22,453 research outputs found

    What do we perceive in a glance of a real-world scene?

    Get PDF
    What do we see when we glance at a natural scene and how does it change as the glance becomes longer? We asked naive subjects to report in a free-form format what they saw when looking at briefly presented real-life photographs. Our subjects received no specific information as to the content of each stimulus. Thus, our paradigm differs from previous studies where subjects were cued before a picture was presented and/or were probed with multiple-choice questions. In the first stage, 90 novel grayscale photographs were foveally shown to a group of 22 native-English-speaking subjects. The presentation time was chosen at random from a set of seven possible times (from 27 to 500 ms). A perceptual mask followed each photograph immediately. After each presentation, subjects reported what they had just seen as completely and truthfully as possible. In the second stage, another group of naive individuals was instructed to score each of the descriptions produced by the subjects in the first stage. Individual scores were assigned to more than a hundred different attributes. We show that within a single glance, much object- and scene-level information is perceived by human subjects. The richness of our perception, though, seems asymmetrical. Subjects tend to have a propensity toward perceiving natural scenes as being outdoor rather than indoor. The reporting of sensory- or feature-level information of a scene (such as shading and shape) consistently precedes the reporting of the semantic-level information. But once subjects recognize more semantic-level components of a scene, there is little evidence suggesting any bias toward either scene-level or object-level recognition

    Recognizing point clouds using conditional random fields

    Get PDF
    Detecting objects in cluttered scenes is a necessary step for many robotic tasks and facilitates the interaction of the robot with its environment. Because of the availability of efficient 3D sensing devices as the Kinect, methods for the recognition of objects in 3D point clouds have gained importance during the last years. In this paper, we propose a new supervised learning approach for the recognition of objects from 3D point clouds using Conditional Random Fields, a type of discriminative, undirected probabilistic graphical model. The various features and contextual relations of the objects are described by the potential functions in the graph. Our method allows for learning and inference from unorganized point clouds of arbitrary sizes and shows significant benefit in terms of computational speed during prediction when compared to a state-of-the-art approach based on constrained optimization.Peer ReviewedPostprint (author’s final draft

    A Discriminative Representation of Convolutional Features for Indoor Scene Recognition

    Full text link
    Indoor scene recognition is a multi-faceted and challenging problem due to the diverse intra-class variations and the confusing inter-class similarities. This paper presents a novel approach which exploits rich mid-level convolutional features to categorize indoor scenes. Traditionally used convolutional features preserve the global spatial structure, which is a desirable property for general object recognition. However, we argue that this structuredness is not much helpful when we have large variations in scene layouts, e.g., in indoor scenes. We propose to transform the structured convolutional activations to another highly discriminative feature space. The representation in the transformed space not only incorporates the discriminative aspects of the target dataset, but it also encodes the features in terms of the general object categories that are present in indoor scenes. To this end, we introduce a new large-scale dataset of 1300 object categories which are commonly present in indoor scenes. Our proposed approach achieves a significant performance boost over previous state of the art approaches on five major scene classification datasets

    Frustum PointNets for 3D Object Detection from RGB-D Data

    Full text link
    In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability.Comment: 15 pages, 12 figures, 14 table

    Evaluation of CNN-based Single-Image Depth Estimation Methods

    Get PDF
    While an increasing interest in deep models for single-image depth estimation methods can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art single-image depth estimation approaches, we provide a new high-quality RGB-D dataset. We used a DSLR camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol
    corecore