62.00%

64.00%

-45 -30 -15 0 15 30 45

Max Neighborhood Average Neighborhood Max Contrast Average Contrast SIFT

(a) RBF

50.00%

52.00%

54.00%

56.00%

58.00%

60.00%

62.00%

64.00%

66.00%

-45 -30 -15 0 15 30 45

(b) Histogram Intersection

Figure 4.9: Multiview Facial expression recognition results on BU-3DFE. Figure
4.9(a) corresponds to the results obtained using the RBF kernel and Figure 4.9(b)
corresponds to the results obtained using the Histogram Intersection kernel. (The
figure is best viewed in color.)

against the conventional SIFT descriptor, and the experimental results are shown in

Figure 4.9. As can be seen, the proposed method consistently outperforms the con-

ventional SIFT. The result demonstrates the ability of our method to handle multivew

facial expression images. Moreover, it is interested to note that best recognition re-

sults are obtained when faces are rotated at 45◦ in yaw, which is consistent to previous

findings [118].
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4.2.5 Summary

In this work, we present a novel texture descriptor for BOVW based facial expres-

sion recognition that are tolerant to face misalignments and pose variations. Due to

the loss of spatial information, bag-of-words based representation using conventional

SIFT alone does not provide adequate descriptive power to deal with the high intra-

class variations and interclass similarities of facial expressions. To address the issue,

we proposed a novel local texture descriptor by aggregating SIFT descriptor extracted

within a neighborhood, namely Local Patch Pattern (LPP). It is designed to be more

descriptive but less prone to noise. Extensive experimental results on two publicly

available datasets demonstrate that loss of spatial information does not significantly

decrease the performance of facial expression recognition; and conversely it allows a

certain degree of freedom to face misalignments and pose variations.
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CHAPTER 5

SPECTRAL EMBEDDING BASED FACIAL
EXPRESSION RECOGNITION

5.1 Introduction

Automatic facial expression recognition is an active research topic with a wide

range of potential applications including human-computer interactions, augmented

reality and affective computing [8]. Although recent years have witnessed significant

progress in the field [8], accurate recognition of facial expression remains a challeng-

ing problem, particularly for realistic facial expressions. One of the key reasons is

that the high variations exist in facial expression images of the same type, which

are caused by human face appearance, age, gender and ethnic groups. They are

commonly observed when different people execute the same expression. Meanwhile,

the problem is further hampered by high similarities among different facial expression

types, which often be found when a same person executes different expression without

explicit exaggeration. If the intensity of an expressions is low, the differences among

facial expressions can easily be shadowed by facial appearance, thus increasing the

difficulties for recognition.
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Due to the high intraclass variations and interclass similarities, effective feature

extraction is vital to facial expression recognition. In general, existing feature expres-

sion features can be categorized into two groups: appearance features [6, 30, 38, 39]

and geometric features [42, 53, 81, 82, 83]. The appearance features model the ap-

pearance changes of faces, such as wrinkles and furrows, by directly utilizing pixel

values. It can be extracted on either an entire face or local regions of a face im-

age. Alternatively, geometry based features utilize the shape and locations of facial

components (e.g . eyes and mouth) to represent the face geometry.

It is commonly acknowledged that different features extracted from a same pat-

tern can reflect different characteristics of the pattern [123]. Hence, it is anticipated

that the performance of facial expression recognition can benefit from multiview rep-

resentations, where a view is defined as a type of feature that describes a subset of

facial expression characteristics. However, there is often no obvious way to select

and combine different types of features. If redundant or noisy features are chosen at

the expense of discriminant features, the recognition performance can be adversely

affected. To make the matter worse, facial expression features are typical of very

high dimension. A simple concatenation of different features may greatly increase the

computation cost and lead to inferior recognition results.

In this chapter, we present a feature selection and fusion framework for faical ex-

pression recognition based on Multiview Spectral Embedding (MSE) [123]. Inspired

by the recent success of multiview features in related domains [124], our proposed

framework treats feature selection and fusion as a multiview dimension reduction

problem and aims to find a unified low dimensional subspace that captures informa-

tion from all sources (e.g . different features and labels) by preserving local geometric

89



properties of the original features. Specifically, by assuming that facial expression

features extracted from one type of expressions forms a manifold embedded in a

high dimensional feature space, we construct a neighborhood graph that encodes the

structure of the manifold locally. In order to maximize the discriminative power, we

propose to build the neighborhood graph in a supervised manner by utilizing the label

information of training data. After we combine the Laplacian matrix associated with

the graph of each view with the multiview spectral embedding algorithm, a unified

low dimensional feature space is obtained by performing spectral analysis of the com-

bined matrix. Finally, a linearization method is utilized to map unseen data to the

learned unified subspace for facial expression recognition.

The main contributions of our work are summarized as follows:

1. Spectral embedding based feature fusion framework is proposed to combine the

appearance based and geometry based features for facial expression recognition.

2. A supervised multi-view spectral embedding algorithm is developed to achieve

more discriminative embedding. By utilizing the label information of the train-

ing data, the neighborhood graph of a feature space can be constructed in a

supervised manner to better capture the manifold structure of the feature space.

3. In order to solve the out-of-sample problem, we utilize a linearization method

to map unseen data to the unified low dimensional subspace discovered by the

MSE algorithm, where facial expression recognition can be performed.

4. We perform a comprehensive study of the widely used facial expression fea-

tures, including Active Appearance Model (AAM) [85], Local Binary Pattern
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(LBP) [50], Multiscale Weber Local Descriptor (Multiscale-WLD) [122], Scale-

Invariant Feature Transform (SIFT) descriptor [92] and Gabor filters [58]. Ex-

tensive experimental results show that our Multiview Spectral Embedding (MSE)

based multi-feature fusion method leads to clearly improved recognition perfor-

mance for challenging realistic facial expressions.

The rest of this chapter is organized as follows. In Section 5.2, we review the

popular facial expression features and feature level fusion techniques. In Section 5.3,

the theory and method of MSE used for facial expression features fusion are presented.

In Section 5.4, the facial expression features studied in our experiments are described.

In Section 5.5, experimental results on three datasets are reported and discussed to

demonstrate the effectiveness of the proposed method. Finally, conclusions are drawn

in Section 5.6

5.2 Related Work

Feature fusion refers to the process of integrating multiple features extracted sep-

arately from different modalities into a joint and unique representation. The most

intuitive approach is to simply concatenate the feature vectors from different modal-

ities to form a new vector. However, the concatenation is not physically meaningful

and leading to degrade the discriminative power of the individual feature. In addi-

tion, the structural information of each feature space is lost in such a straightforward

concatenation [125].

To better exploit the complementary properties of different features, Multiple

Kernel Learning has been used for feature fusion by a group of related methods

[126, 127, 128, 129]. It combines different features by building base kernels for each
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feature, then a weight is assigned for each base kernel indicating the contribution of

the associated feature. Gehler et al . [126] performed MKL in a boosting manner to

learn the weights of different features. Yang et al . [128] introduced an intermediate

representation “group” between low level images and high level semantic categories,

and apply MKL to find the optimal weights of each group for feature combination.

In [129], a group lasso regularizer is imposed to obtain a compact feature set.

Recently, graph based spectral embedding methods have emerged as a powerful

tool for feature fusion [123, 124, 130]. By assuming that similar features form a

manifold embedded in the high dimensional feature space, they aim to find a united

low dimensional subspace that best preserves their local neighborhood structures.

They work by firstly constructing a sparse graph for each feature. Then one can

construct matrices of which the spectral decomposition reveals the low dimensional

structure of the manifold. Finally, to utilize the complementary properties of different

features, the matrices are combined and the low dimensional subspace is represented

by the eigenvectors of the resulted combined matrix. Zhang et al . [130] proposed a

multiple feature combining algorithm based on spectral graph based manifold learning

and patch alignment framework. Yu et al . [124] explored the complementary nature

of different features with pairwise constraints.

5.3 Multiview Spectral Embedding

In this section, the principle of MSE will be reviewed followed by deriving a

modified version appropriate for facial expression feature fusion. Before proceeding

further, We will firstly define the notations used throughout the chapter. We use the

notation similar to that of [123]. Lower case letters represent feature vectors extracted
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from a single view, e.g ., x. Subscript n of xn refers to the nth element of x. Capital

letters represent feature matrix of a dataset, where each column refers to a feature

vector, e.g . x. Superscript (i) of X(i) and x(i) represent data from the ith feature

space.

5.3.1 Conventional Multiview Spectral Embedding

The principle of Multiview Spectral Embedding is to seek a unified low dimensional

subspace that best preserves the local neighborhood structures from different views.

Formally, given a multiview dataset X =
{
X(i) =

[
x
(i)
1 , . . . , x

(i)
N

]
∈ Rmi×N

}m
1

with

N images and m views, MSE aims to find a low dimensional representation Y =

[yi, . . . , yN ] ∈ Rd×N , where d <
∑m

i=1mi and mi corresponds to the dimension of the

ith view. According to the Patch Alignment Framework (PAF) [131], MSE can be

divided into two stages: local patches construction and global alignment.

A local patch refers to a neighborhood formed by a feature vector and its closest

related ones (e.g ., nearest neighbors). As the local neighborhood structures may differ

from different views, local patches construction is performed on each view separately.

Given an arbitrary feature vector x
(i)
j in the ith view X(i) ∈ Rmi×n, the local patch

of xj is formed by itself and its k closest related ones, i.e., X
(i)
j =

[
x
(i)
j1
, . . . ,

(i)
jk

]
. One

local patch is computed for each feature vector on the view, resulting a total of N

local patches for the ith view. For each patch X
(i)
j , there exist a corresponding low

dimensional representation Y
(i)
j ∈ Rd×(k+1). In order to preserve the locality in the low

dimensional space, MSE aims to minimize the dissimilarities (e.g . distance) between

the given feature vector x
(i)
j and its k neighbors. Thereby, an objective function can
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be defined as:

arg min
Y

(i)
j

k∑
l=1

‖y(i)j − y
(i)
jl
‖2
(
w

(i)
j

)
l
, (5.1)

where (w
(i)
j )l is a weight determined by similarities between x

(i)
j and x

(i)
l . Equation

(5.1) can be rewritten as:

arg min
Y

(i)
j

tr
(
Y

(i)
j L

(i)
j

(
Y

(i)
j

)ᵀ)
, (5.2)

where L
(i)
j is the Laplacian matrix that encodes the local structures of the patch and

is defined as:

L
(i)
j =

∑k
l=1

(
w

(i)
j

)
l
−
(
w

(i)
j

)ᵀ
−w(i)

j diag
(
w

(i)
j

)
 . (5.3)

After optimal low dimensional representations are obtained for each patch from

every view, global alignment is performed by summing up all the local patches as

follows:

arg min
Y,α

N∑
j=1

m∑
i=1

αi tr
(
Y

(i)
j L

(i)
j

(
Y

(i)
j

)ᵀ)
= arg min

Y,α

m∑
i=1

αri tr
(
Y L(i)Y ᵀ

)
, (5.4)

s.t. Y Y ᵀ = I, αi ≥ 0,
m∑
i=1

αi = 1.

