MASSACHUSETIS INSTI TUIE OF TECHNOLOGY ARTI FI CI AL I NIELLI GENCE LABORATORY

Recognitionby Prototypes

Ronen Basri

Abstract

A scheme for recognizing $3 D$ objects fromsingle $2 D$ i nages is introduced. The schena proceed in two stages. In the first stage, the categorization st age, the inage is conpared to prototype objects. For each prototype, the view that nost resenbles the inage is recovered, and, if the view is found to be si mil ar to the inage, the cl ass identity of the object is deternined. In the second stage, the i dent i fication st age, the obser ved object is conpared to the indi vidual nodels of its cl ass, where cl asses are expected to contain objects with rel ati vely sinimlar shapes. For each nodel, a view that natches the inage is sought. If such a viewis found, the object's specific identity is deternined. The advantage of categorizing the object before it is identified is twofol d. First, the inage is conpared to a snal ler number of nodels, si nce only nodels that bel ong to the object's class need to be considered. Second, the cost of conparing the inage to each nodel in a class is very low, because correspondence is conputed once for the whole cl ass. More speci fically, the correspondence and obj ect pose conputed in the categorizationstage to align the prototype wi th the inage are reused in the identification stage to al ign the individual nodels with the inage. A a result, identification is reduced to a series of sinple tenplate conparisons. The paper concl udes with an al gorithmfor constructing optinal prototypes for classes of objects.

1 Introduction

Our world contains an over whel ning variety of objects. While people denonstrate outstanding abilities to nem orize and recognize thousands of objects $[27,37,38]$, conputer vision applications largely fail to acconmodate these numbers. Apparently, the nai n tool that enables people to effectively handle this nassive anount of objects is categorization. By di viding the objects into classes, the visual systemis capable of concl uding properties of unf anilliar objects fromtheir resenblal ance to faniliar ones. For faniliar objects, categorization offers an indexing tool into the stored library of object representations.

Recognition can be perforned in different"levels of abstraction". For exanple, the sane object can be recogni zed as a face, a hunan face, or as a speci fic person's f ace. Psychol ogi cal studi es suggest the existence of a preferredlevel for recognition, called "the basic level of abstraction" [33]. Existing conputational schenes usually approach recogni tion in ei ther one of two levels. Several schenes attenpt to cl assify objects in their basi c level of abstraction (we refer to this task by categorization), while other schenes attenpt to deternilne the specific i dentity of objects (we refer to this task by $i d e n t i f i c a$ tion). This paper presents a novel approach for recognition that conbi nes the two tasks.

To see how the two tasks are rel ated, consi der the foll owi ng exanpl e. Suppose you are wal ki ng down a street, and soneone is coning towards you. You look at the person's face, and it looks faniliar, but you cannot tell who it is. So you try to pi ct ure the peopl e you knownho look li ke the person yousee, until finally, yourealize who the person is.

Anuntier of hypotheses can be drawn fromthis story. First, recognition can be broken into two stages: categorization and identification, where categorization is believed to precede identification. Second, during the course of recognition the inage is conpared against a number of object nodels. Assuning that indeed categorization precedes i dentification, onl y nodels that bel ong to the object's cl ass need to be consi dered. Fi nall y , when a new nodel is conpared to the inage, the conparison process nay benefit fronthe use of infor nati on acqui red during categorization. Note that the situation described here is not speci fic to faces. One can inagi ne that si nil ar situations occur when other objects, such as ani nals, cars, and chairs, are observed.

To see how inf or nation acquired during categorization can be used for identification, consi der the exarnple of face recognition. When a face is recogni zed, the i nage positions of its parts and features are known. In particul ar, an observer al ready knows where the eyes, nose, and nouth are and can even infer the direction of gaze and expression. The person's identity is not essential for extracting and locating these features. Instead, they are nat ched agai nst features in a "generic" representation. In addition, other features, such as a beard, hair style, and wrinkles, that nay better distinguish bet ween different persons nay be located. Mre generally, we can postul ate that, during categorization, sub-structures of
the objects (such as parts and features) are extracted and located with respect to a generic nodel, and the object's pose is deternined.

To followthis exanple, I propose a schene for recogni zing $3 D$ objects fromsingle $2 D$ views that conbi nes the two stages, categorization and identification. Categorization is achi eved by aligning the inage to prototype objects. The prototype that appears nost sinilar to the inage deternimes the class identity of the object. After the object is categorized, its specific identity is deternined by ali gni ng the obser ved obj ect to i ndi vi dual nodels of its cl ass. By first categorizing the object, not only the nunber of nodels considered for identification is reduced, but al so the cost of conpari ng each nodel to the i nage si gni ficantly decreases. This is achi eved by reusing the correspondence and pose conputed for the prot ot ype in the categorization stage to al ign the i nage with the indi vi dual nodels. W showinthis paper that, al beit a perfect natch between the prototype and the i nage is not obtainable, the correspondence and pose can be conputed for the prototype, and can be used to bring the inage and the object's nodel into align nent. Consequently, recovering the correspondence and pose for the i ndi vi dual nodel s becones unnecessary, and i dentification is reduced to a series of sinple tenpl ate conpari sons.

The rest of this paper is di vided as follows. Section 2 revi ews the nain existing approaches for categorization and identification. Section 3 presents the schene of recognition by prototypes. Section 4 proposes an al gorithmf or gener ati ng opti nal prototypes for the schene. Section 5 discusses the rel evance of the schene to hur nan recognition. Inplenentation results are presented in Section 6.

2 Previous Approaches

Existing schenas for categorization often use a "reductionist" approach. The i nage, whi ch contains a detailed appearance of an object, is transfor ned into a conpact representation that is invariant for all objects of the s ane class. One common approach to generating such a representation is by deconposing the object into parts. Parts are extracted by cutting the object in concavities [17, 22, 43] and label ed accordi ng to thei r gener al shape. The labels, together with the spatial relationships between the parts, are used to identify the cl ass of the object $[4,6,7,26]$. Asecond approach extracts the parts of the object that fulfill certainfunctions. The list of functions is used to deternime the object's cl ass [16, 39, 47].

Schenes that break objects into parts are insufficient to explain all the aspects of recognition for the following reasons. First, in nany cases objects that bel ong to the sana cl ass differ onl y by their det ail led shape, whil le they share roughl y the sane set of parts. Mreover, even objects that at son level nay be consi dered bel ongi ng to di fferent cl asses, such as a cat and a dog, nay al so share roughl y the sane set of parts. To sol ve this probl emseveral systens al so store, in addition to the part structure of the objects, the detailed shape of the parts $[2,6,7]$. Another problemis that nany of the techni ques for recogni zing objects by part deconposition rely on finding
the entire parts fromthe inage.
W recognize the specific identity of objects, a relati vel y detailed representation of the object's shape is conpared with the i nage. An exanple for such nethods is al i gnnent $[3,9,12,13,18,25,40,41]$. Al ignnent invol ves recovering the position and orientation (pose) in whii ch the object is obser ved and conparing the appearance of the object fromthat pose with the inage. Olly a few attenpts have been nade in the past to extend the alignnent schene to the problemof object categorization (e.g., [36]). The nai n diffrul ty in appl yi ng the alignnent approach is the recovery of the pose of the observed obj ect. In nost inpl enent ations this invol ves a tine- consuning stage for finding the correspondence bet ween the nodel and the i nage. The process becones inpractical when the i nage is conpared agai nst a large library of objects, because typically the correspondence is establ ished bet ween the inage and each of the nodel s in the library separ ately.

To handle large libraries, indexi ng nethods were proposed (e.g., [20, 46, 14]). The basic idea is the following. Acertainfunction is defined and appli ed to the vi ews of all the objects in the library. The object nodels are arranged in a look- up table indexed by the obtai ned function val ues. When an i nage is given, the function is appl ied to the inage, and the obt ai ned val ue is used to i ndex into the table. To reduce the size of the table and the conplexity of its preparation, invariant functions, functions that when appl ied to different views of an object return the sane val ue regardless of viewpoint, of ten are used as the indexing functions.

Indexing nathods suffer fromseveral shortconings. First, existing indexing nathods handle only rigi d objects. Extending these nethods to handle cl asses of objects has not been discussed. Second, because of con plexity issues, indexing functions usually are applied to snall nunbers of features. As a result, high rates of false positi ves are obtained, and the effectiveness of the i ndexing is reduced.

The schene presented in this paper is designed to work where traditional approaches to categorization and i ndexing fail. The schene conbi nes both categori zation and identification of objects, and uses fai rly detail ledrepresentations for objects. Father than indexing directly to the specific object nodel, the schene indexes into the library of objects by categorizing the object. The cl asses handl ed by the schene incl ude objects wi th relati vel y si mill ar shapes. To fit into the schene, in sone cases basi c level cl asses are broken into sub-classes. The general problemof categorization therefore nay requi re addi tional tools.

