5,738 research outputs found

    Recognizing food places in egocentric photo-streams using multi-scale atrous convolutional networks and self-attention mechanism.

    Get PDF
    Wearable sensors (e.g., lifelogging cameras) represent very useful tools to monitor people's daily habits and lifestyle. Wearable cameras are able to continuously capture different moments of the day of their wearers, their environment, and interactions with objects, people, and places reflecting their personal lifestyle. The food places where people eat, drink, and buy food, such as restaurants, bars, and supermarkets, can directly affect their daily dietary intake and behavior. Consequently, developing an automated monitoring system based on analyzing a person's food habits from daily recorded egocentric photo-streams of the food places can provide valuable means for people to improve their eating habits. This can be done by generating a detailed report of the time spent in specific food places by classifying the captured food place images to different groups. In this paper, we propose a self-attention mechanism with multi-scale atrous convolutional networks to generate discriminative features from image streams to recognize a predetermined set of food place categories. We apply our model on an egocentric food place dataset called 'EgoFoodPlaces' that comprises of 43 392 images captured by 16 individuals using a lifelogging camera. The proposed model achieved an overall classification accuracy of 80% on the 'EgoFoodPlaces' dataset, respectively, outperforming the baseline methods, such as VGG16, ResNet50, and InceptionV3

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    MECCANO: A Multimodal Egocentric Dataset for Humans Behavior Understanding in the Industrial-like Domain

    Full text link
    Wearable cameras allow to acquire images and videos from the user's perspective. These data can be processed to understand humans behavior. Despite human behavior analysis has been thoroughly investigated in third person vision, it is still understudied in egocentric settings and in particular in industrial scenarios. To encourage research in this field, we present MECCANO, a multimodal dataset of egocentric videos to study humans behavior understanding in industrial-like settings. The multimodality is characterized by the presence of gaze signals, depth maps and RGB videos acquired simultaneously with a custom headset. The dataset has been explicitly labeled for fundamental tasks in the context of human behavior understanding from a first person view, such as recognizing and anticipating human-object interactions. With the MECCANO dataset, we explored five different tasks including 1) Action Recognition, 2) Active Objects Detection and Recognition, 3) Egocentric Human-Objects Interaction Detection, 4) Action Anticipation and 5) Next-Active Objects Detection. We propose a benchmark aimed to study human behavior in the considered industrial-like scenario which demonstrates that the investigated tasks and the considered scenario are challenging for state-of-the-art algorithms. To support research in this field, we publicy release the dataset at https://iplab.dmi.unict.it/MECCANO/.Comment: arXiv admin note: text overlap with arXiv:2010.0565

    Topic modelling for routine discovery from egocentric photo-streams

    Get PDF
    Developing tools to understand and visualize lifestyle is of high interest when addressing the improvement of habits and well-being of people. Routine, defined as the usual things that a person does daily, helps describe the individuals' lifestyle. With this paper, we are the first ones to address the development of novel tools for automatic discovery of routine days of an individual from his/her egocentric images. In the proposed model, sequences of images are firstly characterized by semantic labels detected by pre-trained CNNs. Then, these features are organized in temporal-semantic documents to later be embedded into a topic models space. Finally, Dynamic-Time-Warping and Spectral-Clustering methods are used for final day routine/non-routine discrimination. Moreover, we introduce a new EgoRoutine-dataset, a collection of 104 egocentric days with more than 100.000 images recorded by 7 users. Results show that routine can be discovered and behavioural patterns can be observed
    • …
    corecore