In Equation (5.4), L(i) is the alignment matrix of the ith view and it is defined as

L(i) = D(i) −W (i) (5.5)

where
[
W (i)

]
pq

=
(
w

(i)
p

)
q

and D(i) is a diagonal matrix with its diagonal element

computed as the row sum of W (i). A set of m nonnegative weights α = [α1, . . . , αm]

are associated with the importance of each view. The larger a weight is, the more

important the view plays in learning the low dimensional subspace. By directly
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applying the weight αi to each view, the optimal solution is obtained when αi =

1 corresponds to the ith view with minimum tr
(
Y L(i)Y ᵀ

)
and αi = 0 otherwise.

However, the results are not desired because it only takes into account the information

from a single view while the discriminating information from the other views are

completely discarded. To avoid the trival solution and exploit the complementary

properties of differnt features, MSE substitutes ai to ari with r > 1 so each has a

particular contribution to the final low diemsnonal subspace.

The solution to Equation (5.4) is a nonlinearly constrained nonconvex optimiza-

tion problem, and a local optimal solution can be obtained using alternating opti-

mization by iteratively updating Y and α in an alternating fashion.

For a fixed Y , we can compute α with Lagrange multiplier. The Lagrange function

is

L (α, λ) =
m∑
i=1

αri tr
(
Y L(i)

n Y ᵀ
)
− λ

(
m∑
i=1

ai − 1

)
. (5.6)

By setting the derivative of L(α, λ) with respect to αi and Λ to zero, αi can be

obtained by

αi =

(
1/ tr

(
Y L

(i)
n Y ᵀ

))1/(r−1)
∑m

i=1

(
1/ tr

(
Y L

(i)
n Y ᵀ

))1/(r−1) (5.7)

Afterwards, with a fixed α, Equation (5.4) is simplified to

min
Y

tr(Y LY T ) s.t. Y Y T = I, (5.8)

where L =
∑m

i=1 a
r
iL

(i)
n . Equation (5.8) has a global optimal solution Y , given as

the eigenvectors associated with the smallest d eigenvalues of L, in which d is the

predefined size of the target low dimensional subspace Y .
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5.3.2 Supervised Multiview Spectral Embedding

The conventional MSE (cMSE) algorithm proposed by Xia et al . [123] is designed

to be as general as possible with the intention of covering a wide range of applications.

In this section, we derived a modified MSE algorithm specifically tailored for facial

expression recognition. The contributions are twofold. First, we proposed to construct

the neighborhood graph in a supervised setting to exploit the class label information

of facial expression images used for training. Second, we present a way to handle

unseen data points, other than rebuilding the mapping from high dimensional to

low dimensional space which could be infeasible. The modified MSE algorithm is

described below.

Supervised Neighborhood Graph Construction

Neutral

Sadness

Happiness

Surprise

Triangle Rectangle Oval

(a) Conventionalneighborhoodgraphconstruction.(b) Supervisedneighborhoodgraphconstruction.

Figure 5.1: Illustration of conventional and supervised neighborhood graph construc-
tion methods. Assume the only available distance function is based on the face shape,
the data points representing different facial expression form a neighborhood in 5.1(a)
which is not intended. In contrast, the supervised graph illustrated in 5.1(b) is pre-
ferred as points depicting same type of expressions are connected by utilizing the
label information (i.e. color).
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MSE finds the low dimensional representation of a high dimensional dataset

through spectral decomposition of a weighted combination of Laplacian matrices.

The Laplacian matrices are associated with sparse graphs constructed from different

views separately, in which the vertices represent data samples and the edges represent

neighborhood relations. The underlying idea is to most faithfully preserve the local

structures of the graph at each vertex, i.e. mapping nearby inputs to nearby outputs.

Therefore, the resulting low dimensional representation is directly dependent on the

neighborhood graphs used for encoding the relationships of the data samples.

The nearest neighbor graph is used in the conventional MSE algorithm, where a

data sample is connected with its k nearest neighbors. However, the approach is not

ideal for facial expression recognition as the neighborhood graphs built unsupervised

may not capture the intended information. For example, assume there existed an

imaginary 2D feature space as illustrated in Figure 5.1(a), where horizontal axis

refers to the face shape and vertical axis refers to colors depicting different types of

facial expressions. Consider each facial expression image as a point in this space,

the distance between the data points should ideally be represented by color. Yet

the only available distance function is based on face shape, which is often the case

as an adequate distance function is normally hard to define. It can result in data

points depicting different facial expressions to be unintentionally connected in the

neighborhood graph, and accordingly change the low dimensional representation of

data.

To address this problem, we exploit the class label (i.e. color in our imaginary

feature space) of the training facial expression images by imposing a constraint that

a data sample can only be connected with its k nearest neighbors from the same
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facial expression class (e.g . happiness) when constructing the neighborhood graph as

shown in 5.1(b). The objective is to minimize the distance of the data samples in the

same class while separating them from semantically dissimilar ones in the obtained

low dimensional space.

Linearization

The conventional MSE algorithm finds a nonlinear mapping from high dimen-

sional space X to low dimensional space Y that are only defined on seen data. The

low dimensional representation need to be rebuilt each time when a novel data sam-

ple is presented, which is not feasible for two reasons. For one, the computational

complexity is squared with the number of data samples N , the problem may become

impractical to solve as N increases. Even when N is small, the rebuilding can still

be very time consuming and undesirable for facial expression recognition. For the

other, the class labels for novel data samples are unknown, thus making it difficult

to use the aforementioned supervised scheme exploiting the prior information of class

identities.

In order to deal with this issue, we apply a linearization procedure to obtain

a projection matrix U for embedding new image samples into the low-dimensional

space for recognition. Specifically, given the multiview dataset X ∈ R
∑m
i=1mi×N , we

seek a linear projection matrix U that can map X to the low dimension embedding

Y ∈ Rd×N where d <
∑m

i=1mi, i.e. Y = UᵀX. By substituting for Y in Equation

(5.4), it can be rewritten as:
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arg min
U,α

m∑
i=1

αri tr
(
UᵀXL(i)XᵀU

)
, (5.9)

s.t. UᵀXXᵀU = I, αi ≥ 0,
m∑
i=1

αi = 1.

The solution to Equation (5.9) is obtained through alternating optimization as

discussed in Section 5.3.1. The global optimal solution U is given as the eigenvectors

associated with the smallest d eigenvalues of XLXᵀ. The projection matrix U can be

seen as an estimation of the transformation from the high dimension to low dimension

space, which is obtained from a training set using our supervised scheme. Novel image

samples can then be projected by U to the low dimensional space Y , where facial

expression recognition is performed.

5.4 Facial Expression Features

The goal of feature extraction is to convert pixel data into a high-level repre-

sentation of shape, motion, color, and texture of facial images. We represent facial

expression images using a combination of appearance and geometric features. In

order to find the optimal combination, we have selected five types of appearance fea-

tures and one type of geometric feature, including Multiscale Weber Local Descriptor

(Multiscale-WLD), Local Binary Pattern (LBP), Scale-Invariant Feature Transform

(SIFT) descriptor, Gabor filters and Active Appearance Model (AAM). The extracted

features are used for subsequent feature fusion.

The aforementioned five features have all achieved considerable success for facial

expression recognition. While some of them may share certain commonalities, all

of them have their own characteristics. For example, LBP, WLD and SIFT captures
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micro texture patters and use a histogram to represent the pattern distribution within

the block. Although the histogram based approach makes them more robust to local

changes (noise), the spatial location informations are discarded to a certain degree.

The Gabor filters, on the other hand, captures global shape information centered at a

pixel. However, it is more sensitive to small variations in expression and noise (such

as a blur at the pixel’s location). AAM is on another league of its own, as it tracks

the facial landmark points which can definitely be helpful for improving recognition

performance. Thus, it is clear that the selected five features are able to represent facial

expressions from distinct perspectives. This motivates us to propose a feature fusion

framework to effectively and efficiently exploit the complementary characteristics of

the features.

5.4.1 Multiscale Weber Local Descriptor (Multiscale-WLD)

WLD Based Face RepresentationMultiscale and Grid Representation 

. . .

. . . . . .

. . . . . .

WLD Feature Extraction

H1 H2 H3 H4 H5

H6 H7 H8

HN-2 HN

. . .

HN-1

FaceWLD = {H1, H2, H3, …, HN-1, HN}. . .

. . .

. . .

Figure 5.2: Multiscale-WLD Facial Expression Feature.

Weber Local Descriptor (WLD) characterizes texture information of an image by

considering the ratio of changes in pixel intensity, which is inspired by the high sen-

sitivity of human visual system to small changes in intensity of a stimulus. WLD
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includes two components, differential excitation and orientation. Differential excita-

tion measures the ratio of change in pixel intensity between a center pixel against its

neighbors. The orientation component is computed as the gradient orientation of a

pixel. After obtaining the two components for each pixel, a 2D WLD histogram is

constructed to represent the image.

WLD is extended to allow multiscale analysis of facial expression images[122].

It is achieved by down-sampling the original face image to form an image pyramid

followed by applying a WLD operator with fixed neighborhood size as shown in Figure

5.2. WLD histogram computed over a global face image does not capture the spatial

locations of the micro texture patterns since the patterns tend to be averaged over the

whole image area which will reduce the discriminative power. In order to overcome

this issue, a face image is equally divided into a set of rectangular regions and a

histogram is computed independently for each sub-region. The final Multiscale-WLD

feature vector is formulated by concatenating the histograms extracted at different

regions and scales. The distance between two Multiscale-WLD feature vectors reflects

the extent to which two facial images contain similar micro texture structures within

corresponding spatial regions. We divide a facial expression image to 5 × 5 blocks

and computes the WLD histogram from each block individually.