3 Recogni ti on by Prototypes

The recognition by prototypes schene proceeds as follows. Alibrary of $3 D$ object nodels is stored in nem ory. The nodels in the library are di vided into cl asses, and $3 D$ prototype objects are selected to represent the cl asses. For every class, the nodels in the cl ass are aligned in the library with the prototype object. The role of this $3 D$ alignent will becone clear shortly.

At recognition tine, an inconing $2 D$ inage is first natched agai nst all of the prototypes. For each prototype object, the systemattenpts to recover the view of the prototype that nost resentbl es the i nage. To do so, the systemrecovers the correspondence between the prototype and the inage, and, using this correspondence, it deterninnes the transfornation that best aligns the prototype with the inage. This transfornation, referred to as the prot ot ype transform, is then applied to the prototype, and the sinillarity between the transfornad prototype and the actual inage is eval uated. Si nce the observed object in gener al differs fromthe protot ype object, a perfect nat ch bet ween the two is not anti ci pated. The systemtherefore seeks a protot ype that reasonabl y nat ches the i nage. Once such a prototype is found, the class identity of the object is deternimed.

Ater the object's class is deternimed, the systemattenpts to recover the specific identity of the object. At this stage, the i nage is nat ched agai nst all the nodels of the object's cl ass. For each of these nodels, the systemseeks to recover the transfor nation that al igns the nodel wi th the inage. As will be shown below since the nodels are alignedin the library with the prototype, the transfornation that best aligns the prototype with the i nage is identical to the transfor nation that al igns the nodel to the i nage. The prototype transformtherefore is applied to the specific nodels, and their appear ance fromt his pose is conpared with the i nage. The nodel that al igns with the inage, if there is such, deternimes the specific identity of the object.

The rest of this section is divided as follows. In Section 3.1 the object representation used in our schene is presented. Section 3.2 describes the categorizationstage, and Section 3.3 describes the i dentif fication stage.

3.1 Object representation - the li near combi nati on schene

In our schene, an object is nodel ed by a natrix M of size $n \times k$, where n is the nunber of feat ure points, and k represents the degrees of freedomof the object. A vector $\vec{a} \in \mathcal{R}^{k}$, referred to as the transformvector, represents the transfor nation applied to the object in a certain view, and the object's appear ance fromthis view is gi ven by

$$
\begin{equation*}
\vec{v}=M \vec{a} \tag{1}
\end{equation*}
$$

In the rest of this section we expl ain the use of this not ation. The not ation follows fromthe linear conbi nation schene [42], whi ch is briefly reviewed bel ow

Under the linear conbi nation schene an object is nodel ed by a snall set of views, each is represented by a vector containing point positions, where the points in these views are ordered in correspondence. Novel views of the object are obt ai ned by appl yi ng li near cons binations to the stored views. Additional constraints nay apply to the coeffients of this linear conbi nation. Conputing the object pose therefore requi res recovering the coeffrients of the linear conbi nation that al ign the nodel with the inage and verifying that the recovered coeffrients indeed satisfy the constraints. The nathod handl es rigi dobjects under meak- perspecti ve projection (nanal y, orthographic projection followed by a uniform
scal ing). It was ext ended to approxi nate the appear ance of objects wi th snooth boundi ng surf aces and to handle articul ated objects. In our representation, the col unms of the nodel natrix M contain views of the object, and the coeffients of the li near conbi nation that al ign the nodel with the inage are gi ven by the transformvect or \vec{a}.

For concreteness, we review the linear conbi nation schene for rigid objects. Consider a $3 D$ object O that contai ns n feature points $\left(X, Y_{i}\right.$, Z), $1 \leq i \leq n$. Under weak- perspective projection, the position of the object following a rotation R, translation \vec{t}, and scaling s is gi ven by

$$
\begin{align*}
x_{i} & =s r_{11} X_{i}+s r_{2} Y_{i}+s r_{13} Z_{i}+t \tag{2}\\
y_{i} & =s r_{21} X_{i}+s r_{22} Y_{i}+s r_{23} Z_{i}+t{ }_{y}
\end{align*}
$$

where $r_{i j}$ are the conponents of the rotation natrix, R, and t_{x}, t_{y} are the horizontal and vertical conponents of the transl ation vector, \vec{t} respecti vely.

Denote by $\vec{X}, \vec{Y}, \vec{Z}, \quad \vec{x}, \quad \vec{y}^{n}$ Gequrs of $X_{i}, \quad, \quad \not, x$ and y_{i} val ues respecti vel y, and denote $\overrightarrow{1}=(1, \ldots ., 1)$ \mathcal{R}^{n}, we can rewrite Eq. 2 in a vector equation as follows:

$$
\begin{align*}
& \vec{x}=a_{1} \vec{X}+a_{2} \vec{Y}+a_{3} \vec{Z}+a_{4} \overrightarrow{1} \\
& \vec{y}=4_{X} \vec{X}+b_{2} \vec{Y}+b_{3} \vec{Z}+b_{4} \overrightarrow{1} \tag{3}
\end{align*}
$$

where

$$
\begin{array}{ll}
a_{1}=s r_{11} & b_{1}=s r_{21} \\
a_{2}=s r_{12} & b_{2}=s r_{22} \\
a_{3}=s r_{13} & b_{3}=s r_{23} \\
a_{4}=t_{x} & b_{4}=t_{y}
\end{array}
$$

Therefore

$$
\begin{equation*}
\vec{x}, \quad \vec{y} \in s \vec{X} a \vec{Y}\{\vec{Z}, \overrightarrow{1}\} \tag{4}
\end{equation*}
$$

Dfferent views of the object are obtained by changing the rotation, scale, and translation paraneters, and these changes result in changi ng the coeffii ents in Eq. 3. W nay therefore concl ude that all the views of a rigid object are contai ned in a $4 D$ li near space.

This property, that the views of a rigid object are contai ned in a $4 D$ linear space, provi des a nethod for constructing viewer- centered representations for the obj ect. The i dea is to use inages of the obj ect to construct a basis for this space. In general, two views provi de sufficiently nany vectors. Therefore, any novel view is a li near conbi nati on of t wo vi ews [30, 42].

Not everylinear conbi nation is a val id view of a rigid object. Following the orthonornal ity of the rowvectors of the rotation natrix, the coeffaients in Eq. 3 nust satisfy the two quadratic constraints

$$
\begin{gather*}
a_{1}^{2}+a_{2}^{2}+a{ }_{3}^{2}=b b_{1}^{2}+b{ }_{2}^{2}+b{ }_{3}^{2} \tag{5}\\
a_{1} b_{1}+a_{2} b_{2}+a{ }_{3} b_{3}=0
\end{gather*}
$$

When the constraints are not satisfied, distorted (by stretch or shear) pictures of the objects are generated. Incase a viewer-centered representationis used, the constraints change in accor dance with the selected basis. A third view of the object can be used to recover the new constraints.

For the purpose of this paper a nodel for a ri gi dobject can be constructed by buil di ng the following $n \times 4$ nodel natrix

$$
M=(\vec{X}, \vec{Y}, \vec{Z}, \overrightarrow{1})
$$

Views of the object can be constructed as follows

$$
\begin{align*}
\vec{x} & =M \vec{a} \\
\vec{y} & =\vec{b} \tag{6}
\end{align*}
$$

where $\vec{a}=\left(a_{1}, \underline{q}, \boldsymbol{g}, \underline{q}\right)$ and $\vec{b}=\left(b_{1}, \underline{b}, \vec{b}, \underline{b}\right)$ are the coeffirients fromEq. 3. Notice that the two li near systens can be narged into one by constructing a nodi fied nedel natrix in the following way

$$
\binom{\vec{x}}{\vec{y}}=\left(\begin{array}{cc}
M & 0 \tag{7}\\
0 & M
\end{array}\right)\binom{\vec{a}}{\vec{b}}
$$

Sinillar constructions can be obtai ned for objects with snooth bounding surfaces and for articul ated objects. The width of M, k, shoul d then be nodi fied accor di ng to the degrees of freedomof the nodel ed object. As was nentioned above, vi ewer- center ed represent ati ons can be obtai ned by constructing a basis for the $4 D$ space from i nages of the object. Therefore, viewer-centered nodels can be obtained by repl acing the col unm vectors of M 1) Ewith the constructed basis.

