82,006 research outputs found

    Recognition by Prototypes

    Get PDF
    A scheme for recognizing 3D objects from single 2D images is introduced. The scheme proceeds in two stages. In the first stage, the categorization stage, the image is compared to prototype objects. For each prototype, the view that most resembles the image is recovered, and, if the view is found to be similar to the image, the class identity of the object is determined. In the second stage, the identification stage, the observed object is compared to the individual models of its class, where classes are expected to contain objects with relatively similar shapes. For each model, a view that matches the image is sought. If such a view is found, the object's specific identity is determined. The advantage of categorizing the object before it is identified is twofold. First, the image is compared to a smaller number of models, since only models that belong to the object's class need to be considered. Second, the cost of comparing the image to each model in a classis very low, because correspondence is computed once for the whoel class. More specifically, the correspondence and object pose computed in the categorization stage to align the prototype with the image are reused in the identification stage to align the individual models with the image. As a result, identification is reduced to a series fo simple template comparisons. The paper concludes with an algorithm for constructing optimal prototypes for classes of objects

    A Training Sample Sequence Planning Method for Pattern Recognition Problems

    Get PDF
    In solving pattern recognition problems, many classification methods, such as the nearest-neighbor (NN) rule, need to determine prototypes from a training set. To improve the performance of these classifiers in finding an efficient set of prototypes, this paper introduces a training sample sequence planning method. In particular, by estimating the relative nearness of the training samples to the decision boundary, the approach proposed here incrementally increases the number of prototypes until the desired classification accuracy has been reached. This approach has been tested with a NN classification method and a neural network training approach. Studies based on both artificial and real data demonstrate that higher classification accuracy can be achieved with fewer prototypes

    Studnovation: Inspiring Creative Innovations Among Students in Akwa Ibom State University

    Get PDF
    The aim of this study was to inspire third year students of Akwa Ibom State University to produce creative and innovative prototypes of products and services that will address the need of the society. Using an innovative method of teaching through a three-month course structure to tutor them on creativity, innovation and opportunity recognition, the third year students were required to develop prototypes of innovative products and services to address societal challenges in their field of interest. Findings reveal various studnovative prototypes indicating that educating students on creativity, innovation and opportunity recognition with a challenge of developing prototypes of solutions to societal problems can lead to the much needed Job creation by students thereby reducing the rate of unemployment in the nation Keywords: Studnovation, Creativity, Innovation and Entrepreneurshi

    This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition

    Get PDF
    Image recognition with prototypes is considered an interpretable alternative for black box deep learning models. Classification depends on the extent to which a test image "looks like" a prototype. However, perceptual similarity for humans can be different from the similarity learned by the classification model. Hence, only visualising prototypes can be insufficient for a user to understand what a prototype exactly represents, and why the model considers a prototype and an image to be similar. We address this ambiguity and argue that prototypes should be explained. We improve interpretability by automatically enhancing visual prototypes with textual quantitative information about visual characteristics deemed important by the classification model. Specifically, our method clarifies the meaning of a prototype by quantifying the influence of colour hue, shape, texture, contrast and saturation and can generate both global and local explanations. Because of the generality of our approach, it can improve the interpretability of any similarity-based method for prototypical image recognition. In our experiments, we apply our method to the existing Prototypical Part Network (ProtoPNet). Our analysis confirms that the global explanations are generalisable, and often correspond to the visually perceptible properties of a prototype. Our explanations are especially relevant for prototypes which might have been interpreted incorrectly otherwise. By explaining such 'misleading' prototypes, we improve the interpretability and simulatability of a prototype-based classification model. We also use our method to check whether visually similar prototypes have similar explanations, and are able to discover redundancy. Code is available at https://github.com/M-Nauta/Explaining_Prototypes .Comment: 10 pages, 9 figure

    Universal Prototype Transport for Zero-Shot Action Recognition and Localization

    Get PDF
    This work addresses the problem of recognizing action categories in videos when no training examples are available. The current state-of-the-art enables such a zero-shot recognition by learning universal mappings from videos to a semantic space, either trained on large-scale seen actions or on objects. While effective, we find that universal action and object mappings are biased to specific regions in the semantic space. These biases lead to a fundamental problem: many unseen action categories are simply never inferred during testing. For example on UCF-101, a quarter of the unseen actions are out of reach with a state-of-the-art universal action model. To that end, this paper introduces universal prototype transport for zero-shot action recognition. The main idea is to re-position the semantic prototypes of unseen actions by matching them to the distribution of all test videos. For universal action models, we propose to match distributions through a hyperspherical optimal transport from unseen action prototypes to the set of all projected test videos. The resulting transport couplings in turn determine the target prototype for each unseen action. Rather than directly using the target prototype as final result, we re-position unseen action prototypes along the geodesic spanned by the original and target prototypes as a form of semantic regularization. For universal object models, we outline a variant that defines target prototypes based on an optimal transport between unseen action prototypes and object prototypes. Empirically, we show that universal prototype transport diminishes the biased selection of unseen action prototypes and boosts both universal action and object models for zero-shot classification and spatio-temporal localization

    Efficient Data Representation by Selecting Prototypes with Importance Weights

    Full text link
    Prototypical examples that best summarizes and compactly represents an underlying complex data distribution communicate meaningful insights to humans in domains where simple explanations are hard to extract. In this paper we present algorithms with strong theoretical guarantees to mine these data sets and select prototypes a.k.a. representatives that optimally describes them. Our work notably generalizes the recent work by Kim et al. (2016) where in addition to selecting prototypes, we also associate non-negative weights which are indicative of their importance. This extension provides a single coherent framework under which both prototypes and criticisms (i.e. outliers) can be found. Furthermore, our framework works for any symmetric positive definite kernel thus addressing one of the key open questions laid out in Kim et al. (2016). By establishing that our objective function enjoys a key property of that of weak submodularity, we present a fast ProtoDash algorithm and also derive approximation guarantees for the same. We demonstrate the efficacy of our method on diverse domains such as retail, digit recognition (MNIST) and on publicly available 40 health questionnaires obtained from the Center for Disease Control (CDC) website maintained by the US Dept. of Health. We validate the results quantitatively as well as qualitatively based on expert feedback and recently published scientific studies on public health, thus showcasing the power of our technique in providing actionability (for retail), utility (for MNIST) and insight (on CDC datasets) which arguably are the hallmarks of an effective data mining method.Comment: Accepted for publication in International Conference on Data Mining (ICDM) 201

    Online and Offline Character Recognition Using Alignment to Prototypes

    Full text link
    Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.Office of Naval Research (N00014-03-1-0108); National Science Foundation (IIS-0308213, EIA-0202067
    corecore