5.4.2 Local Binary Pattern (LBP)

The LBP descriptor captures the first order circular derivative pattern of an image,

which is a micro texture pattern generated by concatenating the binary gradient

directions [49]. It labels the pixel of the image by thresholding a circular neighborhood

with radius of R pixels with the center pixel tc’s value in grayscale, and considering
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the results as a binary number. Formally, the LBP operator is defined as follows:

LBP (P,R) =

p−1∑
i=0

u(ti − tc)2i,

where P denotes the number of pixels in the neighborhood, R is the radius in pixels of

the circular neighborhood, ti and tc are the intensity in grayscale of the neighbor i and

the center pixel respectively. u(x) is a step function, i.e. u(x) = 1 when x ≥ 0 and

u(x) = 0 otherwise. Using circular neighborhoods and bi-linearly interpolating the

pixel values allow any radius R and number of pixels P in the neighborhood [50]. The

patters are called uniform if they contain at most two bitwise transitions from 0 to 1

or vice versa when the binary string is considered circular. For example, 00001100 and

11110111 are uniform patterns. Rotation invariance is achieved by recognizing that

LBP (P,R) originates from some particular rotation-invariant patterns. Following

[53], we use the 59-bin LBP u2
8,2 operator. Similar to Multiscale-WLD, each facial

image is segmented into a grid of 6 × 7 regions. We compute a LBP u2
8,2 operator for

each of the 42 regions, and the concatenation of the histograms are used to represent

the facial expression image.

5.4.3 SIFT

SIFT [92] characterize local gradient information over square windows centered on

some interest point locations. Since we have applied AAM to locate facial landmarks

defining face shapes, the 68 points obtained by AAM are used as keypoints. For

each keypoint, there are three steps to calculate its SIFT descriptor. Firstly, gradient

magnitudes and orientations are computed, sampled from a square region around the

keypoint. Secondly, in order to eliminate the influence introduced by small changed

in the position of the window, the gradient magnitudes are weighted with a Gaussian
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weighting function. Thirdly, the weighted gradient magnitudes are accumulated into

an orientation histogram, whose peaks are considered as the dominant orientations

of the keypoint. Orientation invariance is achieved by rotating the coordinates of the

descriptor and the gradient orientation relative to its dominant orientation. The final

descriptor is obtained by concatenating the orientation histograms over all locations,

and the vector is normalized to unit length to reduce the effects of illumination change.

The facial expression images are represented using a bag of visual words model, where

the visual vocabulary is generated from the SIFT descriptors.

5.4.4 Gabor Magnitude Representation

Gabor filters characterize image textures by decomposing them into different ori-

entations and scales. It can be defined as follows:

ψµ,ν (z) =
‖kµ,ν‖2

σ2
e

(
‖kµ,ν‖2 ‖z‖2

2σ2

) [
eikµ,νz − e−

σ2

2

]
,

where µ and ν define the orientation and scale of the Gabor filter respectively, z =

(x, y) denotes the pixel and the wave vector kµ,ν is defined as kµ,ν = kνe
iϕµ where

ϕµ = πµ
8

is the orientation parameter. kν = kmax
fν

, where f is the spacing factor

between filters in the frequency domain. The convolution of an image I with a Gabor

filter ψµ,ν is defined as Fµ,ν = I (z)∗ψµ,ν (z) where ∗ denotes the convolution operator.

Gabor magnitude representation is defined as

Mµ,ν (z) =

√
Im (Fµ,ν (z))2 +Re (Fµ,ν (z))2

where Im denotes the imaginary part and Re denotes the real part of F . Same as [58],

facial expression images are converted into Gabor magnitude representation using a

bank of Gabor filters at 8 orientations and 5 spatial frequencies.
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5.4.5 Active Appearance Model (AAM)

Figure 5.3: Illustration of AAM shape registration.

The AAM [85] is a generative method for modeling the shape and appearance of

an object. Given a training dataset T with m labeled objects, Procrustes analysis is

used to align the objects into a common coordinate system. The shapes of objects

are represented by the coordinates of the vertex of a 2D triangular mesh (see Figure

5.3), and their variations are captured by the principal components of the covariance

matrix of the aligned shapes. Similarly, the variations of appearance is obtained

by applying PCA to the object images, warped to a canonical frame defined using

the mean shape of the aligned shapes. Afterward, the shape s of a new object can

be represented as s = s + Psbs, where s is the mean shape, Ps are the principal

components defining the shape variations and bs are the shape parameters. And

its appearance t becomes t = t + Ptbt, where t is the mean appearance vector, Pt

encodes the appearance variations obtained from the training dataset and bt are the

appearance parameters. The parameters bs and bt are estimated by a gradient decent

method. By varying the parameters, the AAM is able to represent large variations
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in shape and appearance. Following [68], we use the coordinates of the 68 vertex

defining the face shape to represent facial expressions.

5.5 Experimental Results and Discussions

5.5.1 Datasets

Three datasets are used in our experiments: JAFFE [4], Cohn-Kanade DFAT (CK)

[68] and a facial expression dataset constructed using Google web images (GWI) [121,

122]. The JAFFE dataset contains 213 images of the seven basic facial expressions

which were posed by 10 Japanese females. It is the most trivial dataset of the three,

and serves as the baseline in the experiments. The Cohn-Kanade DFAT dataset

consists of approximately 500 images from 100 subjects ranged in age from 18 to 30

years, of which 65% are female. The distribution of the ethnic groups is: 81% Euro-

American, 13% Afro-American and 6% other groups. The GWI facial expression

dataset constructed using Google web image search includes 50 images for each of

the seven basic facial expressions. It is considered to be most challenging one as

it is collected in much more diverse imaging conditions and contains a much larger

variety of subjects. An overview of the evaluation datasets is shown in Table 5.1. All

face images are resized to a fixed size of 110 x 150 pixels. Histogram equalization is

performed to remove the illumination effect in the images.

5.5.2 Experimental Settings

The experiments were conducted on 7 categories of universal facial expressions:

happiness, sadness, anger, fear, disgust, surprise and neutral. The multiview repre-

sentation of facial expression images are constructed from the following five different

features: 3600 dimensional Multiscale-WLD (M-WLD) [122], 2478 dimensional LBP
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Table 5.1: Statistics of the evaluation datasets used in the experiments. The columns
of Male and female show the percentage of male subjects and female subjects respec-
tively.

Images Subjects Female Male

G 350 328 59.2% 40.8%
JAFFE 213 10 100% 0%
CK 500 100 65% 35%

[53], 400 dimensional SIFT features (SIFT) [68], 42650 dimensional Gabor filters [53],

and 136 dimensional AAM shape features [68]. In our experiments, three MSE pa-

rameters (d, k, r) are experimentally set to 200, 11, and 8 respectively. Here d is

the dimension of the embedding, k is the number of neighbors used for building the

neighborhood graph, and r determines the contributions of each view to the final

embedding. In Section 5.5.5, we study the impact of different parameter settings.

Face images are preprocessed to remove background noise before feature extrac-

tion. Given a face image, automatic face detection is firstly performed using the

Viola-Jones face detector [2]. After faces are detected, we perform automatic eye

localization on the detected face regions. In order to align different face images into

a common coordinate system based on eye locations. For this task, we adopt the

Average of Synthetic Exact Filters (ASEF) [96] which is a class of correlation filters.

Then we align and normalize the faces based on the detected eye locations and the

distance between the two eyes. Finally, facial images of 110× 115 pixels are cropped

from the original frames and are used in the experiments.
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Before proceeding further, we provide a walk through of the facial expression

recognition algorithm used for evaluating the facial expression datasets. Given a set

of training images, we first extract the multiview features to represent the facial ex-

pressions. Afterward, we perform the feature fusion using the proposed framework to

obtain a projection matrix, so the multiview features can be mapped to a low dimen-

sional space. And the facial expression recognition is conducted in the obtained low

dimensional subspace. Specifically, an SVM classifier is trained for each facial expres-

sion. Since SVM was originally developed for binary classification, in order to extend

SVM for multi-class classification, we use the One-Versus-All approach, which trains

a binary classifier to classify one class of interest (positive) versus all other classes

(negative). These independent SVM classifiers are used to provide seven predictions

of the presence or absence of the facial expression in unseen face images and the class

with the greatest class-membership probability estimation value is output as the rec-

ognized facial expression. In our experiments, the dataset is randomly divided into

6 partitions of roughly equal number of subjects belonging to each facial expression

class. We use 4 partitions for training and 1 partition for estimating the parameters

of the SVM classifier. After the parameters are fixed, the SVM classifier is applied

to the last partition which is unseen during the training process of the classifier. The

process is repeated 5 times, and the average recognition performance on the test sets

are reported as the final result.

5.5.3 Performance comparison with single view features

In this section, we compare the proposed multiview feature with the raw high

dimensional single view features. The experiment results on three datasets are show
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Table 5.2: Comparison of the multiview feature with single view features.

sMSE(ours) LBP M-WLD SIFT Gabor AAM

GWI 62.5% 46.1% 59.9% 40.5% 54.5% 35.7%
JAFFE 85.7% 84.1% 85.7% 75.4% 84.2% 77.0%
CK 96.0% 89.5% 95.7% 77.3% 89.2% 75.5%

in Table 5.2. As can be seen, the proposed multiview feature consistently outperform

the single view features on two out of the three datasets. The result indicates that

our MSE based framework is able to exploit the complementary properties of different

views to obtain an effective low dimensional representation for multiview data. On

the JAFFE dataset, it is a bit unexpected that the performance of the multiview

feature is the same as the best single view feature (namely M-WLD). The slightly

unsatisfactory performance can be attributed to the small size of the JAFFE dataset,

which can increase the density of the neighborhood graph and in turn make MSE

suffer from folding [132]. Moreover, the small dataset size will cause MSE more

sensitive to the noise and outliers in the data. If outliers are connected to their

k nearest neighbors when they are very distant, it will degrade the performance of

MSE and even may result in overfitting. Another observation from Table 5.2 is that

the geometry based method (AAM) is generally outperformed by appearance based

features. The main reason could be that AAM relies on accurate and reliable facial

feature detection which is very difficult and error prone. This becomes evident as

the worst performed texture feature (SIFT) is still roughly 5% better on the GWI

dataset, where the facial feature detection is the hardest to accomplish.
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5.5.4 Experiment on multi-modal features fusion

In this section, we demonstrate the effectiveness of the proposed facial feature

fusion framework (denoted as sMSE) by comparing it with other feature combination

techniques. Similar to [123], the following methods are used: 1) best single view

embedding (BSE): the best performed single view features in each dataset, Laplacian

Eigenmap (LE) is used for dimension reduction; 2) average single view embedding

(ASE): the average performance of the single view based spectral embedding using

LE; 3) conventional MSE (cMSE): the conventional MSE. To better understand the

capability of our frame, we also include these additional methods: 4) concatenated

features (CF): concatenate all feature vectors from different views to form a new

vector, normalization is performed before the concatenation; 5) LE-CF: applying LE

to the concatenated features to obtain the low dimensional subspace; 6) LLE-CF:

LLE is used to the concatenated features to build the low dimensional subspace.