To surmarize, following the linear conbination schene we can represent an object by a natrix M and construct views of the object by appl ying it to transformvectors \vec{a}. For rigid objects not every transform vector is valid; the conponents of the transformvector nust satisfy the two quadratic constraints. Recognition i nool ves recovering the transformvector \vec{a} and verifying that its conponents satisfy the two constraints. Ignoring these constraints will result in recogni zi ng the object even when it under goes gener al $3 D$ affime transfor nati on. In the anal ysis bel ow we largely ignore the quadratic constraints. These constraints, however, can be verified both during the categorization stage as well as during the i dentification st age.

3. 2 Cat egori zation

The recognition by prototypes schena begins by deterniming the object's category. This is achie eved by cona paring the observedobject to prototype objects, objects that are "typi cal exenpl ars" for their cl asses. For a gi ven prototype, the view of the prototype that nost resem bl es the inage is recovered and conpared to the act ual i nage, and the result of this conparison deternimes the class identity of the object.

W begin our description of the categorization stage by defini ng the data structures used by the schene. A cl ass $\mathcal{C}=(P,\{M M, \ldots i\}$,$) ild a pair that includes a$ prot ot ype P and a set of object nodels $M_{1}, M_{2} . . \quad ., M$ Both the prototype and the nodels are represented by $n \times k$ natrices, where n defines the nunber of feature points considered, and k denotes the degrees of freedom of the objects. For the sake of si mpl icity we assune here that all the objects in the cl ass share the sane nunber of feature points, n, and that they have sinil ar degrees of freedom, k. Note that sinil ar objects tend to have sinilar degrees of freedom(e.g., all of themare rigid). Both assunptions are not strict, however. The schene can be nodi fied to tol er ate both varyi ng nunber of feature points as well as different degrees of freedom The details will be discussed later in this paper. Note that
the objects can be nodeled by either object-centered or vi ewer- centered represent ations. In case viewer- centered representations are used we shal l assune that the nodels represent the objects fromthe sanm range of vienpoints.

Aclass in our schene contains objects with si nil ar shapes. These objects share roughl y the sana topologies, and there exists a "natural" correspondence between them Consider, for instance, the two chairs in Fi gure 1. Although the shapes of these chairs are different, and sone parts (e.g., the arne) appear only in one chair and not in the ot her, a nat ural correspondence bet ween feat ures in the two objects can be deter nimed.

In the library of nodels, the natural correspondence between objects is nade explicit. It is specified by the order of the rowvectors of the nodels. Specifically, gi ven a prototype P and object nodels M_{1}, . \quad, welbrder the rows of these nodels such that the first feat ure point of P corresponds to the first feat ure point of each of the nodels M_{1}, . ., , andilso forth.

Gi vent he li brary of obj ects and gi ven an inconing ima age, the recogni tion by protot ypes schen begins by categorizing the object observed in the inage. To achi eve this goal, the prototype objects are aligned and com pared to the i nage. For every prot ot ype, the correspont dence between the i nage and the prototype is first resol ved, and, using this correspondence, the nearest prototype viewis recovered. By doing so, the schene decouples the two factors that affect the appear ance of the object in the inage, nanel y, view variations and shape variations. By selecting the nearest prototype view to the inage, the schene conpens at es for view variations. Then, by eval uating the sinimlarity between the nearest prot ot ype viewand the actual inage, it accounts for the differences in shape bet veen the prototype and the observed object.

The first st age in nat chi ng the protot ype to the i nage invol ves the recovery of correspondence between prototype and inage features. In existing systen for recogni zing the specific identity of objects establ ishing the correspondence between inages and object nodels int vol ves a tine-consunimg process in whi ch sophisticated al gorithns are applied [10, 13, 15, 18, 23, 25, 35, 41]. These al gorithrs rely on the property that, when the correct correspondence bet ween a nodel and an inage is establ i shed, a near-perfect natch bet ween the two is obtained. Wile this assunption is validfor identification, it cannot be used under our schene since the prototype and the i nage generally represent different objects.

To deternine the correspondence between the prototype and the i nage, we define an obj ecti ve functi on that is appl ied to the prototype and the inage under a gi ven correspondence and that obtains its nimi numunder the correct correspondence. The objective function will neasure the qual ity of the natch between the prototype and the i nage. Nanely, under this neasure the correct correspondence is the one that brings the prototype into its best al i gnement with the i nage. G ven this objective function, correspondence is a conbi natorial optinimzation probl em, and so nimi nization techni ques can be used to resol ve the correspondence between the prototype and the inage. This paper does not propose a speci fic tech-
ni que for sol vi $n g$ the correspondence problem
Assuming the correspondence probl emcan be sol ved, the schene proceeds as follows. Gven a prototype P and an inage I, we generate a view vector \vec{v} fromthe inage by extracting the location of feature points and arrangi ng themin a vector. The points in \vec{v} are ordered in correspondence to the prototype points; that is, the first point in \vec{v} corresponds to the first point in P and so forth. The prot ot ype transformis the transfor nation that brings the prototype points as close as possible to their corres pondi ng i nage points. The protot ype trans-
form, therefore, is the transformvector \vec{b} that nimin nizes the Eucl i dean di st ance bet ween the protot ype and i nage points, nanaly

$$
\begin{equation*}
\operatorname{nin}_{\vec{b}^{\prime}}\left\|P \vec{b}^{\prime}-\vec{v}\right\| \tag{8}
\end{equation*}
$$

A sol ution for (8) is obtai ned as follows. Assuning P is overdeternimed; that is, P is $n \times k$ where $n>k$ and r a $n k(P)=k$, and denote by $+P=\left(P^{T} P\right)^{-1} P^{T}$ the pseudo- i nverse of P, the prototype transform, \vec{b}, is gi ven by

$$
\begin{equation*}
\vec{b}=P^{+} \vec{v} \tag{9}
\end{equation*}
$$

and the nearest prot ot ype view \vec{p} is obt ai ned by appl ying P to the prototype transform, \vec{b}, that is

$$
\begin{equation*}
\vec{p}=\vec{B}=P P^{+} \vec{v} \tag{10}
\end{equation*}
$$

The nearest prototype viewis now conpared to the i nage, and thei r resentol ance deternimes the cl ass i dentity of the object. The qual ity of the nat ch bet ween the prototype and the inage is defined by

$$
\begin{equation*}
D(P, \quad \vec{v})=\|\vec{p}-\vec{v}\|=\|(H P \vec{v} \| \tag{11}
\end{equation*}
$$

To elininate effects due to scaling of the object, this neasure shoul d be nornalized, as is illustrated by the exarpl e bel ow. Consi der an obj ect seen fromsona view $\overrightarrow{4}$. Its distance to the prototype is gi ven by $D(P, 1 \vec{k}$ Suppose the object is nowseen froma new view $\vec{v} \quad 2$ that is identical to $\overrightarrow{1 y}$ except that the object is now as twi ce as cl ose to the caner a. Under these conditions $\vec{v}_{2}=2 \vec{v}_{1}$, and its distance to the prototype is gi ven by $D(P, \overrightarrow{2})=$ $2 D(P, 1 \vec{k}$. Cearly, we shoul d have a neasure that is i ndependent of the distance of the object to the canera. One way to obt ai n such a neasure is by di vi di ng $D(P, \vec{v})$ by the norm\| $\|\vec{v}\|$

$$
\begin{equation*}
\hat{D}(P, \quad \vec{v}) \frac{\|(P P-I) \vec{v}\|}{\|\vec{v}\|} \tag{12}
\end{equation*}
$$

$\hat{D}(P, \vec{v})$ is proposed here as an objective function for establishing the correspondence between the prototype and the i nage. In other words, we expect that if the obj ect bel ongs to the prototype's cl ass then $\hat{D}(P, \vec{v})$ obtains its nimi nal val ue when \vec{v} is or der ed in corres pondence to P. Any other pernutation will increase the val ue of \hat{D}. For nall $l y$, denote by σ a pernutation natrix, we assune that

$$
\begin{equation*}
\hat{D}(P, \quad \vec{v}) \underset{\sigma}{=} \underset{\min }{\hat{h}}(P, \quad \sigma \vec{v}) \tag{13}
\end{equation*}
$$

The neasure $\hat{D}(P, \vec{v})$ has a second role. Si nce it neasures the similarity between the prototype and the im age, it can al so be used to deternime the object's cl ass.

Fi gure 1: "Natural" correspondences bet veen two chai is

Anobject observed in a view \vec{v} bel ongs to the class represented by a prototype P if

$$
\begin{equation*}
\hat{D}(P, \quad \vec{v})<\epsilon \tag{14}
\end{equation*}
$$

for sone constant $\epsilon>0$. Wrefer to (14) as the cat egorization criterion.

