2,793 research outputs found

    Affect Recognition in Human Emotional Speech using Probabilistic Support Vector Machines

    Get PDF
    The problem of inferring human emotional state automatically from speech has become one of the central problems in Man Machine Interaction (MMI). Though Support Vector Machines (SVMs) were used in several worksfor emotion recognition from speech, the potential of using probabilistic SVMs for this task is not explored. The emphasis of the current work is on how to use probabilistic SVMs for the efficient recognition of emotions from speech. Emotional speech corpuses for two Dravidian languages- Telugu & Tamil- were constructed for assessing the recognition accuracy of Probabilistic SVMs. Recognition accuracy of the proposed model is analyzed using both Telugu and Tamil emotional speech corpuses and compared with three of the existing works. Experimental results indicated that the proposed model is significantly better compared with the existing methods

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Speaker-independent negative emotion recognition

    Get PDF
    This work aims to provide a method able to distinguish between negative and non-negative emotions in vocal interaction. A large pool of 1418 features is extracted for that purpose. Several of those features are tested in emotion recognition for the first time. Next, feature selection is applied separately to male and female utterances. In particular, a bidirectional Best First search with backtracking is applied. The first contribution is the demonstration that a significant number of features, first tested here, are retained after feature selection. The selected features are then fed as input to support vector machines with various kernel functions as well as to the K nearest neighbors classifier. The second contribution is in the speaker-independent experiments conducted in order to cope with the limited number of speakers present in the commonly used emotion speech corpora. Speaker-independent systems are known to be more robust and present a better generalization ability than the speaker-dependent ones. Experimental results are reported for the Berlin emotional speech database. The best performing classifier is found to be the support vector machine with the Gaussian radial basis function kernel. Correctly classified utterances are 86.73%±3.95% for male subjects and 91.73%±4.18% for female subjects. The last contribution is in the statistical analysis of the performance of the support vector machine classifier against the K nearest neighbors classifier as well as the statistical analysis of the various support vector machine kernels impact. © 2010 IEEE

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Fusion of Learned Multi-Modal Representations and Dense Trajectories for Emotional Analysis in Videos

    Get PDF
    When designing a video affective content analysis algorithm, one of the most important steps is the selection of discriminative features for the effective representation of video segments. The majority of existing affective content analysis methods either use low-level audio-visual features or generate handcrafted higher level representations based on these low-level features. We propose in this work to use deep learning methods, in particular convolutional neural networks (CNNs), in order to automatically learn and extract mid-level representations from raw data. To this end, we exploit the audio and visual modality of videos by employing Mel-Frequency Cepstral Coefficients (MFCC) and color values in the HSV color space. We also incorporate dense trajectory based motion features in order to further enhance the performance of the analysis. By means of multi-class support vector machines (SVMs) and fusion mechanisms, music video clips are classified into one of four affective categories representing the four quadrants of the Valence-Arousal (VA) space. Results obtained on a subset of the DEAP dataset show (1) that higher level representations perform better than low-level features, and (2) that incorporating motion information leads to a notable performance gain, independently from the chosen representation

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC
    corecore