The experimental results are reported in Table 5.3. As expected, the proposed

method achieves the best results on CK and GWI. The performance is slightly infe-

rior to the best single view embedding on JAFFE due to the problem of small dataset

size as discussed in Section 5.5.3. However, our method constantly outperforms the

conventional MSE on all three datasets. The result suggests that our modifications

are effective for facial expression recognition. It is also worth noted that the concate-

nation based methods performs the worst on all three datasets, which confirms that a

simple concatenation of feature vectors cannot effectively explore the complementary

nature of different views.
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Table 5.3: Comparison of different feature fusion techniques.

sMSE(ours) BSE ASE cMSE CF LE-CF LLE-CF

GWI 62.5% 59.9% 51.4% 60.7% 45.2% 52.0% 52.5%
JAFFE 85.7% 85.8% 80.8% 85.6% 70.8% 80.5% 81.4%
CK 96.0% 95.5% 88% 95.7% 82.0% 88.0% 90.3%

5.5.5 Impact of Parameter Settings

In this section, we study the impacts of the parameter settings of d, k and r. The

experiments are performed by varying their values one at a time while fixing all the

others. For example, when d is being studied, we only alter the value of d and keep

the value of k and r unchanged. The CK dataset is used for training and testing in

a 5-fold cross validation manner.

The parameter d controls the dimensions of the low dimensional subspace. In

order to investigate its effects on the recognition performance, we vary the value of

d from 50 to 500 by a step of 50. The experimental result is reported in Figure

5.4(a). It shows that the recognition performance is gained linearly with the value

of d, and the progress continues as d approaches to 200. When d becomes larger

than 200, there is no significant improvements in performance as d increases, but the

computational cost is greatly increased. The result suggests that the dimensionality

of 200 is adequate for facial expression representation, where the discriminative power

and computational cost are well balanced.

The parameter k determines the number of neighbors used for constructing the

neighborhood graph. If k is set too small, the neighborhood graph will be prone to
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the noise data within in the neighborhood. On the other hand, if it is set too large,

the local linearity assumption (i.e. each each data point and its k nearest neighbors

from the same facial expression class lie on a linear manifold locally embedded in

the high dimensional space) will be violated, resulting in an ineffective representation

of the manifold. In our experiment, the value of k is varied in the range between 5

and 20 with an increment of 1. Figure 5.4(b) demonstrates the relationship between

recognition performance and the value of k. As can be seen, there is initially a small

increase in recognition performance which is peaked at k = 11. The performance

keeps stable as k changes from 11 to 14, and starts to decline when k > 14. The

result suggests that the optimal value of k is 11.

The parameter r is introduced in Equation (5.9) to avoid a trivial solution of

the objective function. Paired with the weights of different views, it decides the

contribution of each view to the final low dimensional embedding. Theoretically, a

smaller r exaggerates the contribution from the most discriminative view, and a larger

r makes the contributions from all views similar. Therefore, the selection of r should

be based on the complementary characteristics all all views. Rich complementary

multiview features favor a large r, otherwise r should be small. Figure 5.4(c) shows

that the complementary properties of the five features used in our experiments can

be best exploited when r is set to 8.

5.6 Conclusion

In this chapter, we presented a novel facial expression recognition method by

fusing multiple features with spectral embedding techniques. Based on the existing

multi-view embedding algorithm, we propose a supervised implementation by taking
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Figure 5.4: Impact of parameter settings. The y-axis denotes the recognition accu-
racy.

label information of training data into account. In addition, a linearization method

is utilized for handling the out-of-sample problem. In our studies, five widely used

facial expression features, namely AAM, LBP, Multiscale-WLD, SIFT and Gabor

magnitude features, have been investigated. Extensive experimental results on two

benchmark datasets and one challenging web image dataset have demonstrated that

the resulted multi-view feature leads to clearly improved recognition performance

on the challenging realistic facial expressions, which shows the effectiveness of the

proposed feature fusion framework.
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CHAPTER 6

TOWARDS VIDEO BASED FACIAL EXPRESSION
RECOGNITION

6.1 Introduction

Nowadays automatic facial expression recognition has attracted significant atten-

tion because of its usefulness in a wide range of applications such as human-computer

interaction (HCI), multimedia indexing and retrieval, image or video understand-

ing and clinical research, since facial expression plays a critical role in our social

communication[8]. Previous works on 2D facial expression recognition can be clas-

sified into two categories, single image (i.e. frame) based and image sequence (i.e.

video) based [8]. Image based methods typically assume that facial expression recog-

nition can be performed on one representative facial expression image. Alternatively,

image sequence based methods treat each facial expression as a temporally dynamic

process and aim to explore its dynamic characteristics besides the appearance in each

facial expression frame.

Due to the diverse imaging devices, various facial expression videos could have

different frame rates as well spatial resolutions. As a result, one algorithm workable

for one type of facial expression videos may not work very well for other types since
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some features (e.g. distance and angle between tracked facial points) highly depend

on the smoothness of image sequences. As indicated in [133], frame rate does influence

recognition performance of micro-expressions and a temporal interpolation method

was proposed to solve such frame rate issue. However, there are few studies on

the impact of the frame rates of image sequences on facial expression recognition

performance. In addition, the psychology study reveals that human beings are able to

readily recognize facial expressions from very short sequences [134]. Similar conclusion

was also drawn in human action recognition that only a subset of frames was enough

to achieve a performance similar to the one obtained from all the frames of an action

sequence [135], though how to select the right frames was not addressed.

Therefore, in this chapter we systematically investigate two issues, 1) how the

number of frames of a facial expression sequence influences facial expression recog-

nition accuracy, and 2) how to choose a set of appropriate frames (i.e. keyframe).

Uniform down-sampling of a given facial expression sequence is feasible, however,

not always effective due to the ignorance of expression dynamics. Therefore, we as-

sume that facial expression is characterized with a number keypoints and formulate

keyframe selection as identifying a set of frames which best covers the whole facial

expression sequence. Firstly, each frame is represented with a number of keypoints.

Secondly, keypoints of all frames are matched and traced to form a global keypoint

pool to characterize a facial expression sequence. Finally, a set of frames is selected

by maximizing their coverage against the global keypoint pool and minimizing the

redundancy among them. Our work will focus on the recognition of six prototypic

emotional expressions, i.e. happiness, sadness, surprise, anger, fear and disgust.
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6.2 Keypoint Based Keyframe Selection

In this section, we present the keypoints based keyframe selection framework [136].

The framework consists of three steps: 1) keypoints extraction, 2) keypoint pool

reconstruction through keypoint matching and chaining, and 3) keyframe selection.

Firstly, for a given video sequence, keypoints are identified from each frame and

descriptors are extracted for each keypoint. Lowe’s SIFT descriptor [92] is utilized

for keypoint extraction and representation. Hence, each keypoint is represented with

a 4 × 4 × 8 = 128 dimension feature vector, a 4 × 4 array of orientation histograms

with 8 orientation bins in each.

Secondly, a keypoints pool is formed to represent the video sequence through key-

point matching. In order to reduce computational cost, we adopt a matching strategy

that considers only those candidate keypoints within a certain radius R of the target

keypoint for potential matching. We present an Inter-window Keypoint Chaining

scheme for keypoint mathcing, where keypoints are matched within a temporal win-

dow of size W and chained across multiple windows. Assume there are three frames,

fi, fj and fm, as shown in Figure 6.1. When a keypoint k1 in frame fi is matched with

another keypoint k2 in frame fj, and the same keypoint k2 is matched with a third

keypoint k3 in frame fm, satisfying |i − j| <= W and |m − j| <= W , we link these

matches into a chain, which would finally contribute to the same unique keypoint in

the global pool K without matching keypoints between fi and fm (i.e. pairing fi and

fm). In our experiments, R is empirically set to 100, W to 5.

We also propose Intra-Window Keypoint Chaining. As shown in Figure 6.2, k1

is matched with k3 but not k2, and k2 is matched with k3. In this case, k1, k2 and

k3 will also be linked by a single chain, which could ease the problem of missed
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Figure 6.1: Inter-window chaining of keypoints.

matching (e.g . k1 should be a true match with k2). After the keypoint chaining on

frames, each keypoint either belongs to a chain of matched keypoints or becomes an

singleton without any connection. All singleton keypoints are removed. Each chain

is represented by its starting keypoint and the number of keypoints on that chain,

denoted by (kx, Nx), where kx is the starting keypoint of x-th chain and Nx is the

number of keypoints in the chain. The global pool of keypoint K is then formed by

aggregating all (kx, Nx).

To remove false-positive matches, the RANSAC algorithm [137] is iteratively in-

voked to detect sets of geometrically consistent keypoint matches. This process is

repeated until no further large set of matches (e.g . five matches in a group) can be

found.

Finally, keyframes are selected based on the criteria that the keypoints of those

frames should cover the keypoint pool as much as possible. A greedy algorithm is used

for this task. Specifically, the frame with the highest number of keypoints against the
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Figure 6.2: Intra-window chaining of keypoints.

keypoint pool is chosen as the first keyframe. Then at each iteration, a frame is chosen

based on two metrics, namely Coverage and Redundancy. Assume the keypoint pool

is divided into two sets, Kcovered and Kuncovered. At the beginning of the process,

Kuncovered contains all keypoints in K and Kcovered is empty. For frame fi, denote its

keypoint set as FPi, Coverage and Redundancy are computed as:

C(fi) = |FPi ∩Kuncovered|. (6.1)

R(fi) = |FPi ∩Kcovered|. (6.2)

A frame is ranked as (α is set to 1 empirically in the experiments):

Influence(fi) = C(fi)− αR(fi) (6.3)

At the end of each iteration, the frame with the highest influence value and positive

coverage will be selected as a keyframe, and all new keypoints will be moved from
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Kuncovered to Kcovered. The iteration repeats until all or a predefined percentage of

coverage STOP of the pool K are covered.