The categorization stage proceeds as follows. Gven an i nage I and a protot ype P, the correspondence bet ween P and I is resol ved by nimi niming the neasure $\hat{D}(P, \sigma \vec{v})$ over all possible pernutation σ of \vec{v}, and if t obt ai ned nimini num $\hat{D}(P, \vec{v})$ is belowt he threshol $\mathrm{d} \epsilon$, then the cl ass identity of the object is deternimed.

Note that in our schene the prototype and the categorization criterion deternine the actual division of objects to classes; an object belongs to a certain class if its views are suffiiently similar, according to the categorization criterion, to views of the prototype. Under the above definition, an object bel ongs to a prototype's cl ass if the tot al difference bet neeni ts feat ure poi nts and their corresponding prototype points does not exceed ϵ.

The neasure $\hat{D}(P, \vec{v})$ defined here deternines the sim ilarity between the prototype P and the view \vec{v} using only the distances between feature points. In general, since correspondence is diffult to achi eve, such a neasure woul d not be robust. Incl udi ng addi tional i nfor nattion about the features in the similarity neasure nay increase the robustness of the schene. Also, neasures that consi der onl y the proxi nimty of feature points are linimtedin terns of di viding the li brary into cl asses, si nce they i nduce cl asses of obj ects with hi ghl y si niml ar shapes. Masures that consider additional infornation can extend the cl asses to incl ude larger sets of obj ects.

The neasure $D(P, \vec{v})$ can be enri ched by considering the sinilarity between corresponding points. A sinple
exanple for a neasure that consi ders both the proxima i ty and sinil ari ty bet ween feat ure points is the fol lowing neasure. Each feature point is associ ated with a label (such as a corner or an inflection point). Again, the neasure $\hat{D}(P, \vec{v})$ is applied, but this tina onl y correspondences between points nith simlar labels are al lowed; nanaly, corners in the i nage can only natch corners in the protot ype, and, sinillarly, inflection points can onl y natch inflection points. Oher exanpl es for masures thriat conbi ne proxi nimty and sinillari ty incl ude neasures nt hat retai n the tangent or the curvature of points. Mre sophisticated naasures nay conpare the topol ogies of the objects in the two views, or, in other words, verify that the objects share sinilar part structures in $2 D$.

A useful techni que in neasuring the sinilarity between the inage and the nearest prototype view is to consider a different set of features than the set used to deternine the prototype transf orm The rational behi nd this technique is that it is generally diffult to recover exact feature-to-feature correspondence, and while such correspondences are necessary for recovering the prototype transform, sinilarity nasures can be successfully applied even in the absence of exact feature-to-feature correspondence. This i dea resenbles the basi c princi ple of the al ignnent al gorithm[18, 41], in whi ch a snall set of points is used to conpute the object pose, while a larger set of points is used to verify this pose.

It shoul d be noted that the general flowof the schena and, in particular, the identification stage are independent of the specific choi ce of simul arity naasure. As has been noted above, the neasure affects the division of nedel libraries into cl asses and the selection of optinal prototypes for these classes. An exarple for selecting the optinal prototype for a gi ven cl ass under the nea-
sure speci fied in (12) (for ei ther label ed or unl abel ed features) is described in Section 4.

Fi nal ly, al though the nai nobjecti ve of the cat egorizationst age is to deternime the $c l$ ass identity of the object, the categorization schene described above is useful even if the object's category cannot be deternimed. Section 3.3 below shows that the protot ype transformcan be reused to align the i nage with the speci fic nodel s. Consequently, following the categorization stage the cost of conparing the inage to each of the specific nodels is substanti ally reduced si nce the diffalt part of recovering the transfornation that relates the nodels to the i nage is applied only to the prototype objects. As a result, if the class identity of the object cannot be deternimed we still need to consi der all the speci fic nodels in the library, but the overall cost of conparing the nodels to the i nage noul d be lowbecause correspondence is conputed once for the whole class.

3. 3 Identification

After the observed object is categorized, the system turns to recovering its indi vi dual identity. At this stage the inage is nat ched to all the nodels in the object's cl ass. For each nodel, the systemseeks to recover the transfornation that aligns the nodel to the inage, if there is such. In previous schenas this required recovering the correspondence between the inage and each of the nodels separately. In our schene, however, this no longer is necessary, since the object transformis deternimed directly fromt he prototype transform Whow in this section that the prototype and the object transforns are rel ated by a sinple transf or nation, whi ch can be conputed in advance, and whi ch can in fact be undone al ready in the library of stored nodels. Consequently, the prototype transformcan be reused in the i dentification stage to al ign the indi vi dual nodels with the inage.

The initial stage of categorization recovers three pieces of infornation that can be usedfor identification. The three are (i) the object class, (ii) the correspondence between the prototype and the inage, and (iii) the prototype transform This infornation is used in the identification stage as follows. First, si nce the object's class is deternimed, only nodels that belong to this cl ass are considered. Second, using the correspont dence between the prototype and the i nage establ ished in the categorization stage, and using the stored correspondence bet ween the prot ot ype and the obj ect nodels, the correspondence between the nodels and the inage is i nmedi atel y recovered. Finally, as is shown below, the nodel transform, nanaly, the transfornation that aligns the nodel with the inage, is recovered fromthe prot ot ype transf or m

Assune we are given with a view \vec{v} of sone object nodel M_{i}, nanel y

$$
\begin{equation*}
\vec{v}=\overrightarrow{M a} \tag{15}
\end{equation*}
$$

for sona transformvector \vec{a}. Wien the i dentification process begins, it is still unknown whi ch of the nedels M_{1}, . . of the object's class accounts for the inage and what the transformvector \vec{a} is. The first task faced
by the schen at this stage is to recover the nodel transform \vec{a}. This is done, as is explained below, using the prototype transform $\vec{b}=P^{+} \vec{v}$ defined in (9). Once \vec{a} is recovered, it is applied to all the nodels M, \ldots, , and I the nodel for which a near-perfect natch is obtai ned deternimes the object's identity.

Theoreml bel owestabl ishes that the nodel transform \vec{a} can be recovered directly fromt he prototypetransform \vec{b} by appl ying a li near transf or nation whi chis referred to as the prot ot ype-t o-nodel transform This transformhas t wo interesting properties. First, it is vi ew independent; nanaly, for any gi ven vi ewof the object, the sana transformnaps the protot ype transformthat corresponds to this viewto the correct nodel transform The prototype-to-nodel transformtherefore can be conputed in advance and stored in the library of nodels. Second, the prot ot ype-to-nodel transforme an be used to recover the nodel transformregardless of the quality of natch bet ween the prototype and the inage. In other words, even if the prototype aligns poorly with the inage, the transfornation that aligns the nodel with the inage is deternimed correctly in this process.
Theorem1: Given a view $\vec{v}=M_{i} \vec{a}$. Le $\overrightarrow{\boldsymbol{b}}=P^{+} \vec{v}$ be the prototype transform, that is, the transformvector that best aligns the prototype with the i nage. The nødel transfor $m \vec{a}$, can be recovered fromt he prototype transfor $n \vec{b}$, by appl ying a natrix, Anancl $l y$

$$
\vec{a}=A \vec{b}
$$

A_{i} is referred to as the prot otype-to-model transform Proof: Notice that

$$
\vec{b}=P^{+} \vec{v}=P^{+} M_{i} \vec{a}
$$

Assune $P{ }^{+} M_{i}$ is invertible, let

$$
A_{i}=\left(P^{+} M_{i}\right)^{-1}
$$

we obt ai n that

$$
\vec{a}=A \vec{b}
$$

Corollary 2: The prototype-to-nodel transformis vi ew i ndependent.
Proof: The prototype-to-nodel transform, A, is in dependent of both pose vectors, \vec{a} and \vec{b}. Changing the i nage \vec{v} will result in a new pair of pose vectors, \vec{a} and \vec{b}, but similar to the old pair, the new pair is rel ated through the sane transf orm $A \quad i$. The prototype- to- nodel transform A_{i} therefore can be used to recover the object pose for any vi ew of M_{i}.
A_{i} exists if $\ngtr M_{i}$ is invertible. This condition is equi val ent to requi ring that the t wo col unim spaces of P and M_{i} will not be orthogonal in any direction. The condition holds, in general, when the two objects are fairly sinilar. This is illustrated by the following exanple. Consider the case that both col unm spaces of P and M_{i} are one-di nensi onal ; nanel y, each represents a line through the origin. The only case in this onedi nensional exanple in which A_{i} does not exist is when P and M_{i} are orthogonal. But these lines are farthest
apart when they are orthogonal. Consequently, if the objects are rel atively si nill ar A woul dexist.

