7,464 research outputs found

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Classifying types of gesture and inferring intent

    Get PDF
    In order to infer intent from gesture, a rudimentary classification of types of gestures into five main classes is introduced. The classification is intended as a basis for incorporating the understanding of gesture into human-robot interaction (HRI). Some requirements for the operational classification of gesture by a robot interacting with humans are also suggested

    Action Classification with Locality-constrained Linear Coding

    Full text link
    We propose an action classification algorithm which uses Locality-constrained Linear Coding (LLC) to capture discriminative information of human body variations in each spatiotemporal subsequence of a video sequence. Our proposed method divides the input video into equally spaced overlapping spatiotemporal subsequences, each of which is decomposed into blocks and then cells. We use the Histogram of Oriented Gradient (HOG3D) feature to encode the information in each cell. We justify the use of LLC for encoding the block descriptor by demonstrating its superiority over Sparse Coding (SC). Our sequence descriptor is obtained via a logistic regression classifier with L2 regularization. We evaluate and compare our algorithm with ten state-of-the-art algorithms on five benchmark datasets. Experimental results show that, on average, our algorithm gives better accuracy than these ten algorithms.Comment: ICPR 201

    Feel the beat: using cross-modal rhythm to integrate perception of objects, others, and self

    Get PDF
    For a robot to be capable of development, it must be able to explore its environment and learn from its experiences. It must find (or create) opportunities to experience the unfamiliar in ways that reveal properties valid beyond the immediate context. In this paper, we develop a novel method for using the rhythm of everyday actions as a basis for identifying the characteristic appearance and sounds associated with objects, people, and the robot itself. Our approach is to identify and segment groups of signals in individual modalities (sight, hearing, and proprioception) based on their rhythmic variation, then to identify and bind causally-related groups of signals across different modalities. By including proprioception as a modality, this cross-modal binding method applies to the robot itself, and we report a series of experiments in which the robot learns about the characteristics of its own body

    Action Recognition in Manufacturing Assembly using Multimodal Sensor Fusion

    Get PDF
    Production innovations are occurring faster than ever. Manufacturing workers thus need to frequently learn new methods and skills. In fast changing, largely uncertain production systems, manufacturers with the ability to comprehend workers\u27 behavior and assess their operation performance in near real-time will achieve better performance than peers. Action recognition can serve this purpose. Despite that human action recognition has been an active field of study in machine learning, limited work has been done for recognizing worker actions in performing manufacturing tasks that involve complex, intricate operations. Using data captured by one sensor or a single type of sensor to recognize those actions lacks reliability. The limitation can be surpassed by sensor fusion at data, feature, and decision levels. This paper presents a study that developed a multimodal sensor system and used sensor fusion methods to enhance the reliability of action recognition. One step in assembling a Bukito 3D printer, which composed of a sequence of 7 actions, was used to illustrate and assess the proposed method. Two wearable sensors namely Myo-armband captured both Inertial Measurement Unit (IMU) and electromyography (EMG) signals of assembly workers. Microsoft Kinect, a vision based sensor, simultaneously tracked predefined skeleton joints of them. The collected IMU, EMG, and skeleton data were respectively used to train five individual Convolutional Neural Network (CNN) models. Then, various fusion methods were implemented to integrate the prediction results of independent models to yield the final prediction. Reasons for achieving better performance using sensor fusion were identified from this study
    • …
    corecore