6.3 Facial Expression Recognition Method

As discussed in Section 6.1, the main focus of this chapter is to investigate the

impact of the number of frames in a facial expression sequence on facial expression

recognition accuracy, instead of developing novel facial expression recognition algo-

rithms. Hence, we adopt an robust facial expression recognition method proposed by

Zhao et al . [100] for our experiments and briefly describe it in the following sections.

6.3.1 Face Registration

Given a facial expression image sequence, face detection is firstly conducted on

all frames in the sequence using Viola-Jones face detector [2]. Secondly, we perform

automatic eye localization on the detected face region by utilizing a class of correlation

filters, the Average of Synthetic Exact Filters (ASEF) [96]. The purpose is to align

different face image data into a common coordinate system based on eye locations.

Finally, we align and normalize the faces based on the detected eye locations and the

distance between the two eyes. Facial images of 110 × 115 pixels are cropped from

the original frames.

6.3.2 Facial Feature Extraction

In our experiments, we use LBP [49] and LBP-TOP [100] for image based and

video (image sequence) based recognition, respectively. The two features are selected

becaused they are one of the most representative and top-performing methods in

the field. The LBP [49] descriptor labels the pixel of an image by thresholding a
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neighborhood of pixels with the center value in grayscale and considering the results

as a binary number (see Figure 6.3). The histogram of LBP labels computed over

a region is used as a texture descriptor. For image based recognition, we use the

59-bin LBP u2
8,2 operator [100]. Each facial image is segmented into a grid of 6 × 7

overlapping regions, which is the best partition discovered in [100]. We compute a

LBP u2
8,2 operator for each of the 42 regions, resulting a 2478-dimensional feature vector

for each face image.

7 1 4

8 5 9

4 2 6

1 0 0

1 1

0 0 1

Threshold

Binary Number: 10011001

Figure 6.3: Basic LBP operator.

LBP-TOP extends LBP into three planes by computing LBP from Three Or-

thogonal Planes, XY, XT and YT as shown in Figure 6.4, where X-Y represents

spatial plane and T represents temporal axis. The three LBP histograms computed

on the three planes are computed and concatenated into a single histogram. Fol-

lowing [100], we use the 177 bin LBP − TOP u2
8,8,8,3,3,3 descriptor in the experiments.

Similar to LBP, each face image from a sequence is also divided into 6×7 overlapping
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regions. A LBP − TOP u2
8,8,8,3,3,3 is computed for each of the 42 regions, yielding a

7434-dimensional feature vector.

Image Sequence
XY

XT

YT

X

Y

T

Figure 6.4: Three Orthogonal Planes, XY, XT and YT.

6.3.3 Classifier

We treat facial expression recognition as a classification problem to be solved by

SVM classifiers. The radial basis function (RBF) kernel is used since it provides

the best performance in our experiments. SVM was originally developed for binary

classification. In order to extend SVM for multi-class classification, we use the One-

Versus-All approach, which trains a binary classifier to classify one class of interest
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(positive) versus all other classes (negative). Six binary SVM classifiers are learned

for each of the six facial expressions. The independent classifiers are used to provide

six predictions of the presence or absence of the facial expression in unseen face

images and the class with the largest class-membership probability is output as the

recognized facial expression.

6.4 Experiments

6.4.1 Experimental Settings

Figure 6.5: Sample facial expression images from the CK dataset. In clockwise order,
happiness, sadness, fear, disgust, surprise and anger.

We use the Cohn-Kanade facial expression database [63] for our evaluation. The

Cohn-Kanade DFAT database, which has been the de-factor benchmark dataset for

facial expression recognition, consists of approximately 500 image sequences from 100
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subjects ranged in age from 18 to 30 years, of which 65% are female. The distribu-

tion of the ethnic groups is: 81% Euro-American, 13% Afro-American and 6% other

groups. The subjects were instructed to perform a series of 23 facial displays that

include single and combinations of action units, six of which are based on descrip-

tions of prototypical emotions, anger, disgust, fear, happiness, sadness and surprise.

A sample image of each expression is shown in Figure 6.5. Each expression sequence

was captured at frame rate 30 frames per second.

In our study, a sequence is chosen if it is one of the six basic emotions and has

more than 10 frames. In total, 310 sequences from the dataset are selected. In order

to minimize the influence caused by background noise, each face is preprocessed (e.g.

registration and cropping) as outlined in Section 6.3.1. Histogram equalization is

further applied to reduce the illumination difference among those images. In our

experiments, the coverage rate is set to 100% meaning that the selected keyframes

cover all the keypoints of the keypoint pool. We study the recognition accuracy

using the selected keyframes, which is defined as the ratio of the number of correctly

classified facial expression sequence to the total number of sequences in the test

database.

6.4.2 Keyframe Selection

As shown in Figure 6.6 and 6.7, each expression evolves from the neutral status

(the first frame) to the peak status (the peak frame). However, difference between

adjacent frames are hardly noticeable. As highlighted by red rectangles, the selected

keyframes are representative of different stages for a given expression sequence. It is

also observed from the selection order of those keyframes that the first two frames
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Figure 6.6: Keyframe selection results for s052 004. The original sequence (the upper
part) is organized in temporal order from left to righ and top to bottom. The selected
keyframes are highlighted with red rectangles. The overlay numbers indicate the
selection order. Below each original expression sequence, the keyframes are organized
in the selection order. The numbers at the bottom are the frame numbers of the
original sequence.

corresponds to early neutral status and late peak status. When more frames are

allowed, the intermediate expression status will be better depicted.

6.4.3 How Many Frames?

Table 6.1: Comparison of recognition accuracy with keyframes, uniformly sampled
frames, and the whole sequence frames.

Keyframes Uniform Whole

Avg. # of Frames 7.51 10 20.22
Recognition Accuracy 85.13% 85.21% 88.21%

In this section, we compare expression recognition performance between a subset

of expression sequences and all expression frames and demonstrate the advantage of
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keyframe selection over uniform sampling on expression recognition. Uniform sam-

pling is to uniformly partition the whole sequence into n−1 segments, where n is the

number of frames to be selected. Then the first frame of each segment and the last

frame of the sequence will be chosen as the uniformly sampled frames.

After keyframe selection, the number of selected frames of each expression se-

quence varies from 4 to 8. In average, the length is reduced from original 20.22

frames per sequence to 7.51 frames per sequence. We also choose 10 frames through

uniform sampling from each sequence for the comparison. As shown in Table 6.1,

recognition performance with 10 uniformly sampled frames is comparable to that ob-

tained with all the frames. Particularly, recognition performance will maintain at the

same level, while the average number of frames used for recognition is further reduced

to 7.51 through our keyframe selection method. Therefore, a set of appropriately cho-

sen frames from an expression sequence is sufficient to achieve promising recognition

accuracy.

We further perform recognition experiments with different number of target frames,

n, from 3 (the minimum requirement for feature extraction with LBP-TOP) to 10.

Note that the average number of keyframes may be less than the target figure. For

example, when the target number is 6, it is true that 6 frames will be uniformly cho-

sen from a given expression sequence. However, through keyframe selection method,

one sequence could be covered with 4 frames to achieve 100% coverage rate.

As shown in Figure 6.8, recognition accuracy increases while more frames are

chosen, which indicates using more frames is helpful in facial expression recognition.

However, improvement slows down when the number of frames chosen is around 8.
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Figure 6.7: Keyframe selection results for s074 001

Therefore, there is a critical point we should balance performance and computational

resource.

It is also noticed that recognition performance is better with keyframes than with

uniform sampling for the same given number of frames, which indicates that our

keyframe selection method is able to choose more representative frames than uni-

form sampling. It is because uniform sampling selects the frames uniformly without

considering specific characteristics of different expressions. Note that in Figure 6.8

the curve of Keyframe terminates earlier than that of Uniform Sampling, since the

number of frames obtained with keyframe selection algorithm under full coverage is
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Figure 6.8: Comparison of recognition results with keyframes and with uniform sam-
pling under different numbers of target frames. Since the number of frames obtained
through keyframe selection algorithm under full coverage is fewer than 9, the results
of Keyframe-based approach is not available at 9 and 10.

fewer than 9. This indicates that redundancy exists in the whole sequence and it is

feasible to achieve comparable recognition accuracy with fewer frames.

6.4.4 Single Frame: Keyframe vs Peak frame

As shown in Figure 6.5, it is possible for human beings to recognize a facial

expression from one sample image. The question is how to choose the right frame.

In the CK dataset, an expression is captured from neutral status (i.e. neutral frame)
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Table 6.2: Image based facial expression recognition results of using a single keyframe
and the peak frame (i.e. the last frame).

Keyframe Peak-frame

Recognition Accuracy 91.36% 92.01%

to peak status (i.e. peak frame) in a controlled manner. The peak frame is generally

used for image based facial expression recognition. Our keyframe selection method is

able to select the frame with the highest number of keypoints against the keypoint

pool. It is noticed in our experiments that the first two selected frames generally

include a frame close to the neutral frame and one frame close to the peak frame.

Therefore, we choose one frame from the first two selected frames, which is temporally

later than the other. The accuracy of the peak-frame selection is 96.1%.

As shown in Table 6.2, the recognition performance with the keyframe automat-

ically selected by our algorithm is very close to that with manually controlled peak

frame. This provides further evidence that our keyframe selection method is very

good at identifying representative frame from a sequence.

It is also interesting to observe that the image based facial expression recognition

accuracy is higher than the image sequence based one. This could be explained with

the difference between two features utilized for each task respectively, LBP and LBP-

TOP. The feature dimension of LBP-TOP is twice more than that of LBP, which

could impose difficulty to SVM classifier. As seen in [100], LBP-TOP based facial

expression recognition accuracy could be improved to more than 90% with some

techniques.
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6.5 Conclusion

In this chapter, we systematically study the impact of the length of facial ex-

pression sequences (in terms of the number of frames) on the performance of facial

expression recognition with the widely used CK dataset. It has been shown that

a subset of the whole expression sequence (e.g. half of the frames) is sufficient to

achieve comparable recognition accuracy to that of the whole sequence. In addition,

the length can be further reduced without clearly compromising recognition perfor-

mance, when our well designed keyframe selection method replaces the conventional

uniform down-sampling scheme. Therefore, it is necessary to balance the performance

gain and excessive data, which will guide our future work on extracting features robust

to diverse temporal attributes.
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CHAPTER 7

CONCLUSION

This thesis investigates automatic facial expression recognition, with particular

interests in its applications in realistic environments. Three important issues have

been addressed: collecting a large amount of realistic training data from the Web,

devising several novel facial features and a multi-modal recognition algorithm, and

exploring facial expression recognition in image sequences. This chapter summarizes

the main contributions and suggests directions for future works.