Si nce it depends only on the prototype P and the nodel M_{i}, the prototype-to-nodel transform A_{i} can be pre- conputed and stored in the library of nodels. Every nødel $M_{i} \in \mathcal{C}$ is associated with its own tr ansform A_{i} that relates, for every possi ble view of M, bet ween the prototype transf or mand the nodel transform Тo con pare the inage to the nodel M i the nodel transform should first be recovered. This is achi eved by appl yi ng A_{i} to the prototype transformconputed in the categorization stage.

A so, the prototype-to- nodel transform A_{i}, can be used to align the nodel M_{i} wi th the prototype P in $3 D$. Denote the aligned nodel by $M \quad \frac{\prime}{i}, M_{i}^{t}$ nodels the sana object as M does, si nce thei r col unm vectors span the sane space. In addition, the al igned nodel $M \underset{i}{\prime}$ has the property that it is brought by the prototype transform \vec{b} to a perfect al i gnnent wi th the inage. Consequently, if the nodels are al igned in the library ni th the prototype, the prototype transformconputed in the categorization stage can be reused for identification with no further nami pul ations. This is establ ished in Theorem3 bel ow.
Theorem3: Let $M_{i}^{\prime}=M_{i} A_{i}$ be the nodel M al i gned wi th the prot ot ype P. For any vi ew $\vec{v}, \vec{i} M$ the prototype trans formfor this vibe $P^{+} \vec{v}$ is identical to the nodel transf ormfor this view, that is, $\vec{b} \vec{b}=M$
Proof: Since

$$
M_{i}^{\prime}=M_{i} A_{i}
$$

we obtain that

$$
M_{i}^{\prime} \vec{b}=M_{i} A_{i} \vec{b}=M_{i} \vec{a}=\vec{v}
$$

Lsing Theorem3, the identification schene is sime plified as follows. The nodels M_{1}, . . arelaligned in the library with the prototype P by appl ying the correspondi ng prototype- to-nodel transform, $A \quad 1$, . . I. , At A recognition tinf, the prototype transform $\vec{b}=P^{+} \vec{v}$, is appl ied to the al i gned nodels M_{1}^{\prime}, . . f. , Addor di ng to Theorens 1 and 3 , by transforning the nodels by \vec{b} the correct nodel, M_{i}^{\prime}, woul d perfectly al ign wi th the i nage.

In the schena above ne assuned that full feat ure- tofeat ure correspondence is establ ished bet ween the prototype and the i nage. This assunption is not nandatory. Mathods for estinating the prototype transformusing partial correspondence or by considering other types of features (such as line segnents) can al so be used. Note that in case the prot ot ype transformcan onl y be approxi nated, the accuracy of the nodel transfor mobt ai ned is deternined by the quality of this approxi nation and by the condition number of the prototype-to-nodel transform A_{i}. The condition nunber of $A \quad i$ affects the natch even if Theorem3 is applied, nanaly, even if the nodels are aligned with the prototype in advance. Consequently, the condition nunber of the prot ot ype- to- nodel tr ansform A_{i} shoul d be taken into account when the library is di vi ded into cl asses.

Fi nally, the schene can be extended to handle cl asses of objects with different degrees of freedom Consider,
for instance, the case of sinil ar chai rs, sone of whi ch are fol ding. Obviously, the fol ding chairs have nore degrees of freedomt han the regul ar, ri gid chairs, and theref ore they would be represented in the library by wi der nat trices than the rigid chairs are. A is expl ai ned below, the chai rs can be handl ed in a conmon cl ass, and the prot otype for the cl ass noulditself be a fol ding chair.

Mre generally, let M_{1}, \ldots be Mcl ass of nodels of different wi dths, and denote by $k \quad 1$, . . 1 . the k width of M_{1}, \ldots respecti vely. Let P be the prototype for this cl ass, and denote by k_{p} the width of P, we set k_{p} to be

$$
k_{p}=\operatorname{nax}\left\{\begin{array}{llll}
k & 1 & \cdot . l \tag{16}
\end{array}\right\}, k
$$

In other words, we require the prototype to have the sana degrees of freedomas the nost flexible object in the class. W canset k_{p} according to our goal since, as it is shown in Section 4, the prototype P is obt ai ned in our schene by nani pul ating the objects in the class. The prototype-to-nodel transform A_{i} is defined in this case by

$$
\begin{equation*}
A_{i}=\left(P^{+} M_{i}\right)^{+} \tag{17}
\end{equation*}
$$

where A_{i} is $k_{p} \times k_{i}$. It is straightf or war d to ext end Theorem1 to al so incl ude this case. Consequently, for any view of M_{i}, the nodel tr ansform \vec{a} can be recovered from its corresponding prototype transform \vec{b} by appl ying the he prototype-to-nodel transform A_{i} to \vec{b}. Note that si nce $k_{p} \geq k_{i}$ the prototype can appear in poses that do not natch any possible nodel pose (and therefore in noiseless conditions they are inpossi ble to obtain). In case the object is observed fromsuch a view, A_{i} woul d nap this unnat ched prot ot ype transformto the nodel transformthat corresponds to the nearest nat ched prot ot ype transform By setting k_{p} to be as large as the naxi num of k_{1}, \ldots.we, akoid cases where there exist vi ews of the object that cannot be accounted for by the prototype. Mdel transforns that correspond to such views cannot be recovered fromprotot ype transform.

3.4 Sunnary

W presentedin this section a schena for recogni zing $3 D$ obj ects fromsingle $2 D$ vi ews that proceeds intwost ages, categorization and identification. In the categorization stage the inage is conpared against the stored prototypes. For every prototype, the correspondence bet ween the inage and the prototype is recovered, and the nearest view of the prototype is constructed. The sinilarity bet ween this vi ewand the inage is eval uated, and, if the t wo are found sinilar, the class identity of the object is deterninned. In the i dentificati on stage the obser ved object is conpared against the nodels of its class. Si nce the protot ype and the nodel s were brought in the li brary into ali gnnent, the sane transformation that aligns the prot otype to the inage al so aligns the object nodel to the i nage. The protot ype transformtherefore is appl i ed to the nodels, and the obt ai ned vi ews are conpared wi th the i nage. The view that is found to be identi cal up to noi se and occl usi on to the i nage deternimes the indi vidual i dentity of the object.

The presented schene is based on several key principals. Recognition is di vided into t wo sub-processes, cat-
egorization and identification. In both processes nodels are aligned with the inage, and the identity of the object is deternined by a $2 D$ conparison; $3 D$ reconstruction of the observed object fromthe inage is not perforned. The diffult conponent of the al ignnent approach, nanaly, the recovery of correspondence and object pose, is perforned only once for each cl ass; the prot ot ype transf ormis reused in the identi fication stage to al ign the i nage with the indi vi dual nodels.

4 Constructing optimal prototypes

In the schene above we assuned that the cl asses in the library of nodels are represented by prototype objects. Since categorization is achieved by natching the ime age to prototype objects, the question of how to sel ect the best prototype shoul d be addressed. In this section we present an al gorithmf or constructing optinal prototypes.
G ven a class of objects, the optinal prototype for this cl ass is the object that resenbl es the objects of the class the nest. Under our for nol ation, such an object woul d share as nany feat ures as possible with the objects of its class, the position of these features on the prototype would be as close as possible to their position on the objects, and the prototype-to-nodel transform for these objects nould be as stable as possible. Below we show that the opti nal prototype can effectively be conputed using principal conponent anal ysis; that is, by conputing the donimant ei genvectors for sone nat trix deternined by the nodels of the class.

Princi pal conponent anal ysis of ten is used in cl assification probl ens to construct classes and prototypes [11]. In existing appl ications, an obj ect is represented by a poi nt in sone high di nensi onal space, where each cont ponent of this point contains an i nvari ant attri bute of the object. Ahyperpl ane in that space represents a cl ass of objects. The goal of the principal conponent anal ysis is, gi ven a set of points (objects), to recover the class that these points induce. Orr case is sonewhat different. In our case an object is represented by a conti nuous linear space rather than by a point. Wereas the use of hyperplanes in other schenes of ten is arbitrary and nade pri narily for convenience, their use in our schene is appropriate following the linear conbi nation schene [42] (see Secti on 3.1).

The di fferences outli ned above al so inply differences in the proof that principle conponent anal ysis applies to our case. W show bel ow that the opti nal protot ype can be conputed by pri nci pal conponent anal ysis. The traditional proof needs to be extended si nce in our case objects are represented by conti nuous spaces rather than by discrete points.

