4,434 research outputs found

    Recognizing Planar Laman Graphs

    Get PDF
    Laman graphs are the minimally rigid graphs in the plane. We present two algorithms for recognizing planar Laman graphs. A simple algorithm with running time O(n^(3/2)) and a more complicated algorithm with running time O(n log^3 n) based on involved planar network flow algorithms. Both improve upon the previously fastest algorithm for general graphs by Gabow and Westermann [Algorithmica, 7(5-6):465 - 497, 1992] with running time O(n sqrt{n log n}). To solve this problem we introduce two algorithms (with the running times stated above) that check whether for a directed planar graph G, disjoint sets S, T subseteq V(G), and a fixed k the following connectivity condition holds: for each vertex s in S there are k directed paths from s to T pairwise having only vertex s in common. This variant of connectivity seems interesting on its own

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Recognizing Weighted Disk Contact Graphs

    Full text link
    Disk contact representations realize graphs by mapping vertices bijectively to interior-disjoint disks in the plane such that two disks touch each other if and only if the corresponding vertices are adjacent in the graph. Deciding whether a vertex-weighted planar graph can be realized such that the disks' radii coincide with the vertex weights is known to be NP-hard. In this work, we reduce the gap between hardness and tractability by analyzing the problem for special graph classes. We show that it remains NP-hard for outerplanar graphs with unit weights and for stars with arbitrary weights, strengthening the previous hardness results. On the positive side, we present constructive linear-time recognition algorithms for caterpillars with unit weights and for embedded stars with arbitrary weights.Comment: 24 pages, 21 figures, extended version of a paper to appear at the International Symposium on Graph Drawing and Network Visualization (GD) 201

    Graphs with Plane Outside-Obstacle Representations

    Full text link
    An \emph{obstacle representation} of a graph consists of a set of polygonal obstacles and a distinct point for each vertex such that two points see each other if and only if the corresponding vertices are adjacent. Obstacle representations are a recent generalization of classical polygon--vertex visibility graphs, for which the characterization and recognition problems are long-standing open questions. In this paper, we study \emph{plane outside-obstacle representations}, where all obstacles lie in the unbounded face of the representation and no two visibility segments cross. We give a combinatorial characterization of the biconnected graphs that admit such a representation. Based on this characterization, we present a simple linear-time recognition algorithm for these graphs. As a side result, we show that the plane vertex--polygon visibility graphs are exactly the maximal outerplanar graphs and that every chordal outerplanar graph has an outside-obstacle representation.Comment: 12 pages, 7 figure

    Bar 1-Visibility Drawings of 1-Planar Graphs

    Full text link
    A bar 1-visibility drawing of a graph GG is a drawing of GG where each vertex is drawn as a horizontal line segment called a bar, each edge is drawn as a vertical line segment where the vertical line segment representing an edge must connect the horizontal line segments representing the end vertices and a vertical line segment corresponding to an edge intersects at most one bar which is not an end point of the edge. A graph GG is bar 1-visible if GG has a bar 1-visibility drawing. A graph GG is 1-planar if GG has a drawing in a 2-dimensional plane such that an edge crosses at most one other edge. In this paper we give linear-time algorithms to find bar 1-visibility drawings of diagonal grid graphs and maximal outer 1-planar graphs. We also show that recursive quadrangle 1-planar graphs and pseudo double wheel 1-planar graphs are bar 1-visible graphs.Comment: 15 pages, 9 figure

    The edge chromatic number of outer-1-planar graphs

    Full text link
    A graph is outer-1-planar if it can be drawn in the plane so that all vertices are on the outer face and each edge is crossed at most once. In this paper, we completely determine the edge chromatic number of outer 1-planar graphs
    • …
    corecore