7.1 Main Contributions

7.1.1 Search based framework for collecting realistic training
data from the Web

A large amount of realistic training data is required to develop robust facial ex-

pression algorithms. However, obtaining such data is a tedious and time consuming

task that requires tremendous efforts which are proportional to the dataset size. In

Chapter 3, we propose a search based framework to harvest realistic facial expression

images from the web. By adopting an active learning based method to remove noisy
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images from search results returned by commercial search engines, the proposed ap-

proach minimizes the human efforts during the dataset construction and maximizes

the scalability for future research.

7.1.2 GWI - A realistic facial expression dataset

A realistic facial expression dataset (namely GWI) is collected based on the text

based image search results from Google. The dataset contains a very diverse set of

human subjects and imaging environments. Comprehensive experiments have been

performed to demonstrate its distinguish characteristics compared with other widely

used datasets in the literature that were collected in strictly controlled environments,

which indicates the necessity to further advance facial expression recognition with

more realistic datasets.

7.1.3 Novel facial expression features

Due to the high intraclass variations and interclass similarities, effective feature

extraction is vital to facial expression recognition. The extracted features should rep-

resent different types of facial expressions in a way which is not significantly affected

by age, gender, or appearance of the subjects. It is also desirable to have features

which are robust to face localization errors and occlusions. In Chapter 3, Multiscale-

WLD (MWLD) is proposed to represent facial images by its local textures and the

spatial layout of the textures. The spatial layout is captured by partitioning a face

image into grids and each grid is represented with WLD descriptor to capture its

local textures. Additionally, Chapter 4 presents two novel facial expression features.

Spatially enhanced Local Binary Pattern (SLBP) considers the spatial distribution
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of the Local Binary Patterns (LBP) using a shape context based method. And Lo-

cal Patch Pattern (LPP) combines the local distributions of textures extracted from

neighboring patches for more robust feature representation.

7.1.4 Spectral embedding based multi-modal facial expres-
sion recognition algorithm

It is commonly acknowledged that the performance of facial expression recogni-

tion can benefit from a combination of multiple features. However there is often no

obvious way to select and combine different types of features. In Chapter 5, a spectral

embedding based feature combination algorithm is proposed for multi-modal analysis

of facial expressions. By assuming that facial expression features extracted from one

type of expressions forms a manifold embedded in a high dimensional feature space,

a neighborhood graph is constructed to encode the structure of the manifold locally.

After the Laplacian matrices associated with the neighborhood graph from each view

are combined, a unified low dimensional feature space is obtained by performing spec-

tral analysis of the combined matrix. The experimental results obtained using a set of

geometry and texture features clearly demonstrate the effectiveness of the proposed

feature fusion framework on realistic facial expression data.

7.1.5 Keypoint based frame selection for facial expression
recognition

Systematic investigations are performed on how the number of frames in a facial

expression sequence can affect the accuracy of facial expression recognition. And

we utilized a keyframe selection method through keypoint based frame representa-

tion. Experimental results on the popular CK facial expression dataset indicate that
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recognition accuracy achieved with half of the sequence frames is comparable to that

utilizing all the sequence frames. Our key frame selection method can further reduce

the number of frames without clearly compromising recognition accuracy which indi-

cates that it is important to derive framerate invariant visual features to characterize

facial expressions.

7.2 Future Work

7.2.1 Dynamic extensions of the proposed facial expression
features

Facial expressions are dynamic and occur over time. This dynamic nature of

facial expressions is important for the recognition process, as well as for making

finer distinction among facial expression categories [8]. The facial expression features

presented in this thesis focus on 2D facial expression images. We plan to extend them

to spatial-temporal to take full advantage of the motion information.

7.2.2 Trajectory based representation of facial expression se-
quence

In our keyframe based representation of facial expression sequence presented in

Chapter 6, a face is viewed as a whole without considering its individual compo-

nents, e.g . eyes, mouth, etc. However, a facial expression is comprised of complex

interactions between muscle movements of different facial components. Due to the

low intense of the muscle movements, the difference caused by facial expressions can

often be masked by other facial appearances (such as identity). We plan to investi-

gate trajectory based representation based on different facial landmarks which may

132



exaggerate the difference and potentially improve the facial expression recognition

performance.

133



BIBLIOGRAPHY

[1] Guillaume Duchenne. Mcanisme de la physionomie humaine. J.-B. Bailliere,
1862. <xiv, 7, 8>

[2] Paul Viola and Michael J. Jones. Robust Real-Time Face Detection. Interna-
tional Journal of Computer Vision, 57(2):137–154, May 2004. <xiv, 10, 11, 12,
18, 34, 71, 74, 80, 106, 118>

[3] D. Vukadinovic and M. Pantic. Fully automatic facial feature point detection
using Gabor feature based boosted classifiers. In Proceedings of IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pages 1692–1698, 2005.
<xiv, 13>

[4] M.J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expression
with Gabor wavelets. In IEEE International Conference on Automatic Face &
Gesture Recognition, pages 200–205, 1998. <xiv, 13, 17, 23, 44, 67, 105>

[5] Ya Chang, Changbo Hu, Rogerio Feris, and Matthew Turk. Manifold based
analysis of facial expression. Image and Vision Computing, 24(6):605–614, June
2006. <xiv, 14>

[6] Y. Tian, T. Kanade, and J. Cohn. Recognizing action units for facial expression
analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23
(2):97–115, 2001. <xiv, 14, 15, 16, 21, 29, 72, 89>

[7] A. Hadid, M. Pietikainen, and T. Ahonen. A discriA discriminative feature
space for detecting and recognizing faces. In IEEE Conference on Computer
Vision and Pattern Recognition, 2004. <xiv, 18>

[8] Zhihong Zeng, Maja Pantic, G.I. Rosman, and T.S. Huang. A Survey of Af-
fection Recognition Methods: Audio, Visual, and Spontaneous Expressions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1):39–58,
January 2009. <1, 7, 24, 68, 88, 113, 132>

[9] Paul Ekman and Wallace V. Friesen. Constants across cultures in the face and
emotion. Journal of Personality and Social Psychology, 17(2):124–129, February
1971. <7, 19>

134



[10] M. Suwa, N. Sugie, and K. Fujimora. A preliminary note on pattern recognition
of human emotional expression. In International Joint Conference on Pattern
Recognition, pages 408–410, 1978. <7>

[11] Ashok Samal and Prasana A. Lyengar. Automatic recognition and analysis of
human faces and facial expressions: a survey. Pattern Recognition, 25(1):65–77,
January 1992. <7>

[12] Maja Pantic and Leon J.M. Rothkrantz. Automatic Analysis of Facial Ex-
pressions: The State of the Art. IEEE Transaction on Pattern Analysis and
Machine Intelligence, 22(12):1424–1445, December 2000. <7>

[13] Beat Fasel and Juergen Luettin. Automatic facial expression analysis: a Survey.
Pattern Recognition, 36(1):259–275, January 2003. <7>

[14] Ying-Li Tian, Takeo Kanade, and Jeffrey F. Cohn. Facial Expression Analysis.
In Handbook of Face Recognition, pages 247–275. Springer New York, 2005.
<7>

[15] M.H. Yang, D. Kriegman, and N. Ahuja. Detecting faces in images: A survey.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(1):34–58,
2002. <10>

[16] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(1):23–38,
1998. <10>

[17] K. K. Sung and T. Poggio. Example-based learning for view-based human face
detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, 20
(1):39–51, 1998. <10>

[18] H. Schneiderman and T. Kanade. Object detecion using the statistics of parts.
International Journal of Computer Vision, 56(3):151–177, 2004. <10, 12>

[19] Yoav Freund and Robert E. Schapire. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boostin. Journal of Computer and
System Sciences, 55:119–139, 1997. <10>

[20] M. Jones and P. Viola. Fast Multi-view Face Detection. Technical report,
Mitsubishi Electric Research Laboratories, 2003. <11, 12>

[21] S.Z. Li and Zhenqiu Zhang. FloatBoost learning and statistical face detection.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(9):1112–
1123, September 2004. <11, 12>

135



[22] Chang Huang, Haizhou Ai, Yuan Li, and Shihong Lao. High-Performance Rota-
tion Invariant Multiview Face Detection. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 29(4):671–686, April 2007. <11, 12>

[23] P. Dollar, Z. Tu, H. Tao, and S. Belongie. Feature mining for image classifi-
cation. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 2007. <12>

[24] M.T. Pham and T.J. Cham. Fast training and selection and Haar features using
statistics in boosting-based face detection. In Proceedings of IEEE International
Conference on Computer Vision, 2007. <12>

[25] J. Wu, S.C. Brubaker, M. Mullin, and J. Rehg. Fast asymmetric learning for
cascade face detection. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 30(3):369–382, 2008. <12>

[26] M.T. Pham and T.J. Cham. Online learning asymmetric boosted classifiers for
object detection. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2007. <12>

[27] B. Heisele, T. Serre, and T. Poggio. A component-based framework for face
detection and identification. International Journal of Computer Vision, 74(2):
167–181, 2007. <12>

[28] D. Keren, M. Osadchy, and C. Gotsman. Antifaces: A novel fast method for im-
age detection. IEEE Transaction on Pattern Analysis and Machine Intelligence,
23(7):747–761, 2001. <12>

[29] M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and pose
estimation with energy-based models. Journal of Machine Learning Research,
8:1197–1215, May 2007. <12>

[30] Z. Zhang, M.J. Lyons, M. Schuster, and S. Akamatus. Comparison between
geometry-based and Gabor-wavelets-based facial expression recognition using
multi-layer perceptron. In IEEE International Conference on Automatic Face
& Gesture Recognition, 1998. <14, 17, 29, 72, 89>

[31] M. Pantic and L. Rothkrantz. Expert system for automatic analysis of facial
expression. Image and Vision Computing, 18(11):881–905, 2000. <14>

[32] R.E. Kaliouby and P. Robinson. Real-time inference of complex mental states
from facial expressions and head gestures. In IEEE CVPR Workshop on Real-
time Vision for HumanCComputer Interaction, 2004. <14, 21>

136



[33] M. Pantic and L.J.M. Rothkrantz. Facial action recognition for facial expression
analysis from static face images. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 34(3):1449–1461, June 2004. <14>

[34] M. Pantic and I. Patras. Dynamics of facial expression: recognition of facial
actions and their temporal segments from face profile image sequences. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(2):
433–449, April 2006. <14, 19>