The prototype constructedinthis process is a $3 D$ object obtai ned by nani pulating the objects in its class. Go al low the construction, it seens as if the objects in the cl ass shoul d first be brought into al i gnnent. In particular, if the objects are represent ed by viewer- centered nodels (that is, by sets of their vi ews, see Section 3.1 for details), the different objects woul d then have to be represented by i nages taken fromsinil ar vi expoints. Nevertheless, the process presented below does not require
an initial alignnent of the objects. The sane prototype is obtai ned in thi s process even when the objects are not aligned

W now turn to constructing the opti nal prototype. First, we define an objective function. Gven a prototype P and an object nodel M_{i}, we define the sinimlarity between P and M_{i} as follows. Let \vec{j} be a view of M_{i}, we neasure the sinil arity bet veen the prototype P and the view \vec{v} using (12). Then, we sumthe neasure over all possible views of M. Assuning without loss of generality that $\| \vec{i} \vec{\psi}^{2}=1$, (14) can be rewritten as

$$
\begin{equation*}
\hat{D}(P, i) \vec{v}=\|\left(P P^{+}-I\right)_{i} \overrightarrow{\|} \tag{18}
\end{equation*}
$$

Wthout loss of generality, we can assune that the constructed prototype, P, is conposed of orthonornal col unms. Sote that an overdeternimed natrix P with or thonornal col unms satisfies $P \quad+=P^{T}$. W can therefore rewite (18) as

$$
\begin{equation*}
\hat{D}\left(P, i \vec{v}=\|\left(P P^{T}-I\right)_{i} \vec{k}\right. \tag{19}
\end{equation*}
$$

The distance between P and the nodel $M \quad{ }_{i}$ is now gi ven by sunming $\quad \hat{D}(P, i) \vec{v}$ over all unit-length (to elininate scaling effects) views of M_{i}, nanaly

$$
\begin{equation*}
\hat{D}\left(P, \quad H=\int_{\left\|\overrightarrow{v_{i}}\right\|=1} \|(P \widetilde{P}-I)_{i} \overrightarrow{\|}\right. \tag{20}
\end{equation*}
$$

To obt ain the objective function, we sumthese distances over all nodels

$$
\begin{equation*}
E(P)=\sum_{i=1}^{l} \int_{\left\|v_{i}\right\|=1} \|(P P-I)_{i} \overrightarrow{\|} \tag{21}
\end{equation*}
$$

The object P that niminimes this function is defined to be the opti nal protot ype.

Note that (21) is not the onl y possi ble objecti ve function for this purpose. An alternative "worst case" approach is to neasure the dist ance between the prototype to the farthest nodel in the class (rather than summing this distance over all nodels). Except for being di ffiult to conpute, this noasure also is sensitive to "outlier" nodels.

The protot ype that nimii nimes (21) can be constructed in a process that incl udes the foll owing steps.

1. To sinpl if y the process we assuna the col urm vectors of each of the nodel natrices $M_{i},(1 \leq i \leq l)$, are or thonornal. (In case they are not, we first appl y a Ganschnidt process to them Such a process obviously does not alter the space of views inplied by the nodels.)
2. Build the $n \times n$ symetric natrix

$$
F=\sum_{i=1}^{l} M_{i} M_{i}^{T}
$$

3. Fi nd the k donimant ei genvectors of F. The optinal natrix P is constructed fromthese ei genvectors.

Note that, in general, we are trying to construct a prototype object that woul d bel ong to the gi ven cl ass. This condition deternimes the choi ce of width k for the prototype. If all the nodels share the sane wi dth then the prototype would assune this width. In the rigid case, for exanple, $k=4$ (see Section 3.1). As nentioned in Section 3.3 above, in case the objects have different degrees of freedom, k is set to be the naxi numof $k 1$, . l. where k_{1}, . .l ar, k the wi dths of M_{1}, \ldots, \quad r,especti vel y. In case nore than k large ei genval ues are obt ai ned, one nay i gnore these gui del ine rules and construct a prototype that has hi gher degrees of freedomthan the obj ects in the class (see for exanple [31]).

Theor em4 bel owest abl ishes that the al gori thmabove produces the optinal prototype. W consi der here the case that all the objects share sinill ar degrees of freedom The sane procedure can be appl i ed wi th slight nodi fications to incl ude the case of objects wi th different degrees of freedom

Theorem4: Let M_{1}, M_{2}, \ldots, INbe a set of nodels belonging to sone class \mathcal{C}. Assune every nødęlid represent ed by an $n \times k$ matrix wi th or thonor mal col unt vectors. The prototype P that minimzes the term

$$
E(P)=\sum_{i=1}^{l} \int_{\left\|v_{i}\right\|=1} \|(P P-I)_{i} \overrightarrow{\|}
$$

where the integration is done over all the unit-lent
vi eus $\vec{\imath}$ of each model M, is composed of the k eigenvectors of the matrix

$$
F=\sum_{i=1}^{1} M_{i} M_{i}^{T}
$$

that correspond to its k largest eigenval ues.
Proof: Let P be conposed of the k donimant eigent vectors of F. According to regression princi pl es P nimninimes the term

$$
\sum_{i=1}^{l} \sum_{j=1}^{k}\|(P F-I) \vec{g}\|
$$

where $\vec{m}_{i j}$ is the j 'th col unm vector of M_{i}. In other words, consi der $\vec{m}_{i j}$ as a poi nt in \mathcal{R}^{n}. The space spanned by the col urm vectors of P is the nearest k-di nensi onal hyperpl ane to these points, $\vec{m}_{i j}$. The rest of this proof extends the clai mf romthe discrete sumover the col urm vectors of M_{i} to the continuous integral over all viens spanned by these vectors. Accordi ng to our ass unpti ons, each natrix M_{i} contains an orthonor nal set of col unm vectors. Repl acing these vectors by another or thonor nal basis for M_{i} will not change the natrix P; that is, P is i ndependent of the choice of orthonornal basis for the nodels. This is illustrated by the following derivation. To obt ai n a newor thonor nal basis for the col unim space of M_{i} we can apply a $k \times k$ rotation natrix R to M_{i} (nanal y, $M_{i} R$). P is the best vector space for the new set as well, since

$$
M_{i} R\left(M_{i} R\right)^{T}=M_{i} R R^{T} M_{i}^{T}=M_{i} I M_{i}^{T}=M_{i} M_{i}^{T}
$$

F ther efore is constant for any choi ce of or thonornal vectors for M_{1}, . n, and so its doninant ei genvectors represent the best vector space for for any orthonor nal representation of the objects. Consequently, P nimin nilzes the objective function regardless of choice of basis for the nodels, and therefore it al so nimin nizes the required term
k

$$
E(P)=\sum_{i=1}^{l} \int_{\|\vec{i}\|=1}\left\|(P P-I)_{i} \overrightarrow{\|}\right\|
$$

To sunmari ze, we shoved that gi ven a cl ass of object nodels, the optinal prototype for this cl ass is given by the donimant ei genvectors of the natrix F, whil ch is constructed fromthe object nodels. Note that in proving Theorem4 we showed that the protot ype is independent of choi ce of basis for the nodels. This inplies that, in order to construct the prototype, the object nodels M_{1}, ..., M do not need to first be brought into alignnent. The process above guarantees to output the sane prototype object even if the nodels are not al i gned.

m Rel evance to human visi on

The recognition by prototypes schene uses the general shape of objects as the cue for recogni zi ng them As was al ready nenti oned, cl asses in our schene contai nobjects with fairly simil ar shapes. In contrast, the hunan visual systemrecogni zes objects using both shape cues as well as nany other cues, such as color, texture, notion, and context, and objects are categorized in their basic level of abstraction [33]. Oly little is currently known about the underl ying processes for recogni tion used by the visual system Fromuhat is known, in spite of the differences poi nted above, the recognition by prot ot ypes schene seens to be consistent inseveral key issues with psychol ogi cal and physiol ogi cal findi ngs. In this section we bri efly review these findi ngs.

The schene presented in this paper pronotes the notion that categorization and i dentification are perfor ned using simimar tools. In both cases view variations first are conpensated for, and then a view of either the hypothesized prototype or object nodel is conpared wi th the inage. This is in contrast to nathods (such as part deconposition and functional description) that in gent eral handle either categorization or identification, but do not extend to deal with both problens. The available studies in this case are inconcl usi ve. Sone evi dence seemto indi cate that the two processes are handl ed separately by the visual system Agnostic and prosopagnostic pati ents of ten denonstrate degraded identification abilities, wher eas thei r perfor nance in categor izati on renai ns intact. Double dissociation bet ween the two processes, however, has not beenfound, and so the assumption that the t wo processes are handl ed separ atel y in the br ai n has not been established. In fact, both cells that respond to general faces as well as cells that respond to specific faces where found lying side by side wi thin the sana brain area, SIS, of the nacaque nonkey [29]. The vulnerability of the identification process to brain lessions can be expl ai ned by that the process requi res a rel ati vel y l arge nanory to encode the detailedshapes of objects as
well as sophisticatedinage processing nachani sna to recover a detailed description of the obser ved object from the i nage (see e.g., [19]).

