We propose an action classification algorithm which uses Locality-constrained
Linear Coding (LLC) to capture discriminative information of human body
variations in each spatiotemporal subsequence of a video sequence. Our proposed
method divides the input video into equally spaced overlapping spatiotemporal
subsequences, each of which is decomposed into blocks and then cells. We use
the Histogram of Oriented Gradient (HOG3D) feature to encode the information in
each cell. We justify the use of LLC for encoding the block descriptor by
demonstrating its superiority over Sparse Coding (SC). Our sequence descriptor
is obtained via a logistic regression classifier with L2 regularization. We
evaluate and compare our algorithm with ten state-of-the-art algorithms on five
benchmark datasets. Experimental results show that, on average, our algorithm
gives better accuracy than these ten algorithms.Comment: ICPR 201