[35] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active Shape Models
- Their Training and Application. Computer Vision and Image Understanding,
61(1):38–59, January 1995. <14, 31>

[36] Chuang-Lin Huang and Yu-Ming Huang. Facial Expression Recognition Using
Model-Based Feature Extraction and Action Parameters Classification. Journal
of Visual Communication and Image Representation, 8(3):278–290, September
1997. <15>

[37] Kwok-Wai Wan, Kin-Man Lam, and Kit-Chong Ng. An accurate active shape
model for facial feature extraction. Pattern Recognition Letters, 26(15):2409–
2423, November 2005. <15>

[38] Michel Valstar, I. Patras, and M. Pantic. Facial Action Unit Detection us-
ing Probabilistic Actively Learned Support Vector Machines on Tracked Fa-
cial Point. In IEEE Conference on Computer Vision and Pattern Recognition,
page 76, 2005. <15, 29, 30, 72, 89>

[39] Michel Valstar and Maja Pantic. Fully Automatic Facial Action Unit Detection
and Temporal Analysis. In IEEE Conference on Computer Vision and Pattern
Recognition Workshop, pages 146–149, 2006. <15, 29, 30, 72, 89>

[40] M. Turk and A.P. Pentland. Face recognition using eigenfaces. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 1991. <17, 30>

[41] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. Fisherfaces:
Recognition Using Class Specific Linear Projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997. <17, 30>

[42] M.S. Bartlett, J.R. Movellan, and T.J. Sejnowski. Face Recognition by Inde-
pendent Component Analysis. IEEE Transactions on Neural Networks, 13(6):
1450–1464, 2002. <17, 29, 30, 72, 89>

[43] M.J. Lyons, J. Budynek, and S. Akamatsu. Automatic Classification of Single
Facial Images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 21(12):1357–1362, 1999. <17, 20, 23>

137



[44] G. Donato, M. Bartlett, J. Hager, P. Ekman, and T. Sejnowski. Classifying fa-
cial actions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(10):974–989, 1999. <17>

[45] G. Ford. Tutorial on gabor filters. Technical report, Machine Perception Lab,
Institute of Neural Computation, 2002. <17>

[46] J.R. Movellan. Tutorial on Gabor Filters, 2008. <17>

[47] Ying-Li Tian, T. Kanade, and J. Cohn. Eye-state action unit detection by
Gabor wavelets. In Proceedings of International Conference on Multi-modal
Interfaces, pages 143–150, 2000. <17>

[48] Y. Tian, T. Kanade, and J. Cohn. Evaluation of gabor-wavelet-based facial
action unit recognition in image sequences of increasing complexity. In IEEE
International Conference on Automatic Face and Gesture Recognition, page 229,
2002. <17>

[49] T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of texture
measures with classification based on featured distribution. Pattern Recognition,
29(1):51–59, 1996. <17, 31, 75, 81, 101, 118>

[50] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002. <18,
31, 59, 64, 75, 91, 102>

[51] T. Ahonen, A. Hadid, and M. Pietikainen. Face recognition with local binary
patterns. In European Conference on Computer Vision, 2004. <18, 24>

[52] X. Feng, A. Hadid, and M. Pietikainen. A coarse-to-fine classification scheme
for facial expression recognition. In International Conference on Image Analysis
and Recognition, 2004. <18>

[53] Caifeng Shan, Shaogang Gong, and Peter W. McOwan. Facial expression recog-
nition based on Local Binary Patterns: A comprehensive study. Image and
Vision Computing, 27(6):803–816, May 2009. <18, 21, 23, 26, 29, 31, 34, 37,
40, 89, 102, 106>

[54] Y. Wang, H. Ai, B. Wu, and C. Huang. Real time facial expression recognition
with AdaBoost. In IEEE International Conference on Pattern Recognition,
pages 926–929, 2004. <18, 32>

[55] S.U. Jung and D.H. Kim and K.H. An and M.J. Chung. Efficient rectangle
feature extraction for real-time facial expression recognition based on AdaBoost.

138



In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1941–1946, 2005. <18>

[56] Y. Tian. Evaluation of face resolution for expression analysis. In CVPR Work-
shop on Face Processing in Video, 2004. <19>

[57] I. Cohen, N. Sebe, A. Garg, L. Chen, and T.S. Huang. Facial expression recog-
nition from video sequences: temporal and static modeling. Computer Vision
and Image Understanding, 91(1-2):160–187, 2003. <19>

[58] Marian Stewart Barlett, Gwen Littlewort, Mark Frank, Claudia Lainscsek, Ian
Fasel, and Javier Movellan. Recognizing Facial Expression: Machine Learning
and Application to Spontaneous Behavior. In Computer Vision and Pattern
Recognition, 2005. <19, 21, 91, 103>

[59] M. Yeasin, B. Bullot, and R. Sharma. From facial expression to level of interests:
a spatio-temporal approach. In IEEE Conference on Computer Vision and
Pattern Recognition, 2004. <19>

[60] P. Ekman, W.V. Friesen, M. O’Sullivan, A. Chan, I. Diacoyanni-Tarlatzis,
K. Heider, R. Krauser, W.A. Lecompte, and T. Pitcairn an dP.E. Ricci-Bitti.
Universals and cultural differences in facial expressions of emotion. Journal of
Personality and Social Psychology, 53(4):712–719, 1972. <19>

[61] P. Ekman. Strong Evidence for Universals in Facial Expressions: A Reply
to Russell’s Mistaken Critique. Psychological Bulletin, 115(2):268–287, 1994.
<19>

[62] P. Ekman. Facial Action Coding System. In A Human Face. Salt Lake City,
USA, 2002. <19, 20>

[63] T. Kanade, J. Cohn, and Y. Tian. Comprehensive Database for Facial Expres-
sion Analysis. In IEEE International Conference on Automatic Face & Gesture
Recognition, pages 46–53, 2000. <21, 23, 44, 121>

[64] M. Pantic, M.F. Valstar, R. Rademaker, and L. Maat. Web-based database for
facial expression analysis. In IEEE International Conference on Multimedia &
Expo, pages 317–321, 2005. <21, 23>

[65] I. Cohen, A. Garg, and T.S. Huang. Emotion Recognition from Facial Expres-
sions using Multilevel HMM. In Neural Information Processing Systems, 2000.
<21>

[66] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local Gabor Binary
Pattern Histogram Sequence (LGBPHS): A Novel Non-Statical Model for Face

139



Representation and Recognition. In IEEE International Conference on Com-
puter Vision, 2005. <21, 32>

[67] C.S. Lee and A. Elgammal. Facial expression analysis using nonlinear decom-
posable generative models. In IEEE International Workshop on Analysis and
Modeling of Faces and Gestures, 2005. <22>

[68] P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The
Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit
and emotion-specified expression. In IEEE Conference on Computer Vision
and Pattern Recognition, 2010. <23, 67, 80, 105, 106>

[69] Jacob Whitehill, Gwen Littlewort, Ian Fasel, Marian Bartlett, and Javier Movel-
lan. Towards Practical Smile Detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(11):2106–2111, 2009. <23, 24, 29>

[70] G. Qi, X. Hua, Y. Rui, J. Tang, and H. Zhang. Two-Dimensional Active Learn-
ing for Image Classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2008. <25>

[71] Jie Chen, Chu He, Guoying Zhao, Matti Pietikainen, Xilin Chen, and Wen
Gao. WLD: A Robust Local Image Descriptor. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1705–1720, September 2010. <26, 32,
37, 38, 54>

[72] Bingbing Ni, Dong Xu, and Shuicheng Yan. Histogram Contextualization. IEEE
Transactions on Image Processing, 21(2):778–788, February 2012. <26, 41>

[73] Rob Fergus, Fei-Fei Li, Pietro Perona, and Andrew Zisserman. Learning Object
Categories From Internet Image Searches. Proceedings of The IEEE, 98(8):
1453–1466, August 2010. <27, 28>

[74] Li-Jia Li and Li Fei-Fei. OPTIMOL: Automatic Online Picture Collection via
Incremental Model Learning. International Journal of Computer Vision, 88(2):
147–168, 2010. <27>

[75] B. Collins, J. Deng, L. Kai, and L. Fei-Fei. Towards scalable dataset con-
struction: An active learning approach. In European Conference on Computer
Vision, 2008. <28>

[76] Tamara L. Berg and David A. Forsyth. Animals on the Web. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2006. <28>

[77] F. Schroff, A. Criminsi, and A. Zisserman. Harvesting Image Databases from
the Web. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33
(4):754–766, April 2011. <28>

140



[78] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman.
LabelMe: A Database and Web-Based Tool for Image Annotation. International
Journal of Computer Vision, 77(1-3):157–173, 2008. <28>

[79] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Im-
ageNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on
Computer Vision and Pattern Recognition, 2009. <28>

[80] Abhinav Dhall, Roland Goecke, Simon Lucey, and Tom Gedeon. Static Fa-
cial Expression Analysis In Tough Conditions: Data, Evaluation Protocol And
Benchmark. In Accepted for publication at IEEE ICCV 2011 workshop BEFIT,
2011. <29>

[81] Zhen Cui, Shiguang Shan, Xilin Chen, and Lei Zhang. Sparsely Encoded Local
Descriptor for Face Recognition. In International Conference on Automatic
Face & Gesture Recognition, 2011. <29, 31, 72, 89>

[82] Z. Cao, Q. Yin, J. Sun, and X. Tang. Face recognition with learning based
descriptor. In IEEE Conference on Computer Vision and Pattern Recognition,
2010. <29, 31, 72, 89>

[83] G. Hua and A. Akbarzadeh. A robust elastic and partial matching metric for
face recognition. In IEEE International Conference on Computer Vision, 2009.
<29, 31, 72, 89>

[84] Jian Yang, David Zhang, Alejandro F. Frangi, and Jing yu Yang. Two-
Dimensional PCA: A New Approach to Appearance-Based Face Representa-
tion and Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(1):131–137, January 2004. <30>

[85] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active Appearance Models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–
685, June 2001. <30, 90, 104>

[86] Bouchra Abboud, Franck Davoine, and Mo Dang. Facial expression recogni-
tion and synthesis based on an appearance model. Signal Processing: Image
Communication, 19(8):723–740, September 2004. <31>

[87] Jaewon Sung, Takeo Kanade, and Daijin Kim. A Unified Gradient-Based Ap-
proach for Combining ASM into AAM. International Journal of Computer
Vision, 75(2):297–309, 2007. <31>