Another idea proposed here is that categorization invol ves two stages: a stage of conpensating for vi ew variations foll owed by a stage of $2 D$ conparison to account for shape differences. A decoupling of view variation and senantic categorization was suggested by Lissauer [24]. Wringt on and Tayl or [44, 45] found that patients that suffer fromlessions in the posterior lobe of the right heniusphere denonstrate diffulties in categorizing objects fromunconventional views, whereas their perfornance in categorization of objects fromconventional views renai ns intact. Additional evi dence for the effect of view variations on categorization perfor nance were found for heal thy subj ects. Subjects that are asked to nane objects respond slower when the objects appear in unconventional views [28]. Aso, nental rotation effects, nanely, response tine that grows linearly with the tilt of the object, were observed in naning tasks of natural objects [21].

Finally, the process of categorization presented here is achieved by conparing the i nage to prototype objects, and these prototype obj ects can be constructed by nani pul ating the faniliar objects of the class. Recent studies indicate that response tine in naning tasks is typi cally shorter and error rates are lower when the observed object is sinillar to the protot ype [5]. Si niml arly, shor ter reaction ti ne is obt ai ned when subj ects are asked to answer questions of the type "does the object X belong to the class Y?" [34]. Oher studies reported that chil drenl earn good exanpl es of cl asses before they learn poor ones $[1,32]$ and that subjects recall havi ng seen the prototype or aver age configuration of studi ed face i nages even if this configuration was not studied [8].

Io sunmarize, al though the presented schene generally does not recognize objects in their basic level of abstraction, it is consistent with psychol ogical and physi ol ogical findings in several key issues incl uding a single approach for the two sub-problens of recognition, categorization and identification, view dependency of the t wo sub-processes, and the role of prot ot ypes in categorization. The findings discussed here obviously are int concl usi ve, si nce psychol ogi cal and physiol ogi cal st udi es i ncl udi ng the ones discussed here have nore than one possible interpretation.

6 Ingl enentati on

Go test the ideas presentedin the paper, we have inplenent ed the schene and appl ied it to several objects. In our inplenentation, the library of nodels included two classes. The first (Figure 2) contai ned two four-l egged chai rs (denoted by A and B), and the second (Fi gure 3) i ncl uded two car nedels, a Wand a Saab.

To denonstrate categorization, we used chair Aas a prototype and natched it to an inage of chair B Correspondences between the prototype and the i nage were pi cked nanual ly, and, usi ng these correspondences, the prototype transformwas recovered and applied to the prot ot ype. The results of natching the transfor ned prototype wi th the i nage are seen in Fi gure 4. It can be seen
that the transfor ned protot ype (niddle figure) assuned the sane ori entation as the observed object (left figure), and that the nat ch bet ween the t wo is good consi dering that the objects have different shapes. Note that in thi s i npl enent ati on we all owed the objects to under go general affime transfornati ons in $3 D$, incl udi ng stretch and shear, and so the natch bet ween the prototype and the i nage was better than if onl y rigidtransfornations were al lowed. Additional exanpl es using chair B and the two cars as the protot ypes are shown in Fi gures 5-7.

In Fi gures 89 we tried to natch the protot ypes to the i nages with wrong cor res pondences. The results of these natches were significantly worse than when the correct nat ches were used. This is consistent with the i dea discussed in Section 3.2 that the quality of the natch can be used as the objective function for resol ving the correct correspondence.

Figure 10 shows the results of natching a prototype four-l egged chair to a single-l egged offie chair. It can be seen that the upper portions of the chairs natch relati vely well, while the legs of the chairs do not find appropri ate natches.

Figure 11 shows the result of natching a prototype chair to an inage of a Saab car. As an anecdotal exanpl e, we nat ched the hole bel ow the back of the chai r to the windshi el d of the car and the seat to the hood. In general, whatever correspondence is used, the two objects woul d nat ch poorly rel ati ve to natching the prototypes to objects of their cl ass.

Fi gures 12-13 denonstrate the i dentificationstage. In the library we first aligned the nodel for chair A with the prototype chair (chair B) using the prototype-tonodel transform Then, an inage of chair A was categori zed (Fi gure 5) by nat chi ng it to the protot ype chai r, and the prototype transfor mwas conputed. In the next step, the prot otype transf or mwas appl i ed to the speci fic nodel of chair A The result of this application is seen in Figure 12. It can be seen that a near-perfect alignt nent was achi eved inthis process. Asimilar process was appl ied to the Whcar in Figure 13 using the Saab car as the prototype. (The result of the corresponding categorization stage is shown in Figure 6.) These figures denonstrate that al though a perfect nat ch bet ween the prot otype and the i nage coul d not be obt ai ned, the prototype transformcan still be used to align the observed obj ect with its specific nodel.

7 Sunnary

Wintroduced in this paper a recognition schene that proceeds intwo st ages: categorization and identification. Categorization is achie eved by al igning the i nage to prototype objects. For every prototype, the nearest prototype view is recovered, and the similarity bet ween this view and the inage is eval uated. The prototype that nost resentol es the obser ved object deternimes its class i dentity. Li kewise, i dentification is achieved by alignt ing the observed object to the indi vi dual nodels of its class. At this stage the prototype transformconputed in the categorization stage is reused to align the nodels with the inage. The nodel that natches the observed object deternimes its specific identity. In addition, we

Fi gure 2: Rctures of two chairs used as nodels. We refer to these chai rs by A(left) and B(right). Wodels for the two chai rs vere constructed fomsi ngle i inges using symmatry [31].

Figure 3: Rctures of two cars wed as nodel s. Left: a VWrodel. Rght: a Saab nodel. Ndels for the two cars vere borroved from[42].

Fi gure 4: Natching a prototype chair (chair A) to an in rage of chair B This figure, as vell as the rest of the figures, contain three pictures. Left: the inage to be recogrized. iiddll e: the appearance of the prototype followng the application of the prototype transform Hght: an overl ay of the left and the middlle pictures.

Fi gure 5: Matching a protot ype chair (chair B) to an inge of chai r A

Fi gure 6: Matching a prototype car (Saab) to an inge of a Wcar.

Fi gure 7: Matcling a prototype car (W) to an in rage of a Saab car.

Fi gure 8: Matching a prototype chair (chair B) to an inge of chai r Aw wh wrong correspondence.

Fi gure 9: Matcling a prototype car (Saab) to an inge of a Wcar with wong correspondence.

Fi gure 10: Natchiing a four-l egged chai r to an inage of an offec chai r.

Fi gure 11: Matching a prototype to a chair (chair A) to an inge of a Saab car.

Figure 12: Matching a nodel of chair A to an inage of the san chair using the prototype transformconputed in the categorization st age.

Figure 13: Mtching a nodel of a Wcar to an inge of the sana car using the prototype transformconputed in the categorization stage.
presented an al gorithmf or constructing the optinal prototypes and di scussed the rel evance of the schene to hut nan recognition.

An inportant issue conveyed by our schene is that categorization can be used to facilitate the i denti fication of objects. W showed that by first categorizing the object, the diffrul t st ages of the al ignnent process, nanel y, the recovery of the object pose and the correspondence bet ween the i nage and the nodel, can be perforned onl y once per cl ass. Consequently, i dentification is reduced in this schene into a seri es of si nple tenpl ate conpari sons.

The schene presented in this paper differs fromexisting categorization schenes in two inportant aspects. The existing schenes (e.g., [4]) first attenpt to recover the part structure (geons) of the object fromthe inage al one. This structure is assuned to be al nost invariant both to rotation of the object and across objects of the sane class. In contrast, our schene does not attenpt to recover any $3 D$ inf or nation fromthe inage al one. Moreover, it separates the two effects that deternime the object's appear ance: viewvari ati on effects and defornations due to cl ass vari ability. Kewvariations are conpensated for by recoveri ng the vi ewof the prototype that nost resentle es the i nage, and the anount of defor nati on that separates the protot ype fromt he speci fic object is eval uated by assessing the difference (in $2 D$) bet ween the nearest prototype view and the i nage.

Qpen problens for fut ure researchincl ude sol vi ng the correspondence bet neen prototypes andi nages, conbi ining the schene wi th exi sti ng i ndexi ng approaches, defining effecti ve neas ures to eval uate the qual ity of nat ches, and ext endi ng the systemto i ncor por ate addi tional cues, such as color and texture.