[88] Bhmed Bilal Ashraf, Simon Lucey, Jeffrey F. Cohn, Tsuhan Chen, Zara Am-
badar, and Kenneth M. Prkachin an dPatricia E. Solomon. The painful face -
Pain expression recognition using active appearance models. Image and Vision
Computing, 27(12):1788–1796, November 2009. <31>

141



[89] B. Zhang, S. Shan, X. Chen, and W. Gao. Histogram of Gabor phase patterns
(HGPP): a novel object representation approach for face recognition. IEEE
Transactions on Image Processing, 16(1):57–68, 2007. <31>

[90] T. Ahonen, A. Hadid, and M. Pietikainen. Face Description with Local Binary
Patterns: Application to Face Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(12):2037–2041, 2006. <31, 44>

[91] S. Xie, S. Shan, X. Chen, and J. Chen. Fusing Local Patterns of Gabor Magni-
tude and Phase for Face Recognition. IEEE Transaction on Image Processing,
19(5):1349–1361, May 2010. <32, 60>

[92] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004. <32, 77, 91, 102, 115>

[93] A. Albiol, D. Monzo, A. Martin, and J. Sastre. Face recognition using HOG-
EBGM. Pattern Recognition Letters, 29:1537–1543, 2008. <32>

[94] Paul Ekman. Universal Facial Expressions of Emotion. California Mental Health
Research Digest, 8(4), Autumn 1970. <32, 42>

[95] C. Strapparava and A. Valitutti. Wordnet-affect: an affective extension of
wordnet. In International Conference on Language Resources and Evaluation,
2004. <33>

[96] D.S. Bolme, B.A. Draper, and J.R. Beveridge. Average of Synthetic Exact
Filters. In IEEE Conference on Computer Vision and Pattern Recognition,
2009. <34, 81, 106, 118>

[97] Vladimir N. Vapnik. Statistical Learning Theory. Wiley Blackwell, 1998. <35>

[98] Ajay J. Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-Class Active
Learning for Image Classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2009. <36>

[99] Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s proba-
bilistic outputs for support vector machines. Machine Learning, 68(3):267–276,
2007. <36>

[100] Guoying Zhao and M. Pietikainen. Dynamic Texture Recognition Using Local
Binary Patterns with an Application to Facial Expressions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 29(6):915–928, June 2007. <37,
40, 72, 118, 119, 127>

[101] A.K. Jain. Fundamental of Digital Signal Processing. Prentice Hall, 1989. <37>

142



[102] Shichuan Du and Aleix Martinez. The resolution of facial expressions of emo-
tion. Journal of Vision, 11(13):1–13, November 2011. <47>

[103] Lijun Yin, Xiaozhou Wei, Yi Sun, Jun Wang, and Matthew J. Rosato. A
3D facial expression database for facial behavior research. In International
Conference on Automatic Face & Gesture Recognition, 2006. <51, 72, 80>

[104] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–
1630, October 2005. <58>

[105] Z. Li, G. Liu, Y. Yang, and J. You. Scale and rotation-invariant local binary
pattern using scale-adaptive texton and subuniform-based circular shift. IEEE
Transactions on Image Processing, 21(4):2130–2140, October 2012. <58>

[106] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002. <59>

[107] L. Nanni, A. Lumini, and S. Brahnam. Local binary patterns variants as texture
descriptors for medical image analysis. Artificial Intelligence in Medicine, 49
(2):117–125, June 2010. <59>

[108] S. Liao, M. Law, and A. Chuang. Dominant local binary patterns for texture
classification. IEEE Transactions on Image Processing, 18(5):1107–1118, May
2009. <59, 60>

[109] X. Tan and B. Triggs. Enhanced local texture feature sets for face recognition
under diffcult lighting conditions. IEEE Transactions on Image Processing, 19
(6):1635–1650, June 2010. <59>

[110] A. Hafiane, G. Seetharaman, K. Palaniappan, and B. Zavidovique. Rotationally
invariant hashing of median binary patterns for texture classification. Image
Analysis and Recognition, Lecture Notes in Computer Science, 5112:619–629,
2008. <60>

[111] Y. Guo, G. Zhao, and M. Pietikainen. Texture classification using a linear
configuration model based descriptor. In British Machine Vision Conference,
2011. <60, 64, 65>

[112] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition
using shape contexts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(4):509–522, April 2002. <60>

[113] B. Caputo, E. Hayman, and P. Mallikarjuna. Class-specific material categori-
sation. In European Conference on Computer Vision, 2005. <64>

143



[114] K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderink. Reflectance
and texture of real world surfaces. ACM Transactions on Graphics, 18(1):1–34,
January 1999. <65>

[115] Gary B. Huang, Marwan Mattar, Honglak Lee, and Erik Learned-Miller. Learn-
ing to Align from Scratch. In Advances in Neural Information Processing Sys-
tems (NIPS), 2012. <69>

[116] W. Zheng, H. Tang, Z. Lin, and T.S. Huang. A novel approach to expression
recognition from non-frontal face images. In IEEE International Conference on
Computer Vision, 2009. <69, 72>

[117] M. F. Valstar and M. Pantic. Combined support vector machines and hid-
den Markov models for modeling facial action temporal dynamics. In IEEE
international conference on Human Computer Interaction, 2007. <72>

[118] Yuxiao Hu, Zhihong Zeng, Lijun Yin, Xiaozhou Wei, Xi Zhou, and Thomas
Huang. Multi-View Facial Expression Recognition. In IEEE International Con-
ference on Automatic Face & Gesture Recognition, pages 1–6, 2006. <72, 86>

[119] S. Moore and R. Bowden. Local binary patterns for multi-view facial expression
recognition. Computer Vision and Image Understanding, 115(4):541–558, April
2011. <72, 73>

[120] Ognjen Rudovic, Maja Panic, and Ioannis Patras. Coupled Gaussian Processes
for Pose-Invariant Facial Expression Recognition. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 35(6):1357–1369, June 2013. <72, 73>

[121] Kaimin Yu, Zhiyong Wang, Li Zhuo, and Dagan Feng. Harvesting Web Images
for Realistic Facial Expression Recognition. In International Conference on
Digital Image Computing: Techniques and Applications (DICTA), 2010. <81,
105>

[122] Kaimin Yu, Zhiyong Wang, Li Zhuo, Jianjun Wang, Zheru Chi, and Dagan
Feng. Learning realistic facial expression from web images. Pattern Recognition,
46(8):2144–2155, 2013. <81, 91, 101, 105>

[123] Tian Xia, Dacheng Tao, Tao Mei, and Yongdong Zhang. Multiview Spectral
Embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40
(6):1438–1446, December 2010. <89, 92, 96, 109>

[124] Jun Yu, Dacheng Tao, Yong Rui, and Jun Cheng. Pairwise constraints based
multiview features fusion for scene classification. Pattern Recognition, 46(2):
483–496, Feburary 2013. <89, 92>

144



[125] Yi Yang, Jingkuan Song, Zi Huang, Zhigang Ma, Nicu Sebe, and Alexander G.
Hauptmann. Multi-Feature Fusion via Hierarchical Regression for Multimedia
Analysis. IEEE Transactions on Multimedia, (In-Press), 2012. <91>

[126] Peter Gehler and Sebastian Nowozin. On Feature Combination of Multiclass
Object Classification. In International Conference on Computer Vision, 2009.
<91, 92>

[127] L. Cao, J. Luo, F. Liang, and T. S. Huang. Heterogeneous feature machines
for visual recognition. In International Conference on Computer Vision, 2009.
<91>

[128] J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao. Group-sensitive multiple kernel
learning for object categorization. In International Conference on Computer
Vision, 2009. <91, 92>

[129] Yi-Ren Yeh, Ting-Chu Lin, Yung-Yu Chuang, and Yu-Chiang Frank Wang. A
Novel Multiple Kernel Learning Framework for Heterogeneous Feature Fusion
and Variable Selection. IEEE Transaction on Multimedia, 14(3):563–574, June
2012. <91, 92>

[130] Lefei Zhang, Liangpei Zhang, Dacheng Tao, and Xin Huang. On Combining
Multiple Features for Hyperspectral Remote Sensing Image Classification. IEEE
Transactions on Geoscience and Remote Sensing, 50(3):879–893, March 2012.
<92>

[131] Tianhao Zhang, Dacheng Tao, Xuelong Li, and Jie Yang. Patch alignment for
dimension reduction. IEEE Transactions on Knowledge and Data Engineering,
21(9):1299–1313, September 2009. <93>

[132] Matthew Brand. Charting a manifold. In Advances in Neural Information
Processing Systems, 2002. <108>

[133] T. Pfister, X. Li, G. Zhao, and M. Pietikainen. Recognising Spontaneous Facial
Micro-expressions. In IEEE International Conference on Computer Vision,
2011. <114>

[134] D. W. Cunningham and C. Wallraven. Dynamic information for the recognition
of conversational expressions. Journal of Vision, 9(13):1–17, 2009. <114>

[135] K. Schindler and L. van Gool. Action snippets: How many frames does human
action recognition require? In IEEE Conference on Computer Vision and
Pattern Recognition, 2008. <114>

145



[136] Genliang Guan, Zhiyong Wang, Shiyang Lu, J.D. Deng, and Dagan Feng.
Keypoint-Based Keyframe Selection. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 23(4):729–734, April 2013. <115>

[137] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24:381–395, 1981. <116>

146


	Copyright_Statement
	yu_ky_thesis.pdf
	Abstract
	Dedication
	Acknowledgments
	List of Publications
	List of Tables
	List of Figures
	Introduction
	Motivations
	Objectives
	Contributions
	Organization of the thesis

	State-of-the-Arts in Facial Expression Recognition
	Face Detection and Registration
	Facial Feature Extraction and Selection
	Facial Expression Classification
	Summary

	Harvesting Web Images for Realistic Facial Expression Recognition
	Introduction
	Related Work
	Text-based Web Image Search
	Content-based Refinement
	Multiscale-WLD Based Facial Expression Feature
	Experiments and Discussions
	Conclusion

	Facial Expression Features
	Spatially enhanced Local Binary Pattern
	Local Patch Pattern

	Spectral Embedding based Facial Expression Recognition
	Introduction
	Related Work
	Multiview Spectral Embedding
	Facial Expression Features
	Experimental Results and Discussions
	Conclusion

	Towards Video based Facial Expression Recognition
	Introduction
	Keypoint Based Keyframe Selection
	Facial Expression Recognition Method
	Experiments
	Conclusion

	Conclusion
	Main Contributions
	Future Work

	Bibliography