Acknowl edgenart

I wish to thank Shi non Ul nan for encour agenent and advi ce, Tao A ter and Yael Mses for nany fruitful discussions, Dror Bar Nat an for his assistance in verifying the proof for Theorem4, Eric Ginson, John Harris, and Tonaso Poggio for conments on earlier drafts.

References

[1] Anglin, J., 1976. Les preniers ternes de référence de lénfant. In S. Enrlich and E Tulving (Eds.), La menoire sémantique. Paris: Bulletin de Psychologie.
[2] Baj csy R and Sol ina F., 1987. Three di nensional object representation revisited. Proc. of 1st ICCV Conference, London, 231-240.
[3] Basri R and Ul nan S., 1988. The alignment of objects with snooth surfaces. Proc. of $2 n d$ Int. Conf. of Computer Vision, Florida, 482-488.
[4] Beder nan, I. 1985. Hunan i nage understandi ng: recent research and a theory. Computer Vision, Graphics, and Image Processing, 32, 29-73.
[5] Bedernan, I., 1988. Appects and extensions of a theory of hunan inage understanding. In Z. Pylyshyn (Ed.), Comput ational Processes in Human

Vision: an Int erdisciplinary Perspective, Normood, N: Abl exi, 370-428.
[6] Bnford, T O, 1971. Visual perception by cont puter. IEEE Conf. on Systens and Control.
[7] Brooks, R, 1981. Synbolic reasoni ng anong 3di nensi onal nodels and 2-di nensi onal i nages. Artifici al Int elligence, 17, 285-349.
[8] Bruce, V., 1990. Perceiving and recogni zing faces. Mi nd and Language, 5(4), 342-364.
[9] Chi en, CH and Aggar wal, J. K., 1987. Shape recognition fromsingle silhouette. Proc. of I CCV Conf., London, 481-490.
[10] Davis L. S., 1979. Shape nat chi ng usi ng rel axation techni ques. IEEE Trans. on Pat tern Analysis and Machine Intel., 1(1), 60-72.
[11] Duda, R O and Hart P. E , 1973. Pattern cl assi fication and scene anal ysis. Wiley-Int erscience Publication, John Wley and Sons, Inc.
[12] Fauger as, OD and Hbert, M, 1986. The representation, recognition and location of 3Dobjects. Int. J. Robotics Research 5(3), 27-52.
[13] Fischler, MA and Bolles, RC, 1981. Random sanpl e consensus: a par adi gnfor nodel fitting wi th application to inage anal ysis and autonated cartography. Com of the A CM, 24(6), 381-395.
[14] Forsyth, D, Mindy, J. L., Zissernan, A, Coel ho, C, Hller, A, and Fothwell, C, 1991. Invari ant descriptors for 3-Dobject recognition and pose. I EEE Trans. on Pattern Analysis and Machine Int el., 13, 971-991.
[15] Ginson WE L and Lozano- Pérez T, 1984. Mdel-based recognition and localization from sparse data. Int. J. of Robotics Research, 3, 3-35.
[16] Њ, S., 1987. Representing and using functional definitions for visual recognition. Ph. D. Dssertation, University of Visconsin, Midison.
[17] Hffinan, D and Fi chards, W, 1984. Parts of recognition. Cognition, 1865-1896.
[18] Huttenl ocher, D P., and Ul nan, S., 1990 Recogni zing Solid Ojects by A i gnnent with an Inage, Int. J. Comput er Kísion, 5(2), 195-212.
[19] Hunphreys G W and R ddoch MJ., 1987. To see but not to see. A case study of visual agnosia. Laurence ErlbaumAssoci at es, Pub., London.
[20] Jacobs, D W, 1992. Space effici ent 3D nodel int dexing. Proc. of Image Underst anding Wrkshop, 717-725.
[21] Jol i coeur P., 1985. The tine to nane disoriented natural objects. M mory and Cognition, 13(4), 289303.
[22] Koenderink, J. J. and Van Dorn, A J., 1982. The shape of snooth objects and the way contours end. Perception, 11, 129-137.
[23] Landan, Y, Schwartz, J. T, and Wi fson, H, 1987. On recognition of 3-D objects from 2-D i nages. Courant Inst. of Math. Sci., Rob. TR 1 I2 2.
[24] Lissauer H, 1890. Fall von Seel enblindheit nebst ei nembeitrag zur theorie dersel ben. Archives Psychi at rie und Nervenkrankheiten, 21, 222.
[25] Lowe, D G, 1985. Three- di nansi onal obj ect recogni ti on fromsingle two- di nensi onal inages. Courant Inst. of Math. Sci., Rob. TR202
[26] Marr D and Nshi har a, H K, 1978. Representation and recognition of the spatial organization of threedi nensional shapes. Proc. of the Royal Society, London, B200, 269-294.
[27] N ckerson, R S., 1965. Short term nenory for neani ngful configurations: a denonstration of capacity. Canadi an J. of Psychology, 19, 155-160.
[28] Pal ner, S.E, Rosch, E, and Chase, P., 1981. Canoni cal perspective and the perception of objects. In Long J. and Baddel ey A (Eds), Attention and Performance, 9, ErlbaumHlllsdale, NJ, 135-151.
[29] Perret, DI., Snimth, P.AJ., Potter, DD, Milstlin, A J., Had, AS., Millner, AD and Jeeves, MA, 1985. Visual cells in the tenporal cortex sensitive to face view and gaze direction. Proc. of the Royal Society, B203, 293-317.
[30] Poggio, T, 1990. 3Dobject recognition: on a resul t by Basri and Ulnan, TR 9005-03, IRST, Povo, It al y.
[31] Poggio, T and Vetter T, 1992. Recognition and structure fromone 2Dnodel view observations on prototypes, object cl asses, and symmetri es. MI.T., A I. Mmo No. 1347.
[32] Rosch, E, 1973. On the internal structure of perceptual and senantic categories In T. E More (Ed.), Cognitive development and the Acquisition of Language, New York: Acadenic Press.
[33] Fosch, E, Mrvis, CB, Gay, WD, Johnson, D M, and Boyes-BraemP., 1976. Basic objects in natural categories. Cognitive Psychology, 8, 382439.
[34] Rosch, E, Si npson, C, and Miller, R S., 1976. Structural bases of typicality effects. J. of Experiment al Psychology: Human Perception and Performance, 2(4), 491-502.
[35] Rosenfeld A, Hummel R, and Zucker S., 1976. Scene labeling by relaxation operations. IEEE Trans. on Syst emand Man Cybernetics, 7, 420-433.
[36] Shapi ra, Y. and Ul nam, S., 1991. A pictori al approach to object classification. Proc. of the Int. Conf. on art ifici al int el., 1257-1263.
[37] Shepard, RN, 1967. Recognition nenory for words, sentences, and pictures. J. of lerbal Learning and lerbal Behavi or, 6, 156-163.
[38] St andi ng, L, Conezio, J., and Hbber, R N, 1970. Perception and nenory for pictures: single-trial learning stinuli. Ps ychonomí Sci ence, 19, 73-74.
[39] Stark, L, and Bowyer, K, 1990. Achi evi ng generalized object recogni tion through reasoni ng about association of function to structure. IEEE Trans. on PAM, 13(10), 992-1006.
[40] Thonpson, D W and Mndy J. L. , 1987. Three di nensi onal nodel natching froman unconstrai ned vi eupoint. Proc. of I EEE Int. Conf. on robot ics and Aut omation, 208-220.
[41] Ul nan S., 1989. A igni ng pictorial descriptions: an approach to object recognition. Cognition, 32(3), 193-254.
[42] Ul nan, S. and Basri, R, 1991. Recogni ti on by linear conbi nati ons of nodel s. IEEE Trans. on PAM, 19(10), 992-1006.
[43] Vai na, L M and \mathbb{Z} ateva, S. D, 1990. The 1 ar gest convex pat ches: a boundary-based nethod for obtaining object parts. Bi ological Cybernetics, 62, 225-236.
[44] Wrrington E K and Tayl or A M, 1973. The cont tribution of the right peri etal lobe to object recognition. Cortex, 9, 152-164.
[45] Wrirington E K and Tayl or A M, 1978. Two categorical stages of object recognition. Perception, 7, 695-705.
[46] Wi nshal l, D, 1991. Mdel-based invari ants for 3D vision. Res earch Report RC 17958 (\#76640), IBM T. J. Wht son Res earch Center.
[47] Whston, P.H, Bnford, T. O, Katz, B, and Lowry, M. 1984. Learni ng physi cal description fromf unctional definitions, exarpl es and precedents. MI.T., AI. Mwo 679.

